

VERİ GİZLEMEDE

SIKIŞTIRMA ALGORİTMASI

 KULLANIMI VE UYGULAMASI *

Esra Ayça GÜZELDERELİ

* Yazarın yüksek lisans tezinden türetilmiştir.

Veri Gizlemede Sıkıştırma Algoritması Kullanımı ve Uygulaması
Esra Ayça GÜZELDERELİ

Genel Yayın Yönetmeni: Berkan Balpetek
Kapak ve Sayfa Tasarımı: Duvar Design
Baskı: Aralık 2025
Yayıncı Sertifika No: 49837
ISBN: 978-625-8698-22-0

© Duvar Yayınları
853 Sokak No:13 P.10 Kemeraltı-Konak/İzmir
Tel: 0 232 484 88 68

www.duvaryayinlari.com
duvarkitabevi@gmail.com

İÇİNDEKİLER

SİMGELER VE KISALTMALAR LİSTESİ .. v
ÖZET ... v�
SUMMARY .. v��
1.BÖLÜM

GİRİŞ .. 1

2. BÖLÜM

STEGANOGRAFİ ... 4

2.1. Giriş ... 4

2.2. Steganografi’nin Tarihçesi .. 5

2.3. Steganografi’nin Amacı .. 5

2.4. Steganografi’nin Kullanım Alanları .. 6

2.4.1. Dilbilim steganografi .. 6

2.4.2. Teknik steganografi .. 7

2.4.3. Metin steganografi .. 7

2.4.4. Görüntü steganografi .. 8

2.4.5. Ses steganografi .. 14

3. BÖLÜM

KISMİ OPTİMİZASYON TEKNİĞİ İLE VERİ GİZLEME 16

3.1. Giriş ... 16

3.3. Kısmi Optimizasyon Yöntemi ile Veri Gömülmesi Katmanının Algoritması 24

4. BÖLÜM

VERİ SIKIŞTIRMA TEKNİKLERİ .. 31

4.1. Veri Artıklık Türleri .. 31

4.1.1. Karakter dağılımı .. 31

4.1.2. Karakter tekrarı ... 31

4.1.3. Çok kullanılan sözcükler .. 32

4.1.4. Konumsal artıklık ... 32

4.2. Sıkıştırma Biçimlerine Göre Veri Sıkıştırma Yöntemleri 32

4.2.1. Kayıplı sıkıştırma ... 32

4.2.2. Kayıpsız sıkıştırma ... 33

4.3. Uygulama Alanlarına Göre Veri Sıkıştırma Yöntemleri 33

4.3.1. Metin ve ikili tabanlı veri sıkıştırma ... 33

iii

4.3.2. Ses verisi sıkıştırma ... 33

4.3.3. Görüntü verisi sıkıştırma ... 33

4.3.4. Hareketli görüntü (video) sıkıştırma .. 34

4.4. Olasılık Tabanlı Veri Sıkıştırma Teknikleri.. 34

4.4.1. Huffman kodlama .. 34

4.4.2. Aritmetik kodlama ... 35

4.5. Sözlük Tabanlı Veri Sıkıştırma Teknikleri ... 35

4.5.1. Statik sözlük yaklaşımı .. 36

4.5.2. Yarı-statik sözlük yaklaşımı .. 37

4.5.3. Dinamik (uyarlanır) sözlük yaklaşımı.. 40

5. BÖLÜM

LZW SIKIŞTIRMA ALGORİTMASI TABANLI ... 51

VERİ GİZLEME UYGULAMASI ... 51

5.1. Uygulama Yazılımının Tanıtılması ... 52

5.1.1. Resim içerisine dosya gizleme uygulaması ... 52

5.1.2. Resim içerisinden gizli dosyanın elde edilme uygulaması 58

5.2. Uygulamaya Ait Deneysel Sonuçlar ... 62

5.3. Sonuç .. 69

6. BÖLÜM

SONUÇ VE ÖNERİLER .. 70

KAYNAKLAR ... 72

iv

SİMGELER VE KISALTMALAR LİSTESİ

ASCII : American Standard Code for Information Interchange

BMP : Bit Map

CCITT : Consultive Committee on International Telephone Telegraph

DCT : Ayrık kosinis dönüşümü

DFT : Ayrık Fourier dönüşümü

DWT : Ayrık dalgacık dönüşümü

GIF : Graphics Interchange Format

İDS : İnsan Duyma Sistemi

ISSDC : Tekrarlı Yarı-Statik Diagram Kodlaması

 (Iterative Semi-Static Diagram Coding)

JPEG : Joint Photographic Experts Group

LSB : En Az Ağırlıklı Bit (LSB, Least Significant Bit)

LZ77 : Lempel Ziv 77

LZ78 : Lempel Ziv 78

LZSS : Lempel Ziv Storer Szymanski

LZW : Lempel Ziv Welch

MPEG : Motion Picture Expert Group

RGB : Kırmızı Yeşil Mavi (RGB, Red Green Blue)

SSDC :Yarı-Statik Diagram Kodlaması

 (Semi-Static Diagram Coding)

YCbCr : Luma blue-difference, red-difference

v

ÖZET

Anahtar kelimeler: Steganografi, Veri Gizleme, Kısmi Optimizasyon, LZW

Sıkıştırma

Günümüzde steganografi(veri gizleme) uygulamaları giderek artan yaygın bir

öneme sahip olmaktadır. Steganografi üzerine yapılan çalışmalar, çoklu ortam ve

bilgi güvenliği uygulamaları gibi güncel gereksinimler ile daha da artan bir talep

görmektedir. Steganografi’ nin amacı gizli mesaj ya da bilginin varlığını

saklamaktır. Gizlenmek istenen mesaj, bir başka masum görünüşlü ortamda

saklanır ve böylece üçüncü şahısların gizlenen mesajın varlığından haberdar

olması engellenir. Bu açıdan özellikle resim içerisine bilgi gömme teknikleri

üzerine yoğunlaşarak, bu alanda yeni yaklaşımlar elde edilmiştir. Bu

yaklaşımlardan biri de kısmi optimizasyon yöntemi ile veri gizleme tekniğidir.

Kısmi optimizasyon tekniğinde resmi oluşturan tüm piksel hücreleri sekiz

farklı bölgede sınıflandırılarak, her bölgeye sekiz farklı optimizasyon

uygulanmaktadır. Böylelikle her bir bölgeden en efektif sonuç elde edilerek,

değiştirilen bit (hatalı bit) sayısı minimuma indirgenmektedir. Bu tez

çalışmasında, kısmi optimizasyon tekniğinin bir sıkıştırma algoritmasıyla

desteklenmesiyle, veri gizleme işleminin daha efektif sonuçlar vermesi

sağlanmıştır. Bunun için gizlenecek olan verinin kayıpsız ve dinamik sözlük

tabanlı bir sıkıştırma tekniği olan LZW sıkıştırma algoritması ile sıkıştırılarak,

boyutunun minimize edilmesi sağlanmıştır. Bu sayede gizleme işlemi sonucu

resimde meydana gelen bozulma en aza indirgenmiş ve veri gizleme işleminin

daha kısa süre içerisinde gerçekleştirilmesi sağlanmıştır.

vi

SUMMARY

Key words: Steganography, Data Hiding, Partial Optimization, Lzw

compression

Recently, the applications of data hiding (steganography) have been more

common and had an increasing importance. The studies on data hiding have been

demanded much more with daily needs such as multimedia and information

security. The aim of steganography is to hide any secret message or data. The

message that is required to be sent is prevented by being hided in a innocent-

looking environment so that a third person can’t be aware of the existence of the

message. This aspect has leaded to many new approaches about this subject by

focusing on the techniques used for data hiding, especially hiding data in a

picture. One of these approaches is the Data Hiding with Partial Optimization

Method.

In Data Hiding with Partial Optimization Method, all the picsels that form the

Picture are put into categories in eight different areas and eight different partial

optimization is applied to each area. So that the number of bit which was changed

before is reduced to minimum by obtaining the most effective results from each

area. With this thesis study, it is provided to get more effective results from data

hiding by supporting the Partial Optimization technique with a compression

algorithm. For this aim, the data is compressed by a technique, called LZW

compression algorithm and it is provided to minimize its size. This way the

defects that appeared in the Picture as a result of data hiding are reduced to

minimum and the process of data hiding takes shorter time.

vii

1.BÖLÜM

GİRİŞ

Gün geçtikçe artan veri trafiği ve buna paralel artan veri hırsızlığı sebebiyle

önemli verileri gizlemek ve bunları güvenli bir ortamda saklamak oldukça zor

hale gelmiştir. Bilgi güvenliği, günümüzde kişisel bazdaki öneminden çok, bazı

toplumların geleceklerinin teminatı olan özel iş ve görev yapan

birimlerde/kurumlarda önem arz etmektedir. Silahlı kuvvetler buna en iyi

örneklerden birisi olabilir. Günümüzde gelişen teknoloji ile birlikte sayısal

ortamdaki (metin, ses ve görüntü dosyaları) verilerin korunma ihtiyacı fazlasıyla

ortaya çıkmaktadır.

Bilişim teknolojilerinin hayatımıza daha fazla girmesi ve yaygınlaşmasıyla

birlikte, yapılan iş ve işlemler elektronik ortamlara kaymakta, bu ortamlarda

bulunan, saklanan, işlenen ve transfer edilen bilgilerin ise korunması veya

güvenliğinin sağlanması çok büyük önem arz etmektedir.

Sayısal olarak veri iletişimi gerçekleştirilen bir ortamda, göndericiden alıcıya

giden veriye yönelik izinsiz erişim, zarar verme, yok etme, değişiklik yapma ve

yeniden üretme gibi birçok tehdit mevcuttur. Bu tehditlerin alınan önlemlere

rağmen her geçen gün arttığı görülmektedir. Bu tehditlerin ortaya çıkmasına

karşılık olarak, bunların ortadan kaldırılması için de çeşitli teknikler

geliştirilmiştir.

Steganografinin temel mantığı, sayısal veri dosyası formatlarındaki gereksiz

veya çok önemli olmayan kısımların veya insan duyularının zayıf kaldığı ya da

sınırlarının kullanılmasına dayanmaktadır.

Tam olarak “kaplanmış yazı” anlamına gelen steganografinin amacı, önemli

mesaj ya da bilginin varlığını saklamaktır. Steganografi kelimesi, Yunanca

“steganos: gizli, saklı” ve “grafi: çizim ya da yazım” kelimelerinden gelmektedir

[1]. Verilerin korunmasında ve gizlenmesinde steganografi önemli rol

oynamaktadır. Eskiden ilkel yöntemlerle yapılmaya çalışılan steganografi,

günümüzde yazılım ile desteklenmekte ve güçlü algoritmalar kullanılmaktadır.

Bilgi gizlemenin önemli bir alt disiplini olan steganografi, bir nesnenin içerisine

bir verinin gizlenmesi olarak tanımlanabilir. Steganografinin amacı gizli mesaj

ya da bilginin varlığını saklamaktır. Taşınmak istenen mesaj bir başka masum

görünüşlü ortamda saklanarak, üçüncü şahısların iletilen mesajın varlığından

haberdar olması engellenir [2]. Bu açıdan özellikle resim içerisine bilgi gömme

teknikleri üzerine yoğunlaşarak, bu alanda yeni yaklaşımlar elde edilmiştir [3].

Bu yaklaşımlardan biri de ‘Kısmi Optimizasyon Yöntemi ile Veri Gömme

Tekniği’dir.

1

Kısmi optimizasyon yöntemi ile veri gömme tekniğinde, gömme objesi olarak

resim kullanılmıştır. Resim, sekiz farklı optimizasyon bölgesine ayrılarak, her bir

bölge sekiz farklı optimizasyon işlemine tabi tutulmaktadır. Optimizasyon

kodlaması ile bir çeşit bölgesel kodlama yapıldığından, her bir bölgede veri

gömme sırası değişmekte olup 256 farklı kodlama türünün oluşması

sağlanmaktadır. Her bir bölgeden elde edilen sonuçlar en efektif değerler olup,

buna göre değiştirilen (hata) bitlerin en aza indirgendiği sonucuna ulaşılmaktadır.

Bu durumda her bir bölgeye farklı metot uygulanacağından bölgelerarası farklı

kodlama teknikleri sebebiyle hatalı kod çözme işlemi en aza indirgenecektir.

Dolayısıyla bu yöntemle, minimum hata oranı için korunan orijinal piksellerin

sayısı artırılmakta, ayrıca kendi içerisinde güvenlik sağlanmaktadır [4]. Kısmi

optimizasyon yöntemi ile veri gömme tekniğinin sıkıştırma algoritmaları ile

desteklenerek daha iyi sonuçlar elde edeceği öngörülmektedir.

Veri sıkıştırma, verilerin hafıza alanında daha az yer işgal etmeleri ve bir

iletişim ağı üzerinden daha hızlı transfer edilebilmeleri için yaygın olarak

kullanılmakta olan tekniklerdir. Bu sayede bellek üzerinde yer tasarrufu, veri

aktarımında da zaman tasarrufu yapılabilmektedir. Veri sıkıştırma yöntemleri

farklı temellere, farklı tipte verilere göre farklı sonuçlar üretse de temelde hepsi

“gereksiz verileri yok etme” prensibine dayanmaktadır. Son yıllarda disk

kapasitelerinin hızlı bir şekilde artması, genel amaçlı sıkıştırma uygulamalarının

kullanım oranını azaltmıştır. Fakat sabit disklerimizde sakladığımız ses, görüntü

ve hareketli görüntü dosyalarının tamamına yakını çeşitli yöntemlerle

sıkıştırılmış haldedir [5].

Veri sıkıştırma yöntemleri, kayıplı ve kayıpsız sıkıştırma yöntemleri olmak

üzere ikiye ayrılır. Kayıplı sıkıştırmada, verinin bütünlüğünü en az düzeyde

etkileyecek olan veri kümeleri çıkartılır, geriye kalan veri kümeleri kayıpsız

sıkıştırmaya tâbi tutularak sıkıştırma sağlanır. Bir veri kayıplı bir sıkıştırma

yöntemi ile sıkıştırılırsa, verinin tamamı değil, sadece belirli bir kısmı geri

getirilebilir. Kayıpsız sıkıştırma yöntemleri ise orijinal veri ile sıkıştırıldıktan

sonra geri getirilecek olan verinin tamamıyla aynı olmasının gerekli olduğu

durumlarda kullanılır. İnsan gözünün ve kulağının hassasiyeti ile direkt olarak

ilgisi bulunmayan, metin belgeleri, kaynak kodları, çalıştırılabilir program

dosyaları gibi dosyalar kayıpsız sıkıştırılmak zorundadırlar. Kayıpsız sıkıştırma

tekniklerinden en bilineni, dinamik sözlük yaklaşımı temeline dayanan, LZ

ailesinin en çok bilinen ve en iyi sıkıştırma oranı sağlayan üyesi, 1984 yılında

Terry Welch tarafından yayınlanan LZW algoritmasıdır.

Terry Welch 1984’te Unisys için çalışırken, LZ78 yaklaşımını yüksek

performanslı disk ünitelerine uyarlamış ve ortaya çıkan yeni algoritma LZW

olarak kabul görmüştür. LZW hem sıkıştırma hem de açma performansı açısından

2

LZ78 ailesinin en iyisi olmayı başarmıştır. Her tip veri üzerinde iyi sonuçlar

veren bir algoritma olduğu için, kendisinden sonra gelen birçok algoritma, LZW’

yi temel almıştır.

Bu tez çalışmasında kısmi optimizasyon tekniğinin bir sıkıştırma

algoritmasıyla desteklenmesiyle, veri gizleme işleminden daha efektif sonuçlar

elde edilmesi sağlanmıştır. Bunun için optimizasyon ile gizlenecek olan verinin,

kayıpsız ve dinamik sözlük tabanlı bir sıkıştırma tekniği olan LZW sıkıştırma

algoritması ile sıkıştırılarak, boyutunun minimize edilmesi sağlanmıştır. Bu

sayede optimizasyon ile veri gizleme işlemi sonucu resimde meydana gelen

bozulma en aza indirgenmiş ve veri gizleme işleminin daha kısa süre içerisinde

gerçekleştirilmesi sağlanmıştır.

Bu tez çalışması beş bölümden oluşmaktadır. Birinci bölümde bu çalışmanın

gereği açıklanmıştır. İkinci bölümde veri gizleme tekniklerinin amacı, kullanım

alanları, tarihçesi ve bu alanda kullanılan teknikler hakkında temel bilgiler

verilmiştir. Ayrıca görüntü objesi üzerinde gömme uygulamalarında günümüzde

kullanılan yöntemler açıklanmıştır. Üçüncü bölümde veri gizleme/gömme

teknikleri içerisinde yer alan kısmi optimizasyon tekniği ayrıntılı olarak

incelenmiştir. Tekniğin işlem süreçleri, avantaj ve dezavantajları ve tekniğin

uygulanmasıyla elde edilen sonuçlar bu bölümde yer almıştır. Dördüncü bölümde

ise veri sıkıştırma teknikleri üzerinde durulmuş ve günümüzde kullanılan

teknikler incelenmiştir. Ayrıca tez çalışmasında kullanılan LZW sıkıştırma

algoritması da bu bölümde detaylandırılmaktadır. Beşinci bölümde tez

çalışmasının temelini oluşturan sıkıştırma algoritması tabanlı veri gizleme

uygulaması ile resim dosyası içerisine veri gömme uygulamaları sunulmakta ve

yapılan deneysel uygulamadan elde edilen sonuçlar değerlendirilmektedir. Son

bölümde ise sonuç ve önerilere yer verilmiştir.

3

2. BÖLÜM

STEGANOGRAFİ

2.1. Giriş

Bu bölümde; steganografi (veri gizleme) teknikleri hakkında temel bilgilerin

verilmesi ile yapılan tez çalışmasının daha iyi anlaşılabilmesi amaçlanmaktadır.

Bilişim teknolojilerinin hayatımıza daha fazla girmesi ve yaygınlaşmasıyla

birlikte, yapılan iş ve işlemler elektronik ortamlara kaymakta, bu ortamlarda

bulunan, saklanan, işlenen ve transfer edilen bilgilerin ise korunması veya

güvenliğinin sağlanması çok büyük önem arz etmektedir.

Sayısal olarak veri iletişimi gerçekleştirilen bir ortamda, göndericiden alıcıya

giden veriye yönelik izinsiz erişim, zarar verme, yok etme, değişiklik yapma ve

yeniden üretme gibi birçok tehdit mevcuttur. Bu tehditlerin alınan önlemlere

rağmen her geçen gün arttığı görülmektedir. Bu tehditlerin ortaya çıkmasına

karşılık olarak, bunların ortadan kaldırılması için çeşitli teknikler geliştirilmiştir.

Bu bölümde öncelikle steganografi bilimiyle ilgili temel konular ve tarihçesi

ele alınmış, steganografi konusuna genel bir bakış yapılmasının ardından,

steganografik yöntemler detaylı olarak incelenmiştir.

Günümüz teknolojisinin gelişmesiyle sayısal ortamda kritik verilerin gizliliği

büyük önem kazanmıştır. Terimsel olarak “kaplanmış yazı” anlamına gelen

Steganografi’ nin amacı, bilginin varlığını saklamaktır. Steganografi kelimesi,

Yunanca “steganos: gizli, saklı” ve “grafi: çizim ya da yazım” kelimelerinden

gelmektedir [1].

Bilgi gizlemenin önemli bir alt disiplini olan Steganografi, bir nesnenin

içerisine bir başka verinin gizlenmesi olarak tanımlanır. Taşınmak istenen

mesajın başka bir ortamda saklanması, böylece üçüncü şahısların iletilen mesajın

varlığından haberdar olmaması sağlanır [2].

Steganografi, temel mantığı olarak binlerce yıldır uygulanan bir gizli iletişim

yöntemi olmakla birlikte, günümüzde sayısal dosya çeşitliliğinin artmasıyla

birlikte çok farklı veri saklama yöntemleri geliştirilmeye başlanmıştır.

Steganografi’nin temelinde insan duyularının algılayamayacağı sınırlar

içerisinde sayısal veri dosyalarının gizli mesajı içerecek şekilde modifikasyonu

yatmaktadır. Örneğin görme sistemi, bir resimdeki çok kücük değişimleri fark

edemez. İşitme sistemi de belli bir seviyenin altındaki sesleri işitemez ve görme

sistemine göre çok daha hassas olsa bile sesteki küçük değişimleri fark edemez.

Steganografi ise görme ve işitme sistemlerinin zayıflıklarını kullanarak, resim ve

ses dosyaları içerisine veri saklanmasını desteklemektedir.

4

2.2. Steganografi’nin Tarihçesi

Steganografi kökleri binlerce yıl öncesine dayanan bir bilim dalıdır [6].

Günümüzde steganografi, sayısal verinin saklanma teknigi olarak geniş bir alanda

bilinmesine karşın steganografi, eski zamanlara kadar uzanır. Örneğin eski

yunanda M.Ö. 5.yüzyılda Susa kralı Darius tarafından göz hapsine alınan

Histiaeus Milet'teki oğlu Aristagoras’a gizli bir mesaj göndermek ister. Histiaeus

kölelerinden birinin saçlarını kazıtır ve mesajını dövme şeklinde kölenin kafasına

işletir. Kölenin saçları tekrar uzayınca onu Milet'e oğlunun yanına gönderir. Bu

gizli yazma sanatı steganografi'nin ilk kullanıldığı yerlerden biridir. Bir başka

örnek ise; eski yunanlıların gizli mesajı tabletlere yazıp, sonrasında tabletleri bal

mumu ile kaplamalarıdır. Böylece güvenli bir şekilde iletilmesi gereken bilgi

gizlenmiş olur. Mesajı alanlar daha sonra bal mumunu kazıyarak gizli bilgiye

ulaşırlar [7]. Daha sonraki zamanlarda steganografi, harflere müzik notalarının

atanması, I. ve II. Dünya Savaşlarında kullanılan mors kodları, II. Dünya savaşı

esnasında başarıyla uygulanan görünmez mürekkeplerin kullanımı gibi

uygulamalarla karşımıza çıkmaktadır [8]. Özellikle 11 Eylül sonrası teröristlerce

de gizli mesajlaşma için kullanıldığı düşünülen, herhangi bir obje içerisine

özelliklerini bozmadan başka bir verinin gizlenmesi mantığına dayanan veri

gizleme tekniği artan bir ilgi konusu olmuştur.

2.3. Steganografi’nin Amacı

Bilgi güvenliği günümüzde kişisel olarak önemli olsa da, daha önemlisi bazı

toplumların geleceklerinin teminatı olan özel iş ve görev yapan birimler/kurumlar

için çok daha fazla önem arz etmektedir. Askeri uygulamalar bunların başında

gelmektedir. Bu gibi alanlarda gizliliği sağlamak amacıyla steganografiye sıkça

başvurulur.

Günümüz teknolojisinin gelişmesiyle sayısal ortamdaki verilerin gizliliği

büyük önem kazanmıştır. İletilecek metnin şifrelenmesi için kullanılan iki temel

yaklaşımdan ilki metnin kendi içierisinde karıştırılarak anlaşılmaz hale

getirilmesi (kriptografi), ikincisi ise metnin bir başka yapı içerisine gömülerek

gizlenmesidir. İkincisi için kullanılan yöntemlerden birisi de steganografidir [9].

Steganografinin en temel amacı, iletişimin gizliliğini sağlamaktır.

Steganografide, sayısal bir verinin başka bir sayısal veri içerisine, fark edilebilir

değişikliklere sebep olmadan saklanması gerçekleştirilmektedir. Örneğin

şifrelenmiş bir metin, bir resim dosyasına saklanmakta ve sonuçta oluşan resim

dosyası hem fiziksel olarak hem de görsel olarak orijinalinden farklı

olmamaktadır. Böylece iki uç arasındaki iletişimi gözetleyenler, arada sadece

5

transfer edilen bir resim görmekte, ama aslında bu resim yoluyla gizli bir

mesajlaşma gerçekleştiğinin farkında olmamaktadırlar [10].

Şekil.2.1. Steganografi sistem yapısı

Şekil 2.1’de steganografi tekniğinin genel sistem yapısı verilmiştir. Buradan

da anlaşılacağı üzere, potensiyel bir saldırıdan etkilenmemesi gereken gizli

verinin, veri gömme algoritması aracılığıyla taşıyıcı resimde ufak değişiklikler

yaparak gizliliği sağlanır. Gizlenecek mesaj, düz metin, şifrelenmiş metin, ya da

bitler halinde temsil edilebilecek herhangi bir şey olabilir. Gizleme sonucunda

elde edilen, gizli veriyi içerisinde barındıran sayısal ortam “stego” olarak

adlandırılır. Elde edilen stego, bir anahtar yardımıyla, veri çıkarma algoritmasına

tâbi tutulduğunda gizlenmiş veri tekrar elde edilir.

Steganografi uygulamalarında sağlanması gerekli en önemli özellikler;

sağlamlık, keşfedilememe, görünmezlik, güvenlik, karmaşıklık ve daha fazla veri

gömme kapasitesine ulaşmaktır [11].

2.4. Steganografi’nin Kullanım Alanları

Steganografi, “Dilbilim Steganografi” ve “Teknik Steganografi” olmak üzere

kendi içerisinde ikiye ayrılmaktadır. Dilbilim steganografi, taşıyıcının metin

olduğu steganografi koludur. Teknik Steganografi ise birçok konuyu içine

almaktadır [8].

2.4.1. Dilbilim steganografi

Dilbilim Steganografi, taşıyıcı verinin text olduğu steganografi koludur.

Burada değişiklik yapmanın çeşitli yolları vardır. Bunlar; grafik kullanılarak

Gizli Veri

Veri Gömme

Algoritması
Taşıyıcı Resim

Stego

Veri Çıkarma

Algoritması

Gizli Veri

Anahtar
İletişim

Kanalı

6

yapılabilir, text’in yapısı değiştirilerek yapılabilir ya da amacı sadece veriyi

saklamak olan yeni bir text oluşturulabilir. Dilbilim Steganografi’de kullanılan

yöntemler şunlardır:

Açık kodlar: Gizli mesaj, açıkça okunabilir fakat zararsız bir mesaj haline

gelir. Bu işlem; maskeleme, boş şifreler ve grid (ızgara) ile yapılmaktadır [12].

Şemagramlar: Gizli mesaj, açık metinin ufak, fakat gizli bir detayının içine

gizlenmektedir. Bunun için grafiksel değişiklikler yapılmaktadır. Kullanılan

yöntemler ise; farklı yazı tipleri kullanmak, eski daktilo yazılarını kullanmak,

resimler içinde boşluklar kullanmak gibi yöntemlerdir [12].

2.4.2. Teknik steganografi

Teknik Steganografi, birçok konuyu içine almaktadır. Bunları bazı başlıklar

altında toplayabiliriz;

Görünmez mürekkep: Geleneksel haline gelmiş olan görünmez mürekkeple

yazma yöntemidir.

Gizli yerler: Kimsenin göremeyeceği gizli yerlere saklama (bavul, kasa vb.)

Microdot’lar: Bilgiyi noktalar halinde sayfaya gizleme

Bilgisayar tabanlı yöntemler: Text, ses, hareketli görüntü, resim dosyalarını

kullanarak veri gizleme yöntemleridir. Bilgisayar tabanlı steganografi, kullanım

alanları açısından üçe ayrılmaktadır. Bunlar aşağıdaki gibidir:

- Metin (text) steganografi

- Görüntü (image) steganografi

- Ses (audio) steganografi.

2.4.3. Metin steganografi

Metin steganografi taşıyıcı ortamın text olduğu steganografi alanıdır. Genelde

uygulanması zor bir veri gizleme şeklidir. Metin Steganografi’de saklanacak veri

miktarı azdır. Bunun nedeni taşıyıcı text’in içindeki gereksiz alanların ve

boşlukların miktarının az olmasıdır [13].

Metin tabanlı gizleme yöntemlerinin hepsi, gizli mesajı geri çözebilmek için

ya orijinal metne, yada orijinal metnin biçimlendirme bilgisine ihtiyaç duyar.

Metin Steganografi veri saklanacak yerlerin özelliklerine göre aşağıdaki

yöntemleri kullanır.

- Açık alan yöntemleri

- Yazımsal yöntemler

- Anlamsal yöntemler

Açık alan yöntemler, iki kelime arasında extra boşluklar, satır sonu boşlukları

ile çalışmaktadır. Bununla birlikte, bu yöntemlerinn ASCII kodları ile

7

kullanılması daha uygundur. Açık alan yöntemleri de kendi içerisinde 5 farklı

uygulama tipine sahiptir. Bunlar; cümle içi boşluk bırakma, satır kaydırma, satır

sonu boşluk bırakma, sağa hizalama, gelecek kodlaması gibi uygulamalardır.

Yazımsal yöntemler, dökümanı kodlamak için noktalama işaretlerini kullanır.

Örneğin “ekmek, peynir, ve süt” cümlesi ile “ekmek, peynir ve süt” cümlesi ilk

bakışta aynıymış gibi gözükmektedir. Fakat dikkatlice bakıldığında ilk cümlenin

fazladan bir ‘,’ işareti içerdiği görülür. Bu yapıların biri “1”, diğeri de “0” olarak

belirlenir ve kodlama işlemi bu şekilde yapılır.

Anlamsal yöntemler ise W. Bender tarafından ortaya atılmıştır. Bu yöntemde

eş anlamlı kelimelere birincil ve ikincil değerler atanmaktadır. Sonra bu değerler

“1” ve “0” olarak binary’e dönüştürülür. Örneğin “uzun” kelimesi birincil, “kısa”

kelimesi de ikincil olarak işaretlenmiş olsun. Birincil “1”, ikincil de “0” olarak

binary’e çevrilir.

2.4.4. Görüntü steganografi

Görüntü dosyaları içerisine saklanacak veriler metin dosyası olabileceği gibi,

herhangi bir görüntü içerisine gizlenmiş bir başka görüntü dosyası da olabilir. Bu

yaklaşımda içine bilgi gizlenen ortama örtü verisi, oluşan ortama da stegometin

veya stego-nesnesi denmektedir [1].

Görüntü steganografide, resim üzerinde gerçekleştirilen değişiklikler insan

gözü tarafından algılanmamalıdır. Aksi halde en azından bir gizli metin

iletilmekte olduğu anlaşılacaktır. Bu durumda üçüncü kişilerin içerisinde gizli

veri olan resim üzerinde işlemler yapma olasılığı yüksektir. Steganografik

yöntemlerin bu tür saldırılara karşı bir dayanıklılık göstermesi gerekir. Bugüne

kadar yapılan steganografi çalışmaları şu şekilde sınıflandırılabilir [1].

- Yer değiştirmeye dayalı yöntemler

- İşaret işlemeye dayanan yöntemler

- Spektrum yayılmasına dayanan yöntemler

- İstatistiksel yöntemler

Yer değiştirmeye dayalı yöntemlerde, temel olarak resim dosyasında piksel

renklerini temsil eden değerler üzerinde çalışılmaktadır. Pikselin rengi bir bayt

ile ifade edilmektedir. Bu baytların en düşük bitlerinin değişmesi resim

görüntüsünde gözle farkedilmesi zor bir fark yaratmaktadır. Metne ait

karakterleri temsil eden byte’ların her bir bitinin farklı bir pikselin en önemsiz

bitine kaydedilmesi “en önemsiz bite ekleme yöntemi” (LSB - Least Significant

Bit Insertion Methods) olarak bilinir. Sonuçta ortaya çıkan resim dosyasında renk

değerleri ya olduğu gibi kalır ya bir artar ya da azalır. Her üç durumda da insan

gözü tarafından algılanamamaktadır. Burada veri bit değerleri sırasıyla

eklenmektedir.

8

İşaret işlemeye dayanan yöntemlerde, resim sıkıştırma algoritmaları

kullanılmaktadır. Tüm sıkıştırma algoritmaları insan gözünün filtreleme

özelliğini kullanmaktadırlar. İnsan gözü belli bir frekanstan sonrasındaki renk

değişimlerini algılayamamaktadır. Dolayısıyla, asıl resimdeki renk değerleri

frekans düzlemine taşınabilir. Frekans düzleminde çeşitli katsayılar oluşacaktır.

Ancak bu katsayılar kullanılarak ters işlem sonrası tekrar asıl resmi elde etmek

için sonsuz sayıda frekans bileşeninden faydalanmak gerekmektedir.

Spektrum yayılmasına dayanan yöntemlerde, gönderilmek istenen mesaj

ihtiyaç duyduğu frekans bandından çok daha fazlasına dağıtılmaktadır. Üçüncü

bir kişi araya girip bir ya da birden fazla frekans bandında bozulmalara neden

olsa bile, alıcı geri kalan frekans bantlarındaki bilgiler ile asıl mesajı elde

edebilmektedir.

Görüntü dosyaları için bir steganografik sistem Şekil 2.2’ de gösterilmektedir.

Gönderici bir gizleme fonksiyonu kullanarak bir stego nesnesi oluşturur. Gizleme

fonksiyonu, verinin saklanacağı taşıyıcı ortam ve gizlenecek veri olmak üzere iki

parametreye sahiptir [8].

Şekil 2.2. Görüntü için steganografik sistem

Görüntü steganografide, bilgilerin görüntü dosyaları içerisine saklanmasının

çeşitli yöntemleri vardır. Şekil 2.2’ de gizleme fonksiyonu olarak adlandırılan ve bilgi

gizlemede en çok kullanılan yöntemler; “en önemsiz bite ekleme”, “maskeleme ve

filtreleme” ve “algoritmalar ve dönüşümler” olarak sıralanabilir [2].

2.4.4.1. En önemsiz bite ekeleme (LSB)

Veri gizleme tekniklerinin ilk uygulamalarından biri LSB tekniğidir [3]. En

önemsiz bite ekleme yöntemi olarak adlandırılan LSB, yaygın olarak kullanılan ve

9

uygulaması basit bir yöntemdir. Fakat yöntemin dikkatlice uygulanmaması

durumunda veri kayıpları ortaya çıkmaktadır [14].

LSB yönteminde, resmi oluşturan her pikselin her baytının en önemsiz biti olan

son biti, gizlenmek istenen verinin bitleri ile birer birer değiştirilmektedir. Burada her

sekiz bitin en fazla bir biti değişikliğe uğratıldığından ve eğer değişiklik olmuşsa da

değişiklik yapılan bitin byte'ın en az anlamlı biti olmasından dolayı, ortaya çıkan

steganogramdaki (= örtü verisi + gömülü veri) değişimler insan tarafından

algılanamaz boyutta olmaktadır [3,14].

Son bite ekleme işlemi resmin başından ya da sonundan olmak üzere sıralı bir

şekilde yapılabileceği gibi, bir rasgele fonksiyon üreteci (random function generator)

kullanılarak belirlenen bir piksel üzerinde değişiklik yapılması şeklinde de

gerçekleştirilebilmektedir [14]. Yani veri ardışık olarak saklanabileceği gibi bir

anahtar yardımıyla rastgele olarak seçilen piksellere de saklanabilir [9].

Resim dosyalarına bakıldığında; herhangi bir pikseli oluşturan bitlerden, en az

önemli olan, en az anlam taşıyan bitler üzerinde yapılacak bir modifikasyon, insan

duyularıyla algılanabilecek kadar etkili bir renk değişikliğine neden olmaz [3].

Sayısal resim, Şekil 2.3’te görüldüğü üzere, n satır ve m sütunluk bir dizi ile temsil

edilir. Genellikle satır ve sütun indeksleri y ve x veya r ve c olarak gösterilebilir. Bir

resim dizisinin elemanlarına piksel denir. En basit durumda pikseller 0 veya 1

değerini alırlar. Bu piksellerden oluşan resimlere ikili (binary) resim denir. 1 ve 0

değerleri sırasıyla aydınlık ve karanlık bölgeleri veya nesne ve zemini (nesnenin

önünde veya üzerinde bulunduğu çevre zemini) temsil ederler [8]. Gri seviyeli

resimlerde ise her bir piksel 0 ile 255 arasında (8 bitlik) parlaklık seviyesi değerleri

alır.

Şekil 2.3. Sayısal resmin temel yapısı

Sütunlar

S
at

ır
la

r

Piksel

10

Sayısal resimler genel olarak 8, 16 veya 24 bitlik piksellerden oluşur. 24 bitlik

piksellerden oluşan resimler en fazla veri saklayabilen resimlerdir. Bütün renk

değerleri kırmızı, yeşil ve mavi (RGB) renklerin tonlarının karışımından elde

edilir. Temel renklerin her biri bir bayt büyüklüğünde değerle ifade edilir ve 256’

şar farklı renk tonuna sahiptir. Şekil 2.4’ te renk küpü gösterilmektedir [9].

Sekil 2.4. Renk küpü

24 bitlik bir resmin her bir pikseli 3 ana rengi ifade eden 3 byte boyutundaki

piksellerden oluşur. Şekil 2.5’ te örnek bir rengi oluşturan kırmızı, yeşil ve mavi

renk yoğunlukları gösterilmektedir. 1024x768 boyutundaki 24 bitlik bir resim

dosyasında her bir byte değerinin en az önemli bitleri veri saklama icin

kullanılırsa, toplam saklanabilecek veri boyutu, 1024x768x3/8 = 294912 bayt

olacaktır [9].

Şekil 2.5. Bir rengi oluşturan kırmızı, yeşil ve mavi tonlara ait değerler

11

Resim içerisine LSB modifikasyonu ile veri saklamaya ilişkin bir örnek

vermek gerekirse; saklanacak olan 9 bitlik bir verinin aşağıdaki bit değerlerinden

oluştuğunu varsayalım.

Şekil 2.6. Lsb ile gizlenecek veriye ait bit değerleri

Taşıyıcı 24 bitlik bir BMP resmi olsun. Bu durumda saklanacak olan mesajı

barındırmak için 3 piksel, yani 9 byte değerinin son bitleri yeterli olacaktır.

Taşıyıcı dosyanın veri barındıracak olan piksellerinin en az önemli bitlerinin

sırasıyla şu şekilde olduğunu varsayalım.

Şekil 2.7. Taşıyıcı resimde gizleme için kullanılacak en az önemli bit değerleri

LSB modifikasyonundan sonra bu piksellerin en az önemli bitlerinin değerleri

şu şekilde olacaktır.

Şekil 2.8. Lsb işlemi sonucu taşıyıcı piksellerde oluşan bit değişimleri

Görüldüğü gibi 9 bit değerinin 6 tanesi (kırmızı ile belirtilenler) değişmiştir,

ancak bu tür değişimler görsel olarak ayırt edilebilir olmamaktadır. Geri getirme

işleminde yeni piksel değerlerinin en az önemli bitleri sırayla okunup yan yana

dizildiğinde saklanan mesaj doğru bir şekilde elde edilecektir.

2.4.4.2. Maskeleme ve filtreleme

Maskeleme ve filtreleme tekniklerinde resmin, görüntü işleme teknikleri

kullanılarak veri saklamaya en uygun alanları belirlenir ve saklama işlemi bu

bölgelerde gerçekleştirilir. Genellikle 24 bitlik gri seviyeli resimlerde başarılı

olan bir yöntemdir [15].

12

Maskeleme ve filtreleme teknikleri genellikle 24 bit ve gri-seviye görüntüler

üzerinde işaretleme ve filigran yapılarak uygulanmaktadır. Teknik olarak filigran

bir steganografik biçim değildir.

Maskeleme işlemi, sıkıştırma, kırpma ve bazı görüntü işlemleri açısından son

bite ekleme yönteminden daha etkilidir. Maskeleme teknikleri belirli alanlara

bilgileri gömer. Maskeleme tekniklerinin JPEG görüntülerde kullanılması daha

uygundur.

2.4.4.3. Algoritmalar ve dönüşümler

Son bite ekleme yöntemi bilgi gizlemek için oldukça kolay ve hızlı bir

yöntemdir, fakat görüntüye uygulanan işlemler ya da kayıplı sıkıştırmalar

sonucunda bilgi zarar görebilmektedir. Dönüşümler ise yine daha çok JPEG

dosyalar üzerinde kullanılmaktadır. En yaygın olarak kullanılan dönüşümler ise

DCT (Ayrık Kosinüs Dönüşümü) ve DFT (Ayrık Fourier Dönüşümü)’dir [16].

Yüksek kalitedeki resimlerin sıkıştırılarak, örneğin JPEG formatı kullanılarak

internet üzerinden gönderilmesi daha uygundur. Bunun için gizlenen bilginin

kaybolmaması ve görüntünün sıkıştırılmasını sağlayan bazı yöntemler ve

steganografik araçlar ortaya çıkarılmıştır. Gizlenecek veri/mesaj imgeler başka

bir uzaya dönüştürüldükten sonra imgenin belirli alanlarına gömülmektedir.

Dönüşüm tekniklerinde sıklıkla kullanılan yöntemlerin başında Ayrık Kosinüs

Dönüşümü (Discrete Cosinus Transform-DCT), Ayrık Fourier Dönüşümü

(Discrete Fourier Transform-DFT) ve Ayrık Dalgacık Dönüşümü (Discrete

Wavelet Transform-DWT) gelmektedir [17].

Ayrık kosinüs dönüşümü ve ayrık fourier dönüşümü uygulamalarında imgeler

8x8’lik bloklara ayrılır ve her bir bloğa ayrık kosinüs dönüşümü veya ayrık

fourier dönüşümü uygulanır. Dönüşüm sonucunda her bir blok için sol üstten sağ

alt köşeye zig-zag’lar çizen yüksek frekanslı katsayılardan alçak frekanslı

katsayılara giden katsayılar elde edilmektedir. Yüksek frekanslı katsayılar

imgenin ortalama bilgilerini saklamaktadır. Nicemlendirme sonucunda küçük

sayılar elde edilebilmektedir. Bu katsayılarda yapılacak değişiklik bloğun

tamamını etkilediğinden bu katsayılara veri gizleme işlemi yapılmamaktadır.

Alçak frekanslı katsayılar genellikle sıfır değerini aldığından, gizlenecek verinin

kaybolması söz konusu olacaktır. Bu nedenle bu alanda veri gizlemesi

yapılamamaktadır. Ancak orta frekanslarda verinin gizlenmesi yapılabilir. Ayrık

kosinüs dönüşümü uygulamaları, en önemsiz bite ekleme yöntemi ile

birleştirilerek de kullanılabilmektedir. Bu şekilde LSB yönteminde meydana

gelen hata oranlarının azaltılması sağlanır.

Ayrık dalgacık dönüşümü uygulamalarında ise imge yüksek ve alçak geçirgen

filtrelerden geçirilerek 4 parçaya ayrılır. Bunlar; imgeye ait özelliklerinin

13

ortalamasının, dikey bilgilerinin, yatay bilgilerinin ve köşegensel bilgilerinin

tutulduğu parçalardır. Gizlenecek veri bu parçalardan imgenin görsel olarak en

az etkilendiği dikey, yatay ve köşegensel gibi alçak frekanslı bantlardaki

katsayılara gömülmektedir.

Renkli resimler içerisine veri gizleme işlemi, imgelerin ayrık dalgacık

dönüşümü katsayılarının eşik seviyesinden geçirilmesi ve DWT katsayılarının

bloklara ayrılmasıyla gerçekleştirilebilmektedir. Renkli imegelerin içine gizli

veri saklanmasında diğer bir yöntem, örtü verisi ve gizlenecek mesajın ikisine de

ayrık dalgacık dönüşümü uygulanması ve gizli mesaj dalgacık katsayıları, örtü

verisi dalgacık katsayılarının orta frekans bandına gizlenmesidir.

DWT yöntemlerinde, imgelerin bloklara bölünmesinden ve yüksek ile alçak

frekans bantlarında veri gizlenememesinden kaynaklanan nedenlerden dolayı

düşük oranlarda veri gizlenebilmektedir. Bu kısıtlamanın en aza indirgenmesi

maksadıyla çalışmalar yapılmıştır. Bu maksatla yapılan çalışmalardan bazıları

imgenin özelliklerini en fazla içeren bölgelerden de faydalanmış, bazıları ise

imgenin genel ve yerel özelliklerinden yararlanmıştır.

Dönüşüm tekniklerinin dezavantajı yüksek miktarlarda veri

gömülememesidir. Buna karşın DCT, DFT, DWT gibi teknikler kırpma,

sıkıştırma gibi bilinen ataklara LSB yöntemlerine göre daha dayanıklıdır.

2.4.5. Ses steganografi

İnsan duyma sistemi (İDS) aralığı yüzünden, ses sinyalleri içerisine bilgi

gizleme oldukça uğraş gerektiren bir konudur. İDS 1/1.000’den daha büyük

frekans aralığını fark edebilir. Aynı zamanda İDS nereden geldiği belli olmayan

gürültülere de oldukça duyarlıdır.

Ses sinyalleri üzerinde uğraşırken ses dosyalarının hangi karakteristiklere

sahip olduklarını bilmemiz gerekmektedir. Basit nicelendirme metodu ve geçici

seçme oranı ses dosyalarının iki ana özelliğidir.

Basit nicelendirme metodu: Yüksek kaliteli sayısal seslerin 16-bit doğrusal

quantisation ile ifadesinde en çok kullanılan yöntemdir. Bazı sinyal bozulmaları

bu formatta ortaya çıkabilir [16].

Geçici seçme oranı: Ses için en çok kullanılan oranlar 8 kHz, 9.6 kHz, 10 kHz,

12 kHz, 16 kHz, 22.05 kHz ve 44.1 kHz ‘dir. Bu değer frekans aralığının

kullanılabilecek en üst seviyesidir [16].

Ses dosyalarında veri gizleme yöntemleri ise şunlardır:

- Düşük bit kodlaması (Low-bit encoding)

- Aşama kodlaması (Phase coding)

- Taft yayılması (Spread spectrum)

- Yankı veri gizlemesi (Echo data hiding)

14

2.4.5.1. Düşük bit kodlaması

Görüntü steganografide kullanılan en önemsiz bite eklem yöntemiyle aynı

şekilde gerçekleştirilir. Ses dosyasındaki verinin her baytının son bitine

gizlenecek bilginin bir biti yazılır. Sonuçta oluşan değişiklik ses dosyasında

gürültüye neden olmaktadır.

Ayrıca dayanıksız bir yapısı vardır. Tekrar örnekleme veya kanalda

oluşabilecek gürültü ile mesaj zarar görebilir [16].

2.4.5.2. Aşama kodlaması

Aşama kodlaması yöntemi resim dosyalarında uygulanan JPEG algoritması

benzeri bir yapı taşımaktadır. Gömme işleminde ses dosyası küçük segmentlere

bölünür ve her segmente ait aşama (faz) gizlenecek veriye ait aşama referansı ile

değiştirilir.

Aşama kodlamasında, ses verisi n adet kısa segmente bölünür. Her segmente

ayrık fourier dönüşümü (DFT) uygulanarak, aşama ve büyüklük (magnitude)

matrisleri oluşturulur. Komşu segmentler arasındaki aşama farklılıkları

hesaplanır. Her segment için yeni bir aşama değeri bilgi gizlenerek oluşturulur.

Yeni aşama matrisleri ile büyüklük matrisleri birleştirilerek yeni segmentler elde

edilir. Yeni segmentler birleştirilerek kodlanmış çıkış elde edilir [16].

2.4.5.3. Tayf yayılması

Ses sinyalinin kullandığı frekans tayfı üzerinde gizleme işlemini yapman bir

tekniktir. Güçlü bir yapısı olamamakla birlikte seste gürültü meydana

getirmektedir [16].

2.4.5.4. Yankı veri gizlemesi

Bilginin gizlenmesi taşıyıcı ses sinyali üzerine bir yankı eklenmesi ile

sağlanmaktadır. Bilgi yankının gecikme miktarı, zayıflama oranı veya büyüklüğü

gibi değerler kullanılarak gizlenir. İki farklı gecikme değeri kullanılarak insan

kulağının algılamayacağı düzeyde 0 veya 1’in kodlanması mümkündür. Her

bitin kodlanması için sinyal segmentlere bölünür. Yankı veri gizlemesi yöntemi

herhangi bir gürültüye neden olmamakta veya kayıplı bir kodlama

kullanmamaktadır.

15

3. BÖLÜM

KISMİ OPTİMİZASYON TEKNİĞİ İLE

VERİ GİZLEME

3.1. Giriş

Steganografi, veri gizleme tekniklerinin bilgi güvenliği konusunda sunduğu

yeni yaklaşımlarla son yıllarda önemini giderek artırmıştır. Steganografi

yöntemlerinin tamamı, yazılım ile desteklenmekte ve güçlü algoritmalar ile

ortaya çıkarılmaktadır. Bu açıdan, yeni yöntemler ile özellikle resim içerisine

bilgi gömme teknikleri üzerine yoğunlaşılarak, bu alanda yeni yaklaşımlar elde

edilmiştir. Kısmi optimizasyon yöntemi ile veri gömme tekniği de bu yeni

yaklaşımlar arasındadır.

Akar’ın geliştirdiği kısmi optimizasyon yöntemi ile veri gömme tekniğinde

taşıyıcı sekiz farklı optimizasyon bölgesine ayrılır ve her bir bölge sekiz farklı

optimizasyon işlemine tabi tutulur. Tüm bölgeler için maksimum optimizasyon

28’e kadar artırılabilmektedir. Her bir bölgeden elde edilen sonuçlar en efektif

değerlerdir ve bu nedenle değiştirilen (hata) bitlerin en aza indirgendiği sonucuna

ulaşılmaktadır [4].

Kısmi optimizasyon tekniği yerine, klasik LSB kod çözme tekniği

kullanıldığında elde edilen veri orijinal veri olmayacaktır. Bu durumda her bir

bölgeye tek bir metot uygulanacağından bölgelerarası farklı kodlama teknikleri

sebebiyle hatalı kod çözme işlemi gerçekleştirilebilir. Dolayısıyla iki farklı

sonuca ulaşılmaktadır; birincisi minimum hata oranı için korunan orijinal

piksellerin sayısının artırılması, ikincisi ise kendi içerisinde güvenliğin

oluşturulmasıdır. Optimizasyon kodlaması ile bir çeşit bölgesel kodlama

yapıldığından, her bir bölgede dinamik olarak gömme sırası değişeceğinden 256

farklı kodlama türü oluşmaktadır. Ancak kodlama için harcanan zaman, kodlama

sayısı ile doğru orantılı olarak artacaktır. Bu nedenle bu uygulamada 23 yani 8

kodlama türü kullanılmıştır [4].

16

17

3.2. Kısmi Optimizasyon Tekniğinin İşlem Süreçleri

Şekil 3.1’ de görüldüğü gibi kısmi optimizasyonun kodlama işlemi sürecinde

beş bileşen bulunmaktadır [4]. Teknik açıdan maske olarak adlandırılan bir

taşıyıcı bulunmakta olup “c” harfi ile gösterilmektedir. Gizlenmek istenen mesaj

“m” harfi, kısmi optimizasyon ise “p” harfi ile sembolize edilmektedir. Bu

bölümde maske olarak kullanılan resim sekiz farklı bölgeye ayrılmaktadır. Elde

edilen gizli bilgi/mesaj (“m”) içeren resim dosyası “stego-image” olarak

adlandırılmakta ve “s” harfi ile gösterilmektedir. Son olarak stego şifreleme

anahtarı “k” harfi ile sembolize edilmektedir. Veri gizleme sonucunda elde edilen

çıkış “s”; c + m + k + p stego-sistem kodlaması sonucunda oluşturulmaktadır [4].

Kod çözme işlemi ise üç bileşenden oluşmaktadır. Kodlama işleminde

kullanılan algoritma anahtarı bu durumda kod çözme sürecinde gereklidir.

Şekil 3.1. Kısmi optimizasyon stenografik sisteme ait veri gömme/çıkarma

kodlayıcı ve kod çözücü blok diyagramı (Akar 2005)

Stego-sistem kod çözücüsü bölgesel optimizasyon kod çözücüsü tarafından

kontrol edilmektedir. Bu bölümdeki kod çözme işlemi tamamlandıktan sonra

kodlayıcıda kullanılan aynı anahtar ile kod çözme işlemine geçilmektedir. Her iki

kod çözümünde de doğru sonucu bulması ile orijinal mesaj çözülebilmektedir.

Aksi halde orijinal mesaja ulaşılamaz [4].

18

Şekil 3.2. Sekiz farklı optimizasyon bölgesine ayrılmış olan

gri seviyeli Lena resmi

Şekil 3.2’ de veri gömme süreci başlangıcında sekiz farklı optimizasyon

bölgesine ayrılmış olan gri seviyeli Lena resmi görülmektedir. Her bir bölge de

kendi içerisinde yine sekiz farklı optimizasyona tabi tutulur. Örneğin kodlama

işleminde birinci bölge Şekil 3.3’ te görüldüğü gibi sekiz farklı optimizasyona

tabi tutulmaktadır. Ancak kodlama için harcanan zaman bununla doğru

orantılıdır. Bu nedenle bu uygulamada 23 yani 8 olarak seçilmiştir [4].

Şekil 3.3. D0−D7 arasında bir ASCII kodunun gömülmesi önerilen bit düzenleri

Şekil 3.3’te görüldüğü gibi, birinci optimizasyon için “D7, D6, D5, D4, D3,

D2, D1, D0” sırası seçilmiş olup, ikinci optimizasyonda bu sıra “D0, D1, D2, D3,

D4, D5, D6, D7” olarak değiştirilmektedir.

19

3.3. Kısmi Optimizasyon Yöntemi ile Veri Gömülmesi Katmanının

Algoritması

Şekil 3.4’te kısmi optimizasyon tekniği ile ASCII kodun gömülmesi

katmanının algoritması yer almaktadır [4]. Bu yapı incelendiğinde; uygulamanın

başlatılması ile birlikte içerisine veri gömülecek olan bitmap (bmp.) uzantılı

dosya belirlenir. Ardından gizli veri dosyası (doküman, ses, resim, sıkıştırılmış

dosya vs.) seçilir. Gömen ve gömülen dosyalar arasında kapasite sorunu olup-

olmadığı araştırılır. Sonuç olumlu ise resim 8-farklı bölgeye ayrılarak ilk önce 1.

bölgeyi oluşturan piksellerin RGB ağırlıkları belirlenir. Eş zamanlı olarak

gömülecek dosyanın ASCII kodları da belirlenmektedir. Bu bölgeye 8-farklı

optimizasyon uygulanarak sonuçlar birbirleri ile karşılaştırılır. Orijinal

piksellerle karşılaştırıldığında en az hata/bit oranına sahip olan optimizasyon

tespit edilerek bir değişkende saklanır. Her bölge için bu işlemler

tekrarlandığında, sonuçta tüm bölgelerin hangi optimizasyonla veri gömme

işlemine tabi tutulduğunda daha az bozulma oluşacağı tespit edilir. Ardından tüm

resim bölgeleri kaydedilen bu değişkenlere göre 8-bit ASCII kodlarını gömmek

üzere düzenlenir. Bu işlemler gizli dosyanın son ASCII koduna ulaşılıncaya

kadar sürdürülür. Gizli dosyanın tamamı gömüldüğünde kullanıcı şifresi tespit

edilir. Son olarak içerisinde gizli veri gömülü olan resim tüm pikselleri ile

dosyaya yazılarak gömme işlemi sonlandırılır [18].

20

Şekil 3.4. Kısmi optimizaston yöntemi ile veri gömülmesi katmanının

algoritması (Akar 2005)

21

Şekil 3.5. Kısmi optimizaston yönteminde bölgeler ile optimizasyonlar arası

geçişler (Akar 2005)

Şekil 3.4’te sunulan ve açıklanan algoritma katmanı kısmi optimizasyon

yönteminde bölgeler ile optimizasyonlar arasındaki geçişlerin nasıl yapıldığı

Şekil 3.5’te görülmektedir. Şekil dikkatlice incelendiğinde her bir bölgenin 8-

farklı optimizasyon ile veri gömme işlemine tabi tutulduğu görülmektedir. Her

bir bölgenin bu farklı veri gömme sıraları ile işlevsel olarak çalıştırılması

neticesinde elde edilen bölgesel resmin orijinal resim ile karşılaştırılarak, hata

bitlerinin saydırılması işlemi yapılmaktadır. Akar’a göre böylelikle tüm

bölgelerin en verimli veri gömme yöntemini veren optimizasyon türü

belirlendiğinden toplamda da en az hata bitine ulaşılması sağlanmaktadır.

Her bir bölgeden elde edilen sonuçlar en efektif değerler olup, değiştirilen

(hata) bitlerinin en aza indirgendiği sonucunu yansıtmaktadır. Bu yöntemle sekiz

bölgeden elde edilen değerler minimal değerler olup bit/hata oranı da minimum

olmaktadır. Bu durum Tablo 3.1’de gösterilmektedir. Burada sekiz farklı bölgeye

bu defa da sekiz farklı optimizasyondan hangi metot en efektif sonucu üretmiş

ise bu bölge ve optimizasyon yöntemi resim içerisine gömülmektedir. Bu veriler

22

resim içerisinden alınarak bölgelere göre seçilen optimizasyon kriterleri

değerlendirilmektedir. Dolayısıyla kod çözme işlemi sürecinde bu veriler

referans olarak kullanılmaktadır. Bu yapılmayıp sıradan LSB kod çözme tekniği

kullanıldığı takdirde elde edilecek veri, orijinal veri olmayacaktır. Çünkü bu

durumda her bir bölgeye tek bir metot uygulanacağından bölgelerarası farklı

kodlama teknikleri sebebiyle hatalı kod çözme işlemi gerçekleştirilecektir.

Tablo 3.1’de optimizasyon uygulamaları ve sonuçları görülmektedir. Burada

OPT_1 olarak adlandırılan 1. sütunda klasik LSB tekniğinin de kullandığı sırayı

içeren birinci optimizasyon verileri görülmektedir. Bu sütun dikkatlice

incelendiğinde; bütün resmin bu yöntem ve kodlama sırasıyla kodlandığı

varsayılırsa optimum sonuca ulaşılamayacağı açıktır. Bu örneklemede LSB

klasik kodlama sütunu sekiz farklı optimizasyonun hiçbirisinde minimum hata

oranını yakalayamamıştır. Buradan en az hata oranına sahip olamadığı

anlaşılmaktadır. Tüm bölgelere LSB yaklaşımının uygulanması ile ne yazık ki

minimum hata/piksel oranı elde edilmektedir. Yapılan optimizasyon tarama

tekniği ile ilk bölge için OPT_7 en optimum sonucu vermiştir. Çünkü burada

13556 bit hatalı 19204 bit ise aynen korunarak toplam %58,62’lik orijinal olarak

korunan bit yüzdesi elde edilmiştir. Benzer şekilde ikinci bölgede OPT_8 en

optimum sonucu vererek % 54,25’lik bir başarı sağlamıştır. Bu örnek

uygulamada tüm bölgelerdeki kazanılan hata önleme bitlerinin toplamı 554

olarak hesaplanmıştır. Bunun anlamı; içerisine veri gömülen resmin LSB

tekniğinde en az 200 piksel, en çok ise 548 piksel daha fazla bozulmaya yol açtığı;

ancak, optimizasyon metodu ile bu bitlerin orijinal olarak korunduğu Tablo

3.1’de görülmektedir [4].

23

Şekil 3.6. Bölgesel optimizayon yöntemi ile veri gömme uygulaması: örnekleme

Kısmi optimizasyon yöntemi ile veri gömme uygulamasında seçilen

örnekleme Şekil 3.6’da görülmekte olup, elde edilen sonuçlar Tablo 3.1’de

verilmiştir.

Tablo 3.1. Örnekleme için elde edilen optimizasyon sonuçları

24

Kısmi optimizasyon yöntemi ile elde edilen kazanımın tesadüfî olmadığı,

farklı resimlerle gerçekleştirilen gömme uygulamaları üzerinde denenerek oluşan

verilerle ispatlanmıştır [4].

Kısmi optimizasyon yöntemini kısaca özetlemek gerekirse, bu yöntemle resim

8 farklı bölgeye ayrılarak ilk önce birinci bölgeyi oluşturan piksellerin RGB

ağırlıkları belirlenir. Eş zamanlı olarak gömülecek dosyanın ASCII kodları da

belirlenmektedir. Bu bölgeye sekiz farklı optimizasyon uygulanarak sonuçlar

birbirleri ile karşılaştırılır. Orijinal piksellerle karşılaştırıldığında en az hata/bit

oranına sahip olan optimizasyon tespit edilerek bir değişkende saklanır. Her

bölge için bu işlemler tekrarlandığında, sonuçta tüm bölgelerin hangi

optimizasyonla gömme işlemine tabi tutulduğunda daha az bozulma oluşacağı

tespit edilir.

Tüm resim bölgeleri kaydedilen bu değişkenlere göre 8–bit ASCII kodlarını

gömmek üzere düzenlenir. Bu işlemler gizli dosyanın son ASCII koduna

ulaşılıncaya kadar sürdürülür. Gizli dosyanın tamamı gömüldüğünde kullanıcı

şifresi tespit edilir. Son olarak içerisinde gizli veri gömülü olan resim tüm

pikselleri ile dosyaya yazılarak gömme işlemi sonlandırılır.

Bu teknikte herhangi bir sıkıştırma metodu uygulanmamaktadır. Gömülecek

verinin en uygun sıkıştırma programı ile minimize edilerek geliştirilen program

tarafından bölgesel optimizasyona tabi tutulması en efektif sonucu verecektir. En

verimli sonucun alındığı bir sıkıştırma programı ile gömülecek dosya minimum

büyüklüğe indirgenerek daha sonra geliştirilen yazılım ile bölgesel gömme

işlemine tabi tutularak en iyi neticeye ulaşılabilir.

Bu tez çalışmasında, Akar’ın geliştirmiş olduğu kısmi optimizasyon tekniği

ile veri gizleme uygulaması, sıkıştırma algoritması ile desteklenmiş, sıkıştırma

algoritması tabanlı bir veri gizleme uygulaması gerçekleştirilmiştir. Dosya

sıkıştırması yapmak için LZW sıkıştırma algoritması kullanılmış ve kısmi

optimizasyon tekniği uygulamasında gizlenecek verinin önce boyutunun

sıkıştırılarak minimize edilmesi sağlanmıştır. Böylece gizleme işleminin

yapılmasıyla daha elverişli ve efektif bir sonuç elde edilmiştir.

25

26

4. BÖLÜM

VERİ SIKIŞTIRMA TEKNİKLERİ

Veri sıkıştırma, verilerin hafıza alanında daha az yer işgal etmeleri ve bir

iletişim ağı üzerinden daha hızlı transfer edilebilmeleri için yaygın olarak

kullanılmakta olan tekniklerdir. Bu sayede bellek üzerinde yer tasarrufu, veri

aktarımında da zaman tasarrufu yapılabilmektedir. Veri sıkıştırma yöntemleri

farklı temellere, farklı tipte verilere göre farklı sonuçlar üretse de temelde hepsi

“gereksiz verileri yok etme” prensibine dayanmaktadır.

 Son yıllarda disk kapasitelerinin hızlı bir şekilde artması, genel amaçlı

sıkıştırma uygulamalarının kullanım oranını azalttıysa da, aslında sabit

disklerimizde sakladığımız ses, görüntü ve hareketli görüntü dosyalarının

tamamına yakını çeşitli yöntemlerle sıkıştırılmış haldedir [5].

Diskler ve teypler gibi saklama birimleri üzerinde saklanan, ya da bilgisayar

haberleşme hatlarından iletilen veriler, önemli ölçüde artıklık içerirler. Veri

sıkıştırma algoritmalarının amacı, bu artıklıkları kodlayarak bilgi kaybı

olmaksızın, veri yoğunluğunu artırabilmektir. Dört tür artıklık mevcuttur [19].

4.1. Veri Artıklık Türleri

4.1.1. Karakter dağılımı

Herhangi bir karakter katarında, bazı karakterler diğerlerine göre daha sık

kullanılırlar. Özellikle sekiz bitlik ASCII kodlarının kullanıldığı özel bir dosyada,

karakterlerin 3/4 ü kullanılmayabilir. Sonuçta her bir sekiz bitlik paketin, iki

bitinden tasarruf edilmiş olur. Bir envanter kaydında, sayısal değerler çok daha

yaygındır (ikili ya da ondalık sayılar istatistiği değiştirebilir) ve kendilerine

ayrılmış alandaki sınırlamalar, dosyadan dosyaya, önemli ölçüde değişebilecek

karakter dağılımına neden olabilir. Örneğin, ambar yerlerinin adreslenmesi için

alfabetik veya sayısal değerlerin kullanılması, envanter dosyasındaki dağılımı

değiştirebilir. Benzer şekilde, envanter kaydında yer alan açıklayıcı metinler, her

karakter için gereken ortalama bit sayısını etkileyecektir [19].

4.1.2. Karakter tekrarı

Eğer bir karakter katarı, tek bir karakterin tekrarından oluşuyor ise veri,

olduğundan daha yoğun bir şekilde kodlanabilir. Bu tür katarlar metin tipi

dosyalarda fazla yer almamaktadır. Bununla beraber, formatlı iş dosyalarında

kullanılmayan alanlar oldukça fazla miktarda yer almaktadır. Bir envanter

kaydında, kısmen kullanılan alfabetik alanlardaki boşluk katarlarına, sayısal

alanlarda sıfır katarlarına ve kullanılmayan alanlarda null katarlarına oldukça sık

27

rastlanır. Grafik görüntüler, özellikle iş grafiklerindeki çizgiler çoğunlukla

homojen boşluklardan oluşmuştur [19].

4.1.3. Çok kullanılan sözcükler

Belli karakter dizileri, diğerlerine göre daha fazla sıklıkta kullanılırlar ve bu

nedenle olması gerekenden daha az bit sayısı ile temsil edilebilirler. Örneğin,

ingilizcede ‘ze’ gibi pekçok karakter çiftinin oluşma olasılığı, tek harfin oluşma

olasılığından fazladır ve daha az bit ile kodlanabilirler. Benzer şekilde, ‘gc’ gibi

oluşma olasılığı az olan karakter çiftlerinin, daha uzun bit kombinasyonları ile

kodlanması, bit kullanımını iyileştirecektir.

Bazı tip dosyalarda olduğu gibi (programlama dilleri kaynak programlarını

içeren dosyalar, metin dosyaları, v.b.) belli anahtar kelimeler diğerlerinden fazla

miktarda yer alır. Örneğin, bu tezde "sıkıştırma” ve “şifreleme” sözcükleri

sıklıkla kullanılmaktadır. Envanter kayıtlarında, depo isimleri gibi belli alanlar

tekrar tekrar kullanılır. Sayısal alanlar ise, sadece sayısal olan ve hiçbir harf, özel

işaret içermeyen dizilerden oluşur. Eğer bir metin bu tip bir artıklık içeriyor ise,

8 bitlik kodların kullanılması yerine, 4 veya daha az bitlik kodların kullanılması

ile temsil edilebilir [19].

4.1.4. Konumsal artıklık

Eğer belli karakterler, her bir veri bloğu içinde, önceden tahmin edilebilir

yerlerde bulunuyorsa, bunlar kısmi olarak artıklık taşımaktadır. Dikey bir çizgi

içeren bir resimde, çizgi her taramada aynı yerde görüneceğinden, daha az bit

dizileri ile kodlanabilir. Bir envanter dosyada belli kayıtlar, hemen hemen aynı

değişkenlere sahiptir. Diğer taraftan metin tipi dosyalar durumsal artıklık

içermezler.

Bu dört tip artıklık bazı durumlarda çakışmaktadır. Örneğin, içinde sıfırların

fazla miktarda yer aldığı tamsayılardan oluşan bir kayıt, ilk üç tip artıklık türünü

de içermektedir [19].

4.2. Sıkıştırma Biçimlerine Göre Veri Sıkıştırma Yöntemleri

Veri sıkıştırma yöntemleri, kayıplı ve kayıpsız sıkıştırma yöntemleri olmak

üzere ikiye ayrılır.

4.2.1. Kayıplı sıkıştırma

Kayıplı sıkıştırmada, verinin bütünlüğünü en az düzeyde etkileyecek olan veri

kümeleri çıkartılır, geriye kalan veri kümeleri kayıpsız sıkıştırmaya tâbi tutularak

sıkıştırma sağlanır. Bir veri kayıplı bir sıkıştırma yöntemi ile sıkıştırılırsa, verinin

28

tamamı değil, sadece belirli bir kısmı geri getirilebilir. Veri bire bir aynı şekilde

geri getirilemediği için bu tür yöntemlere kayıplı yöntemler denir.

Kayıplı veri sıkıştırma genellikle belirli bir miktar veri kaybının insan gözü

ve kulağı tarafından hissedilemeyeceği durumlarda, örneğin fotoğraf görüntüleri,

video ve ses için kullanılır. İnsan gözü ve kulağı yüksek frekans değerlerine daha

az hassasiyet gösterdiği için, genellikle veri eleme işlemi yüksek frekans

değerlerinin simgeleyen veriler üzerinde yapılır.

4.2.2. Kayıpsız sıkıştırma

Kayıpsız sıkıştırma yöntemleri, orijinal veri ile sıkıştırıldıktan sonra geri

getirilecek olan verinin tamamıyla aynı olmasının gerekli olduğu durumlarda

kullanılır. Örneğin metin tipinde veriler kayıpsız olarak sıkıştırılmalıdırlar, çünkü

geri getirildiklerinde kelimelerinde veya karakterlerinde eksiklikler olursa,

metnin okunabilirliği azalacak ve hatta anlam kayıpları meydana gelebilecektir.

Kısacası, insan gözünün ve kulağının hassasiyeti ile direkt olarak ilgisi

bulunmayan, metin belgeleri, kaynak kodları, çalıştırılabilir program dosyaları

gibi dosyalar kayıpsız sıkıştırılmak zorundadırlar.

İki tip kayıpsız sıkıştırma yöntemi vardır. Bunlardan ilki değişken uzunluklu

kodlama olarak da bilinen olasılık (veya istatistik) tabanlı kodlama, ikincisi ise

sözlük tabanlı kodlamadır.

4.3. Uygulama Alanlarına Göre Veri Sıkıştırma Yöntemleri

4.3.1. Metin ve ikili tabanlı veri sıkıştırma

Bu alanda veriler kayıpsız olarak sıkıştırılmalıdırlar, çünkü sıkıştırma açma

işlemi uygulandığında kelimelerde veya karakterlerde eksiklikler söz konusu

olacağından, metnin okunabilirliği azalacak ve metinde anlam kayıpları meydana

gelebilecektir. Dolayısıyla her bit değerli olduğu için kayıpsız yaklaşımların

kullanılması şarttır [20].

4.3.2. Ses verisi sıkıştırma

Sayısal olarak kaydedilmiş ses sinyallerinin kayıplı ya da kayıpsız olarak daha

düşük boyutta kaydedilmesi işlemidir. İyi sıkıştırma oranları sağladığı için

genellikle kayıplı yaklaşımlar tercih edilirken, her bitin önemli olduğu

profesyonel amaçlı uygulamalar için ise kayıpsız yaklaşımlar kullanılır.

4.3.3. Görüntü verisi sıkıştırma

Görüntü sıkıştırma, görsel bir öğeyi depolamak için kullanılan ve görüntüyü

elektronik olarak depolamak için gerekli sayısallaştırılmış bilgi miktarını azaltan

29

http://tr.wikipedia.org/wiki/Ses

bir tekniktir. Şekiller ve taranmış metin görüntüleri gibi düşük frekanslı

görüntülerde kayıpsız, fotoğraflarda ise genellikle kayıplı sıkıştırma kullanılır.

4.3.4. Hareketli görüntü (video) sıkıştırma

Sıkıştırılmamış hali çok büyük olan video dosyaları, kayıpsız yöntemler ile

düşük oranlarda sıkıştırılabildikleri için, hareketli görüntü sıkıştırma işlemi

çoğunlukla kayıplı yöntemler ile gerçekleştirilir. Bununla birlikte hızlı kodlama

ihtiyacı olduğu durumlarda veya en küçük bir kaybın bile istenmediği

profesyonel amaçlı uygulamalar için kayıpsız sıkıştırma da gerekli

olabilmektedir.

4.4. Olasılık Tabanlı Veri Sıkıştırma Teknikleri

Sıkıştırılması istenen mesajın (semboller kümesinin) tek tek tüm

sembollerinin veya birkaç sembolün bir araya getirilmesi ile oluşturulan alt

sembol kümelerinin olasılıklarının bulunması, ve bu olasılık dağılımlarını temel

alarak mesajın tekrar kodlanmasına olasılık kodlaması ve buna dayalı tekniklere

de olasılık tabanlı teknikler adı verilir [5].

Olasılık tabanlı kodlamada, sıkıştırılan verinin bütünü içinde daha sık

kullanılan sembollere bit adedi olarak daha küçük boyutta kodlar atanması

prensibi ile sıkıştırma yapılır [5]. En çok kullanılan olasılık tabanlı teknikler;

Huffman Kodlaması ve Aritmetik Kodlama’dır.

4.4.1. Huffman kodlama

Huffman kodlaması, MIT’de Robert Fano tarafından kurulan sınıfta öğrenci

olan David Huffman tarafından, verilen bir ödev üzerine, 1952 yılında

geliştirilmiştir. GZIP, JPEG, MPEG gibi yaygın olarak kullanılan sıkıştırma

yöntemlerinde son işlem olarak kullanılır ve sıkıştırma algoritmalarında en

yaygın olarak kullanılan bileşendir. CCITT’nin faks iletimi için geliştirdiği 1-

boyutlu kodlama, tipik bir Huffman kodlamasıdır [21].

Temelde bir metin içindeki karakterlerin frekanslarına göre sınıflandırılarak

belirli bir kuralla oluşturulan bir ağaca göre atanmış bitlerle temsil edilmesine

dayanır. Algoritma, en yüksek frekanslı karakterin en az bitle, en düşük

frekanslının da en çok bitle temsiline dayanan bir yol izlemektedir.

Huffman algoritması, bir veri kümesinde daha çok rastlanan sembolü daha

düşük uzunluktaki kodla, daha az rastlanan sembolleri daha yüksek uzunluktaki

kodlarla temsil etme mantığı üzerine kurulmuştur. Veri kümesindeki sembol

sayısına ve sembollerin tekrarlanma sıklıklarına bağlı olarak Huffman sıkıştırma

algoritması %10 ile %90 arasında bir sıkıştırma oranı sağlayabilir.

30

Huffman tekniğinde semboller (karakterler) ASCII’de olduğu gibi sabit

uzunluktaki kodlarla kodlanmazlar. Her bir sembol değişken sayıda uzunluktaki

kod ile kodlanır. Bir veri kümesini Huffman tekniği ile sıkıştırabilmek için veri

kümesinde bulunan her bir sembolün ne sıklıkta tekrarlandığını bilmemiz gerekir.

Örneğin bir metin dosyasını sıkıştırıyorsak her bir karakterin metin içerisinde kaç

adet geçtiğini bilmemiz gerekiyor. Her bir sembolün ne sıklıkta tekrarlandığını

gösteren tablo frekans tablosu olarak adlandırılmaktadır. Dolayısıyla sıkıştırma

işlemine geçmeden önce frekans tablosunu çıkarmamız gerekmektedir. Bu

yönteme Statik Huffman tekniği de denilmektedir. Diğer bir teknik olan Dinamik

Huffman tekniğinde sıkıştırma yapmak için frekans tablosuna önceden ihtiyaç

duyulmaz. Frekans tablosu

her bir sembolle karşılaştıkça dinamik olarak oluşturulur. Dinamik Huffman

tekniği daha çok haberleşme kanalları gibi hangi verinin geleceği önceden belli

olmayan sistemlerde kullanılmaktadır.

4.4.2. Aritmetik kodlama

Shannon 1948’deki makalesinde, aritmetik kodlama teorisinin ispatına çok

yakın bir kavramdan bahsetmiştir. Fano’nun MIT’deki bilişim teorisi sınıfının bir

başka öğrencisi olan Peter Elias ise bu fikrin öz yinelemeli bir uyarlamasını

gerçekleştirmiştir. Ama kendisi bu çalışmasını hiç yayınlamadığı için, biz bunu

Abramson’un bilişim teorisi üzerine yayınladığı kitabından bilmekteyiz. Daha

sonra Jelinek tarafından yazılan bir başka kitabın ekler kısmında ise, aritmetik

kodlama fikri değişken uzunluklu kodlamanın bir örneği olarak yer almıştır.

Sonlu duyarlık sorununun çözülmesi, modern aritmetik kodlamanın başlangıcı

olmuştur. Pratik aritmetik kodlama algoritmaları ve veri sıkıştırmada

kullanılması hakkında birçok makale yazılmıştır [21].

Aritmetik kodlamanın temel fikri, n adet mesajın her olası serisini temsil

etmek için 0 ile 1 arasındaki bir sayı aralığını (örneğin 0.2 ile 0.5 aralığı gibi)

kullanmaktır. Alfabenin küçük olduğu ve karakterlerin belirme olasılığında

büyük farklar olduğu durumlarda, Huffman Kodlaması etkinliğini yitirirken,

Aritmetik kodlama bu durumlarda daha başarılıdır.

Aritmetik kodlamada, belirli bir sembol serisini diğer sembol serilerinden

ayırmak için, her serinin tekil bir belirleyici ile etiketlenmesi gerekir. Bu etiket,

genellikle 0 ile 1 arasında bir sayı şeklinde belirlenir.

4.5. Sözlük Tabanlı Veri Sıkıştırma Teknikleri

Sözlük tabanlı kodlamada ise, sık tekrarlanan sembol grupları için tek bir

sembol kullanılması ile sıkıştırma yapılır. Bir metinde sıkça tekrar eden

kelimeler, bir görüntü dosyasında tekrar eden piksel grupları gibi, yinelenen

31

kalıpların belirlenmesi ve bu kalıplardan bir sözlük oluşturularak, her kalıbın

sözlükteki sıra numarasının kodlanmasına dayalı tekniklerdir. En çok kullanılan

sözlük tabanlı teknikler; LZ77, LZ78 ve LZW yöntemleridir. Sözlük tabanlı

teknikleri, static, yarı-statik ve dinamik olmak üzere 3 temel kategoriye bölmek

mümkündür.

Kaynak hakkında önceden önemli oranda bilgi varsa, sözlük oluşturma

masrafından kurtulmak için statik sözlük kullanılabilir. Eğer kaynak hakkında

bilgi yoksa, dinamik veya yarı-statik yaklaşımlardan birini kullanmak daha etkili

olacaktır.

 4.5.1. Statik sözlük yaklaşımı

Sıkıştırılacak her verinin aynı sözlük ile sıkıştırılması statik sözlük

yaklaşımıdır. Daha çok ASCII standardında kodlanmış metin tipinde verilerin

sıkıştırılmasında kullanılır. Örneğin noktadan sonra boşluk (._) veya virgülden

sonra boşluk (,_) gibi her tip metinde sıkça geçen karakter grupları, “_ve_”,

“_veya_” gibi kelimeler, ASCII Tablosunda genellikle kullanılmayan

karakterlerin yerine yerleştirilebilir.

Statik sözlük hem sıkıştırma hem de açma algoritmalarında sabit olarak

bulunacağı için, önceden bir veya daha fazla sayıda geçiş yaparak sözlük

oluşturma işlemine gerek yoktur. Statik yaklaşımlar sıkıştırılacak veriye göre

uyarlanabilir bir yapıda olmadıkları için dinamik yaklaşımlar kadar yüksek

oranda sıkıştırma yapamasalar da, onlara göre çok daha hızlı çalışırlar. En çok

bilinen static sözlük yaklaşımı diagram kodlamasıdır [5].

4.5.1.1. Diagram kodlaması

Diagram Kodlaması belirli bir kaynak tipine bağımlı olmayan bir statik sözlük

tekniğidir. Bu kodlamada, kaynakta bulunabilecek tüm harflerle ve en sık

kullanılan ikili karakter grupları (digram) ile oluşturulan bir statik sözlük

kullanılır. Örneğin, kaynakta kullanılan dilin alfabesindeki tüm büyük harfler,

küçük harfler, rakamlar ve noktalama işaretleri sözlüğün ilk kısmına ve

istatistiksel bir analiz sonucunda bulunabilecek olan bu dildeki en sık tekrar

edilen ikili karakter grupları sözlüğün ikinci kısmına yerleştirilebilir. Eğer ikili

değil de üçlü karakter grupları ile sözlük oluşturulduysa trigram kodlaması, n’li

karakter grupları ile oluşturulduysa n-gram kodlaması olarak adlandırılır [5].

Şekil 4.1’de akış şeması verilen digram kodlayıcısı şu şekilde çalışır; kaynak

dosyadan iki karakter okur ve bu karakterlerden bir diagram oluşturur. Bu

diagramı sözlükte arar. Bulursa, sözlükteki sırasını hedef dosyaya yazar ve yeni

bir diagram oluşturmak için iki karakter daha okur. Bulamazsa, ilk karakterinin

sözlükteki sırasını hedef dosyaya yazar ve ikinci karakteri bir sonra aranacak

32

diagramın ilk karakteri yapar. Dosyadan bir karakter daha okuyarak diagramı

tamamlar. Döngü dosya sonuna kadar bu şekilde devam eder.

Şekil 4.1. Digram kodlayıcısının akış şeması (Mesut 2006)

Statik sözlük yaklaşımında, her metinde sıkça geçen karakter grupları veya

kelimeler ASCII Tablosunda genellikle kullanılmayan karakterlerin yerine

yerleştirilmektedir. Fakat bu yaklaşım, kullanılmadığını düşündüğümüz karakter

eğer metinde kullanıldıysa hataya yol açacaktır. Bundan kaçınmak için;

- Sözlük büyüklüğü 256 karakter uzunluğundaki ASCII Tablosu ile sınırlı

bırakılmayarak, 512 ya da 1024 karaktere kadar genişletilebilir.

- Hangi karakterlerin kullanılıp hangilerinin kullanılmadığı, sıkıştırılacak

metin önceden bir defa okunarak tespit edilebilir (yarı-statik yaklaşım).

Bu işlemler bir miktar zaman kaybına neden olsa da, sıkıştırmanın

performansına yapacağı olumlu etki nedeniyle, bu zaman kaybı göz ardı

edilebilir.

4.5.2. Yarı-statik sözlük yaklaşımı

Tek geçişli olan statik sözlük modelinde sıkıştırılacak olan tüm veriler aynı

sözlük kullanılarak sıkıştırılırken, çift geçişli olan yarı-statik modelde, ilk geçişte

sıkıştırılacak veride yer alan sembollerin dağılımları öğrenilir ve bu dağılama en

uygun sözlük oluşturulur, ikinci geçişte ise bu sözlük kullanılarak sıkıştırma

yapılır.

33

SSDC(Semi-Static Diagram Coding) ve ISSDC(Iterative Semi-Static Digram

Coding) kodlamaları, yarı-statik sözlük yaklaşımına göre çaışırlar.

4.5.2.1. SSDC (Semi-static digram coding / Yarı-statik diagram kodlaması)

SSDC, digram kodlamasını temel alan, çift geçişli yarı-statik bir algoritmadır.

Bu algoritma sözlüğü oluşturmak amacıyla bir ön geçiş yaptığı için, sıkıştırma

zamanı tek geçişli statik sözlük yaklaşımına göre daha fazla olacaktır. Fakat

kaynağa özel bir sözlük oluşturulduğu için, sıkıştırma oranı statik sözlük

yaklaşımına göre daha iyi hale gelecektir [5]. SSDC sıkıştırma algoritmasının

akış şeması Şekil 4.2’de verilmiştir.

Şekil 4.2. SSDC sıkıştırma algoritmasının akış şeması (Mesut 2006)

4.5.2.2. ISSDC (Iterative semi-static digram coding / Tekrarlı yarı-statik

diagram kodlaması)

SSDC tabanlı çalışan ISSDC’de, tekrarlanan bir yaklaşım kullanılarak

sıkıştırma oranı arttırılmıştır. Bu çok geçişli algoritma, sözlüğün ikinci kısmı olan

34

digram kısmını tek bir geçişte değil, kullanıcı tarafından da belirlenebilen

tekrarlama sayısı kadar geçişte doldurur. Her tekrarlama, kendisinden önce gelen

tekrarlamaların digram’lar ile doldurduğu sözlük kısımlarını da sözlüğün ilk

kısmı gibi, yani tek karakterlik elemanlar gibi görür ve buna göre digram

kodlaması kullanarak sıkıştırma yapar. Böylece, 2(tekrarlama sayısı) karakterlik sık

tekrar edilen bir karakter grubu bile, hedef dosyada tek bir karakter ile temsil

edilebilir [5].

Şekil 4.3. ISSDC sıkıştırma algoritmasının akış şeması (Mesut 2006)

35

Eğer tekrarlama sayısı ve sözlük büyüklüğü verildiyse, otomatik olarak karar

verilmesi gereken bir durum yoktur. Bu durumda, kaynakta kullanılan karakterler

sözlüğe eklendikten sonra, sözlükte kalan boş yer tekrarlama sayısına bölünerek,

yapılacak tekrarlama adımında sözlüğün ne kadar büyüklükte bir kısmının

doldurulacağı belirlenir. Bu değer, kullanılan karakter sayısına (k) eklenerek bir

limit değeri bulunur ve sözlüğün [k, limit] aralığı kaynakta en çok tekrarlanmış

olan karakter çiftleri ile doldurulur. Karakter çiftleri, yani digram’lar, kullanım

sayılarına göre büyükten küçüğe doğru sıralı şekilde sözlüğe eklenirler (Şekil

4.3).

4.5.3. Dinamik (uyarlanır) sözlük yaklaşımı

Dinamik sözlük modelinde, tek bir geçişte hem sözlük oluşturulur, hem de

sıkıştırma yapılır [5]. Dinamik sözlük yaklaşımı, statik sözlük yaklaşımı ve yarı-

statik sözlük yaklaşımının avantajlı yönlerini bir araya getirmiştir. Statik sözlük

yaklaşımı gibi tek geçişlidir dolayısıyla hızlıdır ve yarı-statik sözlük yaklaşımı

gibi kaynağa özel sözlük üretir dolayısıyla sıkıştırma oranı yüksektir [22].

 Dinamik sözlük tekniklerinin çoğu Jacob Ziv ve Abraham Lempel tarafından

1977 ve 1978 yıllarında yazılmış olan iki farklı makale üzerine geliştirilmişlerdir.

1977’deki makaleyi temel alan yaklaşımlara LZ77 ailesi, 1978’deki makaleyi

temel alan yaklaşımlara ise LZ78 ailesi denir [23]. LZ78 ailesinin en çok bilinen

ve en iyi sıkıştırma oranı sağlayan üyesi 1984 yılında Terry Welch tarafından

yayınlanan LZW algoritmasıdır [5].

4.5.3.1. LZ77 sıkıştırma algoritması

Abraham Lempel ve Jakob Ziv tarafından geliştirilen ve 1977 yılında

yayınladıkları “A Universal Algorithm for Data Compression” isimli

makalelerinde tanımladıkları bu yöntem, o yıllarda tüm dünyada büyük ilgi

görmüştür. Algoritmanın eksik yönleri zaman içinde farklı bilim adamları

tarafından geliştirilmiştir. Sonraları yeni geliştirilen algoritmaların hepsine LZ77

ya da LZ1 ailesi denilmiştir.

LZ77 ailesi metin tabanlı veri sıkıştırmada büyük aşama kaydedilmesinin

yolunu açmış, 80’li ve 90’lı yılların popüler sıkıştırma paketleri değişken

uzunluklu kodlayıcı ile desteklenen LZ77 tabanlı algoritmalar kullanmışlardır

[24].

LZ77 yaklaşımında sözlük, daha önce kodlanmış serinin bir parçasıdır.

Algoritmadaki arama tamponunun büyüklüğü, daha önce kodlanmış serinin ne

büyüklükte bir parçasında arama yapılacağını belirler. Arama tamponu

büyütüldükçe, sıkıştırma oranı artar, fakat aynı zamanda sıkıştırma zamanı da

artar.

36

Örneğin, “abracadabra” kelimesini LZ77 algoritması ile sıkıştıralım.

Şekil 4.4. LZ77’de arama tamponu ve ileri tampon

İleri tamponun ilk karakteri olan a, arama tamponunda sondan başa doğru

aranır. İkinci karşılaştırmada benzerlik bulunur, fakat bu karakterden sonra b

karakteri değil de d karakteri yer aldığı için benzerlik uzunluğu sadece 1’dir.

Arama devam ettirilir. İki karakter sonra bir a daha bulunur, sonrasında c yer

aldığı için bunun da benzerlik uzunluğu 1’dir. Aramaya devam edilir. Arama

tamponunun başında, yani ileri tamponda aranan karakterden 7 uzaklıkta

(offset=7) bir a daha bulunur. Bu defa benzerlik uzunluğu 4’tür (abra). İleri

tamponda “abra” serisinden sonra yer alan a karakteri ile birlikte [7,4,C(a)]

şeklinde üçlü olarak kodlanır. İleri tamponun en sonundaki a karakteri ise

[0,0,C(a)] şeklinde kodlanır.

Sıkıştırma açma aşaması kodlanan tüm üçlü karakter gruplarının benzer

şekilde açılması ile gerçekleştirilir. Mesela, örnekte yer alan üç karakterlik

[7,4,C(a)] kodu, 7 karakter geri git, 4 karakter kopyala, sonuna a karakterini ekle

şeklinde açılır.

Uygulanması kolay olan bu algoritmanın en büyük dezavantajı, eğer arama

tamponunda aranan tekrarlar bulunamazsa kullanılan üçlü sistemin 1 byte’lık

veriyi [0,0,C(a)] şeklinde temsil etmesi nedeniyle sıkıştırma yerine genişletme

yapmasıdır. LZ77 algoritması temel alınarak geliştirilen, LZSS olarak

adlandırılan bir yaklaşım, bu israfı tek bitlik bir bayrak kullanarak ortadan

kaldırmıştır. Bu bayrak kendisinden sonra gelen verinin tek bir karakter mi yoksa

bir karakter katarını ifade eden veri mi olduğunu belirler. Bu bayrak sayesinde

üçüncü elemana da gerek kalmamıştır.

Eğer arama tamponu boyutu yeteri kadar büyük değilse tekrarlar bulunamaz.

Örnek te arama tamponunun boyutunu 6 olarak kabul edilseydi sıkıştırılacak

benzerlik bulunamazdı. Öte yandan arama tamponu çok büyükse, arama zamanı

ve dolayısıyla da sıkıştırma zamanı artar. Her ne kadar geliştirilen efektif arama

yaklaşımları ile bu zaman bir ölçüde kısaltılabilmişse de, arama tamponu yine de

çok büyük seçilmemelidir.

LZ77 yaklaşımının tıkandığı bir nokta vardır. Eğer periyodik bir dizimiz varsa

ve periyodu arama tamponundan büyükse, hiç benzeşme bulunamaz ve her

37

karakter için fazladan gönderdiğimiz veriler nedeniyle sıkıştırma yerine

genişletme yapmış oluruz. Periyodik olarak tekrarlanan 8 karakter uzunluğundaki

“abcdefgh” karakter grubu için benzeşme bulunamayacağı Şekil 4.5’ de

görülmektedir.

Şekil 4.5. LZ77’in tıkandığı periyodik tekrarlamaya örnek

4.5.3.2. LZ78 sıkıştırma algoritması

Lempel ve Ziv, LZ77’de yer alan tampon büyüklüğünün sınırlı olmasının

yarattığı sıkıntıları ortadan kaldırmak için, tampon kullanmayan çok farklı bir

yöntem geliştirerek 1978’in Eylül ayında yayınlanan “Compression of Individual

Sequences via Variable-Rate Coding” isimli makalelerinde bu algoritmalarına

yer vermiştir [25]. LZ77’den çok farklı bir yapıda olması nedeniyle, bu algoritma

ve geliştirilmiş biçimleri, LZ78 (veya LZ2) ailesi olarak adlandırılmıştır.

LZ77’den farklı olarak, sadece metin tabanlı sıkıştırmada değil, bitmap gibi farklı

sayısal veriler üzerinde de başarıyla uygulanabilmiştir [5].

LZ78 sıkıştırma algoritması, hem kodlayıcı (encoder) hem de çözücü

(decoder) tarafından aynı sözlüğün oluşturulması prensibine dayanır. Kaynaktan

okunan sembol grupları sözlükte bulunan en uzun ön eklerinin indeksi ile

birleştirilerek ikililer (pairs - [i,c]) ile kodlanır. Bu ikilideki i, yeni girişin sözlükte

bulunan en uzun ön ekinin indeksi, c ise, bu ön eki takip eden karakterdir.

LZ78 açma algoritması, sıkıştırma algoritmasında oluşturulan sözlüğe ilk

etapta sahip değildir. Bir yandan açma işlemi yapılırken diğer yandan sözlük

oluşturulur. Okunan ikili kodun ilk karakteri 0 ise, bu ikilinin aslında tek karakteri

temsil ettiği anlaşılır ve ikinci karakter okunarak kodlanır ve sözlüğe eklenir. İlk

karakter sıfırdan farklı ise, bu kod iki ya da daha fazla karakterin birleşmesi ile

oluşan bir grubu temsil ediyordur. Bu durumda, sözlüğe eklenmiş olan elemanlar

içinde bu kodun iki elemanının da karşılıkları bulunur ve kodlanır.

LZ78 algoritması kalıpları bulma ve ayrı ayrı saklama becerisine sahip olsa

da, en önemli dezavantajı, sözlüğün sınırsız bir şekilde büyümesidir. Pratikte,

sözlüğün büyümesi belirli bir noktada durdurulmalı, ya gereksiz girdiler

elenmeli, ya da kodlama sabit sözlük şemasına zorlanmalıdır.

38

4.5.3.3. LZW sıkıştırma algoritması

Terry Welch 1984’te Unisys için çalışırken, LZ78 yaklaşımını yüksek

performanslı disk ünitelerine uyarlamış ve ortaya çıkan yeni algoritma LZW

olarak kabul görmüştür. LZW hem sıkıştırma hem de açma performansı açısından

LZ78 ailesinin en iyisi olmayı başarmıştır [26]. Her tip veri üzerinde iyi sonuçlar

veren bir algoritma olduğu için, kendisinden sonra gelen birçok algoritma

LZW’yi temel almıştır. 1985 yılından beri Unisys LZW’nin patentini elinde

bulundurmaktadır. UNIX işletim sistemindeki “compress” emri de bu yönteme

göre çalışmaktadır.

LZW sıkıştırma algoritmasında, LZ78’de kullanılan ikili yapısındaki ikinci

elemanın gerekliliği ortadan kalkmıştır. Kodlayıcı, önce kaynaktaki tüm

karakterlerden bir sözlük oluşturarak gönderir. Bu karakterler bir ön geçişle

bulunabilir. Eğer ASCII tablosundaki tüm karakterler kullanılacaksa ön geçiş

yapılmasına ve sözlüğün gönderilmesine gerek yoktur. Kodlama aşamasında

okunan her karakter sözlükte aranır. Bulunursa bir sonraki karakter de okunur

ikisi birleştirilerek aranır. Sözlükte karşılığı bulunamayana kadar bu şekilde

devam eder. Sözlükte karşılığı bulunmayan bir girdiye ulaşıldığında ise son

karakteri hariç önceki karakterlerinin sözlükteki karşılığı kodlanır. Bu kod ile son

karakterin sözlükteki kodu birleştirilerek sözlükte yeni bir girdi oluşturulur. Son

karakter, sonraki adımda ilk karakter yapılarak kodlamaya devam edilir.

39

Şekil 4.6. Lzw Sıkıştırma Algoritması

Şekil 4.6’da verilen sıkıştırma algoritmasında da görüldüğü üzere, veriler giriş

dosyasından byte byte okunup bir stringe eklenir ve bu stringin tabloda mevcut

olup olmadığına bakılır. Eğer mevcut ise, dosyadan bir byte daha okunarak işlem

tekrarlanır. Algoritma, sıkıştırılacak olan metin üzerinde, sözlükte olan bir

kelimeyle uyuşan harfler bulduğu sürece ilerler. Farklı bir harfe rastlandığı

zaman, o ana kadar uyumlu bulduğu harflerden oluşan kelimenin kodunu sonuca

yazar ve yeni harfi içeren kelimeyi sözlüğe ekler.

LZW yöntemi ile sıkıştırma yapılırken, başlangıçta ilk 256 elemanı (0-255)

ASCII tablodaki karakterler için ayrılmış olan “dictionary” adı verebileceğimiz

bir tablo tutulur. Sıkıştırma sonrası çıkışa yazılacak veriler bu sözlükten alınacak

indis numaraları olduğu için, çıkış dosyasına yazılacak her bir verinin boyu en az

9 bit (8 bitten fazla) olmak zorundadır. 12 bit için çıkış dosyasına yazılabilecek

40

kodlar 256-4095 arası değişir. 4095’ten sonra gelen veriler kodlanmaksızın çıkış

dosyasına yazılır. Bu sıkıştırma oranını bir miktar düşürür [27].

Örnek: “erken_ erken _ erken _ erken _ erken _ erken _ erken _ erken”

karakter serisini LZW ile kodlayalım.

Başlangıçta sözlükte tüm ASCII karakterleri bulunacaktır. Tablo 4.1’ de

sadeleştirme yapılarak sadece seride kullanılan karakterlere yer verilmiştir.

Çizelgenin ilk 5 elemanı bu karakterlerden oluşmaktadır. 256 ve daha sonraki

karakterler, LZW tarafından kodlama yapılırken sözlüğe eklenen karakterlerdir.

Tablo 4.1. LZW ile oluşturulan sözlük yapısı

Kodlama aşaması şu şekilde gerçekleşir: Önce ilk iki karakter e ve r

karakterleri okunur. İki karakterin birleşimi olan er henüz sözlükte olmadığı için,

[101,114] kodu ile sözlüğe 6. eleman olarak eklenir. Tablo 4.1’ de sözlükteki

gerçek kod değerlerine değil, sadece temsil ettikleri karakter öbeklerine yer

verilmiştir. İlk karakter sözlükteki karşılığı olan 101 ile kodlanarak ikinci

karakter ilk karakter yapılır ve kodlamaya devam edilir. Sözlüğün 261’inci

karakterine kadar kodlama benzer şekilde olacaktır. Serideki ikinci erken

kodlanırken ilk er daha önce sözlüğe eklenmiş olduğu için bu defa e karakterinin

kodu olan 101 değil, er ikilisinin kodu olan 256 kodlanır. Sözlüğe eklenirken ise

bir sonraki karakter olan k ile birleştirilerek erk karakter öbeği oluşturulur ve

262’inci sözlük girdisi [256,107] kodu ile eklenir. Kaynak bitene kadar bu şekilde

kodlanacak ve sözlük büyümeye devam edecektir. Kaynak verinin LZW ile

kodlanmış hali aşağıda verilmiştir:

101,114,107,101,110,95,256,258,260,262,259,261,257,266,265,264,268,271

,263,267,263

Serinin tamamı kodlandığında Tablo 4.1’de verilen 275 elemanlı sözlük

oluşacaktır. Bu sözlük sıkıştırma ve açma aşamalarında bellekte oluşturulur.

41

ISSDC’de olduğu gibi asıl veriden önce gönderilen ve dosya içinde saklanan bir

sözlük değildir. Bu nedenle LZW’de aslında sözlük masrafı yoktur.

LZ78’de olduğu gibi LZW’de de açma algoritması, sıkıştırma algoritmasında

oluşturulan sözlüğe ilk etapta sahip değildir. Sözlük sıkıştırma algoritmasında

yaratıldığı gibi açma algoritmasında da yaratılır. Örnekte üretilen çıktıyı

düşünelim. İlk altı karakter (101,114,107,101,110,95) erken_ karakter öbeğinin

ASCII kodlarıdır. İlk adımda 101 ve 114 bir araya getirilip sözlüğün 256’ıncı

elemanı, yani er oluşturulur. Birer karakter kaydırma ile sırasıyla [114,107] ile

257, [107,101] ile 258, [101,110] ile 259, [110,95] ile 260 ve [95,101] ile 261’inci

sözlük girdileri oluşturulur. Kod çözücü kodlanan verinin yedinci karakteri olan

256’ya ulaştığında, artık bu kodun karşılığını sözlükten bulabilir. Bir yandan

açma işlemi sürerken, diğer yandan sözlük 275’inci girdiye kadar benzer şekilde

oluşturulur.

LZ ailesinin en çok kullanılan üyesi LZW’dir. Hızı ve sıkıştırma performansı

yüksektir. Fakat, LZ78’de olduğu gibi, LZW algoritmasında da sözlük

büyüklüğünün sürekli artması sorun yaratmaktadır. Çözüm olarak birçok farklı

yöntem geliştirilmiştir. LZW tabanlı çalışan bir kayıpsız görüntü sıkıştırma

algoritması olan Gif ve Unix’teki “compress”, sözlük büyüklüğü 2b değerine

eriştiğinde (b değeri önceden belirlenir), sözlüğü iki katına (2b+1) çıkartır. Sözlük

daha da büyüdüğünde, statik sözlük yaklaşımına döner. Eğer sıkıştırma oranı belli

bir seviyenin altında kaldıysa sözlüğü boşaltarak, sözlük oluşturma işlemini

yeniden başlatır [28].

42

Tablo 4.2. LZW algoritması ile verinin sıkıştırılma aşamaları

Tablo 4.3. LZW algoritması ile verinin sıkıştırma açma aşamaları

Tablo 4.2 ve Tablo 4.3’te bir verinin sıkıştırma ve sıkıştırma açma işlemi

süreci tablosal olarak gösterilmiştir. Tablo 4.2 incelendiğinde 10 bitlik bir verinin

lzw algoritmasıyla 6 bitlik bir veri haline dönüştüğü ve bu süreç içerisinde

sözlükte ve cıkışta alınan değerler görülebilir. Bu işlemle %40 lık bir sıkıştırma

sağlanmıştır. Tablo 4.3’de ise sıkıştırılmış 6 bitlik verinin sıkıştırma açma

işlemine tabi tutulması sonucu, orjinal verinin elde edildiği görülmektedir.

43

44

5. BÖLÜM

LZW SIKIŞTIRMA ALGORİTMASI TABANLI

VERİ GİZLEME UYGULAMASI

Veri gizleme uygulamalarında, resimde yer alan orijinal piksellerin korunması

büyük önem arz etmektedir. Çünkü gizleme amaçlı yapılan bu uygulamanın

dışarıdan algılanmaması uygulamanın temel amacını oluşturmaktadır. Bu

nedenle kısmi optimizasyon tekniğinin sıkıştırma algoritmasıyla

desteklenmesinin, veri gizleme işleminde daha efektif sonuçlar elde edilmesini

sağlayacağı öngörülmüştür. Bunun için optimizasyon ile gizlenecek olan verinin,

kayıpsız ve dinamik sözlük tabanlı bir sıkıştırma tekniği olan LZW sıkıştırma

algoritması ile sıkıştırılarak, boyutunun minimize edilmesi temel alınmıştır. Bu

sayede optimizasyon ile veri gizleme işlemi sonucu örtü verisinde meydana gelen

bozulmanın en aza indirgenmesi ve veri gizleme işleminin daha kısa süre

içerisinde gerçekleştirilmesi sağlanmıştır.

Bu sistemde, gömme objesi olarak .bmp uzantılı görüntü verisi

kullanılmaktadır. Bu görüntü içerisine gizlenmek istenen mesajın boyutu, Şekil

5.1’de de görüleceği üzere lzw sıkıştırma algoritmasına tabi tutularak minimize

edilir ve elde edilen yeni veri .lzw uzantısıyla oluşturulur. Kısmi optimizasyonun

temel kodlama bölümü olan stego sistem kodlayıcısına gömme objesi ve

sıkıştırmayla elde edilen .lzw uzantılı veri gönderilir. Böylece kodlama

sonucunda gömme objesi üzerinde oluşacak hata bitlerinin sayısı sıkıştırma

oranında azalır. Kodlama işlemi sonucunda stego anahtarı kullanıcı tarafından

girilir ve kodlama tamamlanır. Bu işlem sonucunda oluşan, veri gömülü resim

içerisinden gizlenmiş verinin çıkartılması işleminde ise kodlamada kullanılan

aynı anahtar kullanılmaktadır. Stego-sistem kod çözücüsü ile gömme objesi

içerisinden gizlenmiş veri elde edilir. Bu veri .lzw uzantılı sıkıştırılmış dosyadır.

Bu dosya sıkıştırma açma algoritmasına tabi tutularak orijinal gizlenmiş veri elde

edilir.

45

Şekil 5.1. Lzw tabanlı kısmi optimizasyon stenografik sisteme ait kodlayıcı ve

kod çözücü blok diyagramı

5.1. Uygulama Yazılımının Tanıtılması

Kısmi optimizasyon tekniği ile veri gizleme/çıkarma uygulamasını içeren

uygulama yazılımının çalıştırılabilir program dosyası Delphi 7.0 program sürümü

ile tasarlanmıştır. Yaklaşık olarak 10000 satırdan oluşmakta olup 4,5 MByte

büyüklüğündedir. Bu tez çalışmasında, veri gizleme uygulamasına, yine Delphi

platformunda tasarlanmış, yaklaşık 1000 satırdan oluşan lzw sıkıştırma

algoritması eklenmiştir.

5.1.1. Resim içerisine dosya gizleme uygulaması

Şekil 5.2. İki ana bölüm ve altı alt daldan oluşan şifreleme / şifre çözme

programı arabirimi

46

Şekil 5.2’de görülen uygulamaya giriş ekranında, üstteki bölüm veri gizleme,

alttaki bölüm ise gizlenen veriyi elde etme uygulamalarına giriş bağlantılarını

içermektedir. Kısmi optimizasyon ile veri gizlenmek istendiğinde, bu

uygulamayı içeren, Şekil 5.2’de de belirtilen ‘Resim İçerisine Dosya Gizleme’

butonu tıklanarak uygulamaya geçilebilir.

Şekil 5.3. Optimizasyon tekniği ile gizli veri gömme uygulamasında gömme

objesi seçimi

Şekil 5.3’te optimizasyon tekniğini kullanarak veri gizleme yapılacak örtü

verisinin seçim aşaması gösterilmektedir. Kısmi optimizasyon yöntemi

kullanılmak isteniyorsa, kodlama türü bölümünde “3 bit/piksel optimizasyon

metodu” seçeneği işaretlenir ve “Resim Aç” butonu ile istenilen .bmp uzantılı

gömme objesi(örtü verisi) belirlenir.

47

Şekil 5.4. Optimizasyon tekniği ile gizli veri gömme uygulamasında gizlenecek

verinin seçimi

Şekil 5.4’te ise seçilen gömme objesi içerisine gizlenmek istenen veri seçimi

yapılmaktadır. “Dosya Aç” butonuna tıklayarak açılan pencerede dosya seçimi

yapılır. “3 Bit/Pix Optimizasyon” butonuna tıklanmasıyla öncelikle gizlenecek

olan veri sıkıştırma işlemine tabi tutulur. Verinin boyutu minimize edilir ve

ekrana Şekil 5.5’de görülen “Sıkıştırma Tamamlandı!” uyarı mesajı gelir.

Devamında optimizasyon ile veri gömme işlemi başlatılır.

Şekil 5.5. Optimizasyon tekniği ile gizlenecek verinin sıkıştırılması

48

Veri gizleme algoritmasının tamamlanması sonucu stego anahtar olarak

adlandırdığımız şifre kullanıcı tarafından girilir (Şekil 5.6).

Şekil 5.6. Optimizasyon tekniği ile veri gizlemede şifre girişi

Şifre girişi tamamlandığında, Şekil 5.7’de görüldüğü gibi içerisine veri

gizlenmiş olan resim istenilen konuma, istenilen isim ile kaydedilir.

Şekil 5.7. Optimizasyon tekniği ile gizlenmiş verinin kaydedilmesi

49

Şekil 5.8. Optimizasyon tekniği ile veri gizleme sürecinin tamamlanması

Şekil 5.8 incelendiğinde, sol tarafta orijinal gömme objesi, sağ tarafta ise

içerisine veri gizlenmiş olan görüntü görülmektedir. İki resim arasındaki fark

insan gözü tarafından algılanamamaktadır. Burada yer alan veriler incelenecek

olursa; gizlenecek olan verinin %69 oranında sıkıştırılarak boyutunun 8860 bayta

indirgendiği görülmektedir. Ayrıca işlem süresi 35,79 sn’dir. Yapısal olarak

resmin 8 farklı bölgeye ayrılarak her bir bölgeye 8 farklı yöntem denenerek,

bölgesel bazda en optimum sonucun elde edilmesi için gerekli olan işlem süresi

diğer tekniklerle karşılaştırıldığında doğal olarak 8 kat daha uzun sürecektir.

Fakat bu sorun sıkıştırma algoritması desteğiyle en aza indirgenmiştir.

50

Şekil 5.9. Optimizasyon tekniği ile veri gömme sonucu istatistikler

Şekil 5.9’da, “Optimizasyon İst.” butonuna tıklanarak, gömme sonucunda

elde edilen istatistiksel verilerin sergilendiği pencere görülmektedir. Burada

standart metot (opt_1) ile optimizasyon tekniği arasında sayısal bir değerlendirme

yapılmaktadır. Buradan anlaşılmaktadır ki her bölgede elde edilen bozulmamış

(orijinalliği korunan) bit sayısı bakımından diğer metoda göre toplamda orijinal

piksellerin 338 bit daha fazla olduğu ispatlanmıştır.

Klasik LSB veri gömme tekniği bölgesel veri gömme tekniğinin ilk sırasını

kullanmakta olup bu tekniğin tüm resme uygulanması durumunda bu örnek

uygulama için 35134 hatalı bit oluşacaktır. Ancak kısmi optimizasyon metodu ile

sekiz bölgeye sekiz farklı yaklaşım uygulandığından her bölgede en az hata/bit

oranını veren veri gömme tekniği belirlenerek orijinal bit oranı maksimize

edilmektedir. Bu örnekte kazanılan toplam bit sayısı 338 olmaktadır. Çünkü hata

bitlerinin sayısı 34796 olarak oluşmuştur. Böylelikle sıkıştırma tabanlı kısmi

optimizasyon metodu ile en az hata/bit oranına sahip en uygun alternatif çözüm

elde edilmiştir. Bu kural, resmi oluşturan tüm bölgelere uygulanmak suretiyle her

bir bölgeden elde edilen kazanımlar (orijinalliği korunan pikseller) ile toplamda

da en az hata bitinin oluşmasını sağlamaktadır. Bu örnekte kısmi tarama

neticesinde seçilen optimizasyon sonuçları aşağıda verilmiştir:

51

Birinci bölge → Opt_6

İkinci bölge → Opt_8

Üçüncü bölge → Opt_5

Dördüncü bölge → Opt_2

Beşinci bölge → Opt_6

Altıncı bölge → Opt_4

Yedinci bölge → Opt_6

Sekizinci bölge → Opt_5

5.1.2. Resim içerisinden gizli dosyanın elde edilme uygulaması

Sıkıştırma tabanlı kısmi optimizasyon tekniği ile gömme işlemi tamamlanan

resim içerisinden gizli dosyanın yeniden elde edilmesi için Şekil 5.10’da görülen

veri gizleme yazılımı arabiriminde ikinci bölüm, ikinci buton tıklanır.

Şekil 5.10. İki ana bölüm ve altı alt daldan oluşan şifreleme / şifre çözme

programı arabirimi

52

Şekil 5.11. İçerisinde gizli veri olan görüntü dosyasının seçimi

Klasik olarak “Resim Aç” butonu ile gizli dosya gömülü resim seçilerek aç

butonu ile resim dosyası taranarak içerisinde gizli veri olup olmadığı araştırılır

(Şekil 5.11).

Şekil 5.12. İçerisine veri gömülü olan görüntünün tarama sonucu

Şekil 5.12’de görüldüğü gibi “Grup 4” olarak adlandırılan veri gömme tekniği

- ki bu teknik optimizasyon yöntemini içermektedir - tespit edilerek veri türü de

sıkıştırılmış dosya biçimi olan “lzw” olarak bildirilmektedir.

53

Şekil 5.13. Çözme işlemi öncesi şifre sorgulaması

Resim açıldıktan sonra “Oluştur/Grup 4” butonu tıklanarak resim içerisindeki

verin elde edilmesi için ekrana gelen şifre sorgu penceresinde, verinin

gizlenmesinde kullanılan şifre doğru biçimde girilir ve çözme işlemi başlatılır

(Şekil 5.13).

Şekil 5.14. Çözme işlemi sonucu oluşturulacak dosyanın seçilmesi

54

Şifre giriş işleminden sonra ekrana, elde edilen gizli verinin bilgisayarda

nereye kaydedileceğini soran bir iletişim penceresi gelir (Şekil 5.14). Bu

pencerede elde edilen gizli veriye istenilen bir isim verilerek bilgisayarda

istenilen bir yere kaydedilir.

Şekil 5.15. Çözme işlemi ile elde edilen sıkıştırılmış veriden orijinal verinin

elde edilmesi

Çözme işlemi tamamlandığında belirtilen konum ve isimde lzw dosyası

oluşmuş olur. Ancak lzw dosyası asıl ulaşılmak istenen veri değildir. Sıkıştırılmış

veri olan lzw dosyası, otomatik olarak sıkıştırma açma işlemine tabi tutulur ve

aynı konumda orijinal uzantısıyla birlikte oluşturulur (Şekil 5.15).

Sekil 5.16’da orijinal gizli veri ile elde edilen gizli veri gösterilmektedir.

Şekilde sağ tarafta görülen geri elde edilen bilgi, sol tarafta görülen ise saklanan

bilgidir.

55

Şekil 5.16. Orijinal gizli veri ve elde edilen gizli veri

5.2. Uygulamaya Ait Deneysel Sonuçlar

Kısmi optimizasyon ile veri gizleme tekniğinin, lzw sıkıştırma algoritmasıyla

birlikte geliştirilmesiyle elde edilen sistemin getirdiği katkının ölçülmesi için

farklı veriler üzerinde deneysel bir çalışma gerçekleştirilmiştir. Bu çalışmada,

önerilen sıkıştırma tabanlı optimizasyon tekniğinin algılanabilirlik ve gizli veri

gömme süreleri gibi kriterlere bağlı başarımları değerlendirilmektedir.

56

Birbirinden farklı boyutlarda, bmp uzantılı görüntü verileri ile yine

birbirinden farklı tür(doc, xls, tif, bmp, htm, ppt, txt) ve boyutlarda veriler, kısmi

optimizasyon yöntemi ile gizleme işlemine tabi tutularak elde edilen sonuçlar ile

aynı verilerin lzw tabanlı uygulama ile gizleme işlemine tabi tutulmasıyla elde

edilen sonuçların karşılaştırılması yapılmıştır. Bu karşılaştırmada, gizleme işlemi

sonucu görüntü verisi üzerinde oluşan hatalı bit sayısı, işlemin tamamlanması için

geçen süre ve sistemin LSB yöntemine göre koruduğu orijinal bit sayısı esas

alınmıştır.

Şekil 5.17. Kısmi optimizasyon yöntemi ile veri gömme uygulaması

Şekil 5.17’de görülen veri gizleme uygulamasında, 500x360 boyutunda

540054 bayt(527 K) büyüklüğünde bir örtü verisi içerisine 29184 bayt(28 K)

büyüklüğünde .doc uzantılı bir metinsel veri kısmi optimizasyon tekniği ile

gizlenmiştir. Gizleme işlemine ait istatistiksel veriler Tablo 5.1’de görülmektedir.

57

Tablo5.1. Kısmi optimizasyon yöntemi ile elde edilen optimizasyon sonuçları

Şekil 5.17 incelendiğinde tüm işlemin 1dk 47,18sn’de tamamlandığı

görülmektedir. Tablo 5.1’de optimizasyon uygulamaları ve sonuçları

görülmektedir. Buradan gizleme işlemi sonucu örtü verisi üzerinde oluşan toplam

hatalı bit sayısının 144237 bit olduğu görülmektedir. Burada OPT_1 olarak

adlandırılan 1. sütunda klasik LSB tekniğinin de kullandığı sırayı içeren birinci

optimizasyon verileri görülmektedir. Bu örneklemede LSB klasik kodlama

sütunu sekiz farklı optimizasyonun hiçbirisinde minimum hata oranını

yakalayamamıştır. Buradan en az hata oranına sahip olamadığı anlaşılmaktadır.

Yapılan optimizasyon tarama tekniği ile ilk bölge için OPT_3 en optimum sonucu

vermiştir. Çünkü burada 22039 bit hatalı 7145 bit ise aynen korunarak toplam

%24,48’lik orijinal olarak korunan bit yüzdesi elde edilmiştir. Bu oran klasik

LSB tekniğinde %24,41’de kalmıştır. Yalnızca bu bölgede 20 bitlik ekstra hata

engellenmiştir. Benzer şekilde ikinci bölgede OPT_5 en optimum sonucu vererek

% 15,88’lik bir başarı sağlamış ve LSB tekniğine göre 28 bit hata önleme

iyileşmesi temin edilmiştir. Bu örnek uygulamada tüm bölgelerdeki kazanılan

hata önleme bitlerinin toplamı 226 olarak hesaplanmıştır.

Aynı veriler üzerinde gizleme işleminin bu kez lzw sıkıştırma algoritması

tabanlı optimizasyon tekniği ile uygulanmasıyla elde edilen sonuçlar Şekil 5.18

ve Tablo 5.2’de görülmektedir.

58

Şekil 5.18. Lzw sıkıştırması tabanlı kısmi optimizasyon yöntemi ile veri gömme

uygulaması

Tablo5.2. Lzw sıkıştırması tabanlı kısmi optimizasyon yöntemi ile elde edilen

optimizasyon sonuçları

Şekil 5.18 incelendiğinde gizlenecek olan verinin %69 oranında sıkıştırılarak

boyutunun 9339 bayt(9K)’a indirgendiği ve tüm işlemin yalnızca 36,6sn’de

tamamlandığı görülmektedir.

59

Bu örneklemede LSB klasik kodlama sütunu sekiz farklı optimizasyonun

içerisinde sadece 4. bölgede minimum hata oranını yakalayabilmiştir. Buradan en

az hata oranına sahip olamadığı anlaşılmaktadır. Yapılan optimizasyon tarama

tekniği ile yedinci bölge için OPT_2 en optimum sonucu vermiştir. Çünkü burada

5312 bit hatalı 3952 bit ise aynen korunarak toplam %42,65’lik orijinal olarak

korunan bit yüzdesi elde edilmiştir. Bu oran klasik LSB tekniğinde %41,47’de

kalmıştır. Yalnızca bu bölgede 110 bitlik ekstra hata engellenmiştir. Benzer

şekilde sekizinci bölgede OPT_8 en optimum sonucu vererek % 47,81’lik bir

başarı sağlamış ve LSB tekniğine göre 74 bit hata önleme iyileşmesi temin

edilmiştir. Bu örnek uygulamada tüm bölgelerdeki kazanılan hata önleme

bitlerinin toplamı 350 olarak hesaplanmıştır(Bkz. Tablo 5.2).

Tablo 5.2’de optimizasyon uygulamaları ve sonuçları görülmektedir. Buradan

gizleme işlemi sonucu örtü verisi üzerinde oluşan toplam hatalı bit sayısının

44041 bit olduğu görülmektedir. Oysaki önceki uygulamada bu sayının 144237

bit olduğu bilinmektedir. Bu durumda oluşan toplam hatalı bit sayısında %69’luk

bir azalma olduğunu söyleyebiliriz. Yani sıkıştırma oranı ile doğru orantılı olarak

toplam hatalı bit sayısı azalmaktadır. Ayrıca bu örneklemede toplam hatalı bit

sayısının azalmasının yanı sıra, klasik kodlama olan LSB’ ye göre önlenmiş olan

hata biti sayısının da daha fazla olduğu görülmektedir.

Deneysel çalışmada, birbirinden farklı boyutlarda, bmp uzantılı görüntü

verileri ile yine birbirinden farklı tür(doc, xls, tif, bmp, htm, ppt, txt) ve

boyutlarda verilerin, kısmi optimizasyon yöntemi ile gizleme işlemine tabi

tutulmasıyla elde edilen sonuçlar Tablo 5.3’te verilmiştir. Burada gizlemede

kullanılacak olan örtü verisinin boyutu, içerisine gizlenecek olan verinin boyutu

ve türü, işlemin tamamlanması için geçen süre, gizleme işlemi sonucunda elde

edilen toplam hatalı bit sayısı ve tekniğin LSB tekniğine göre elde ettiği önlenmiş

hata biti sayısı verilmiştir.

60

Tablo 5.3. Kısmi optimizasyon yöntemi ile gerçekleştirilen deneylere ait sonuçlar

Tablo 5.4’te ise deneysel çalışmada kullanılan aynı veriler, aynı şartlar altında,

sıkıştırma tabanlı kısmi optimizasyon işlemine tâbi tutulmasıyla elde edilen

sonuçlar gösterilmektedir.

Tablo 5.4. Lzw tabanlı kısmi optimizasyon yöntemi ile gerçekleştirilen

deneylere ait sonuçlar

61

Tüm deneylerden elde edilen sonuçlar karşılaştırıldığında sıkıştırma tabanlı

optimizasyon uygulamasında, sıkıştırma oranına bağlı olarak hatalı bit sayısının

minimize edildiği görülmektedir. Aynı oranda işlem süresinin de kısalması,

yönteme getirilen katkılardan bir tanesidir. İşlemlerin tamamlanması için geçen

sürenin, deneyin yapıldığı ortam şartlarında, ortalama %58,11 oranında azaldığı

görülmüştür.

Şekil 5.19. Deneylerde her iki yönteme ait elde edilen toplam hatalı

bit sayısı değerleri

Şekil 5.19’da, her iki yöntem kullanılarak elde edilen sonuçlara göre toplam

hata biti sayısının karşılaştırılmasını ifade eden grafik verilmiştir. Grafikte de

görüldüğü gibi lzw tabanlı optimizasyon yönteminde hatalı bit sayısı minimize

edilerek başarı sağlanmıştır.

62

Şekil 5.20. Deneylerde her iki yönteme ait elde edilen toplam

işlem süresi değerleri

Şekil 5.20’de, gerçekleştirilen yirmi adet deneyde, her iki yöntem kullanılarak

elde edilen sonuçlara göre veri gizleme işleminin tamamlanması için geçen

sürenin karşılaştırılmasını ifade eden grafik verilmiştir. Grafikte, lzw tabanlı

optimizasyon yönteminde işlem süresinin minimize edilmesiyle başarı sağlandığı

görülmüştür.

5.3. Sonuç

Bu tez çalışmasında kısmi optimizasyon ile veri gizleme tekniğinin

güvenliğini artırmak için gizli verinin algılanabilirliğinin en düşük seviyede

tutulması ve bunun daha kısa sürede sağlanması amaçlanmıştır. Bunun için var

olan kısmi optimizasyon tekniğine lzw tabanlı bir sıkıştırma algoritması desteği

verilmiş, farklı veriler üzerinde deneyler gerçekleştirilerek başarı test edilmiştir.

Deney sonuçlarından elde edilmiş verilere göre, gizli verinin

algılanabilirliğinin temelini oluşturan, gizli veriyi içeren görüntü üzerindeki

hatalı bit sayısının, sıkıştırma uygulanmaksızın kullanılan tekniğe göre daha

düşük olduğu görülmüştür. Deney sonuçlarından elde edilen grafiklere

bakıldığında, geliştirilen sıkıştırma tabanlı yöntem ile veri gizleme işleminin

uygulanması için gerekli sürenin minimize edilmesi de elde edilen kazanımlar

arasındadır.

63

6. BÖLÜM

SONUÇ VE ÖNERİLER

Bu tezin amacı resim içerisine veri gizleme amaçlı geliştirilen kısmi

optimizasyon tekniğine yeni bir yaklaşım getirerek, bu tekniğin sıkıştırma

algoritmasıyla birlikte daha iyi sonuçlar elde etmesini sağlamaktır.

Kısmi optimizasyon yönteminde resim, sekiz farklı optimizasyon bölgesine

ayrılarak, her bir bölge sekiz farklı optimizasyon işlemine tabi tutulmaktadır.

Bunun amacı optimizasyon kodlaması ile bölgesel kodlama yaparak, her bir

bölgede veri gömme sırasını dinamik oluşmasını sağlamaktadır. Bu durumda her

bir bölgeye farklı metot uygulanacağından bölgelerarası farklı kodlama teknikleri

sebebiyle hatalı kod çözme işlemi en aza indirgenmektedir. Dolayısıyla bu

yöntemle, minimum hata oranı için korunan orijinal piksellerin sayısı

artırılmakta, ayrıca kendi içerisinde güvenlik sağlanmaktadır. Ancak bu teknik

içerisinde bir sıkıştırma algoritması kullanarak korunan orijinal piksellerin sayısı

daha da artırılacağı öngörülmektedir. Ayrıca bu yaklaşımın, tekniğin

uygulanmasına hız da kazandıracağı aşikârdır.

Veri gizleme uygulamalarında resimde yer alan orijinal piksellerin korunması

büyük önem arz etmektedir. Çünkü gizleme amaçlı yapılan bu uygulamanın

dışarıdan algılanmaması uygulamanın temel amacını oluşturmaktadır. Bu

nedenle kısmi optimizasyon tekniğinin sıkıştırma algoritmasıyla

desteklenmesiyle, veri gizleme işleminin daha efektif sonuçlar elde etmesi

sağlanmıştır. Bunun için optimizasyon ile gizlenecek olan verinin, kayıpsız ve

dinamik sözlük tabanlı bir sıkıştırma tekniği olan LZW sıkıştırma algoritması ile

sıkıştırılarak, boyutunun minimize edilmesi sağlanmıştır. Bu sayede

optimizasyon ile veri gizleme işlemi sonucu resimde meydana gelen bozulma en

aza indirgenmiş ve veri gizleme işleminin daha kısa süre içerisinde

gerçekleştirilmesi sağlanmıştır. Bu çalışma, veri gizleme teknikleri üzerine daha

önce yapılan çalışmalarda tavsiye edilen bir yöntem üzerine, sıkıştırma tekniğiyle

geliştirilerek gerçeklenmiştir.

64

Gerçekleştirilen deney sonuçlarında işlem sonucu örtü verisinde meydana

gelen bozulmanın ve toplam işlem süresinin, gizli verinin sıkıştırma oranı ile aynı

oranda azaldığı görülmüştür. Fakat lzw sıkıştırma algoritması sözlük tabanlı bir

sıkıştırma yaklaşımı olduğundan, birbirini tekrar eden verilerin yoğunluğu

durumunda büyük miktarda sıkıştırma sağlarken, aksi durumda daha az oranda

sıkıştırma sağlamaktadır. Sıkıştırma oranı, kısmi optimizasyon uygulamasındaki

bozulma ve işlem süresini doğrudan etkilediğinden, kullanılan algoritmanın her

veri için yüksek sıkıştırma oranı sağlaması optimizasyon tekniğini daha da

kullanışlı hale getirecektir.

65

KAYNAKLAR

[1] ESİN, E.M., GÜVENOĞLU, E., Resim İçine Yazı Gizlenmesi

Amacıyla Kullanılan LSB Ekleme Yönteminin Shuffle

Algoritmasıyla İyileştirilmesi, Elektronik Mühendisliği Bölümü,

Maltepe Üniversitesi, 2007.

[2] MESUT, A.Ş., MESUT, A., SAKALLI, M.T., Görüntü

Steganografide Gizlilik Paylaşım Şemalarının Kullanılması ve

Güvenliğe Etkileri, Bilgisayar Mühendisliği Bölümü, Trakya

Üniversitesi, Edirne 2006.

[3] GÜREL, H., Sayısal Resim İçerisine Veri Gizleme Uygulamaları,

Elektronik Bilgisayar Eğitimi, Kocaeli Üniversitesi, 2006.

[4] AKAR, F., Veri Gizleme ve Şifreleme Tabanlı Bilgi Güvenliği

Uygulaması, Doktora Tezi, Elektronik Bilgisayar Eğitimi ABD,

Marmara Üniversitesi, İstanbul, 2005.

[5] MESUT, A., Veri Sıkıştırmada Yeni Yöntemler, Bilgisayar

Mühendisliği Anabilim Dalı, Trakya Üniversitesi, Edirne, 2006.

[6] CALDWELL, J., 2nd Lt. Steganography, Crosstalk The Journal of

Defense Software Engineering, 25-27 (2003).

[7] KUTUCU, H., KAYA, M., DALKINÇ, M., Criptography and

Network Security, Ege Üniversitesi Uluslararası Bilgisayar

Enstitüsü 1–2, (2002).

[8] ŞAHİN, A., BULUŞ, E., SAKALLI, M.T., 24-bit Renkli Resimler

Üzerinde En Önemsiz Bite Ekleme Yöntemini Kullanarak Bilgi

Gizleme, Trakya Üniversitesi J Sci, ISSN 1305-6468, 7(1): 17-22,

2006.

[9] ATICI, M.A., Steganografik Yaklaşımların İncelenmesi, Tasarımı

ve Geliştirilmesi, Yüksek Lisans Tezi, Bilgisayar Mühendisliği,

Gazi Üniversitesi, Ankara 2007.

66

[10] ANDERSON, R.J., PETITCOLAS, F.A.P., On The Limits Of

Steganography, Journal of Selected Areas in Communications,

16(4): 474-481, May 1998, IEEE.

[11] ZIV, J., LEMPEL, A., A Universal Algorithm for Sequential Data

Compression, IEEE Transactions on Information Theory, Vol. 23,

No. 3, pp.337-343, May 1977, IEEE.

[12] ARTZ, D., Digital Steganography: Hiding Data within Data, IEEE

Internet Computing, Vol. 5, No.3, pp. 75-80, 2001.

[13] MORKEL, T., ELOFF, J.H.P., OLIVIER, M.S., An Overview of

Omage Steganography, Information and Computer Security

Architecture (ICSA) Research Group Department of Computer

Science, University of Pretoria, South Africa.

[14] ŞAHİN, A., BULUŞ, E., SAKALLI, M.T., Gri Seviye Resimler

Üzerinde Rasgele LSB Yöntemini ve Sayı Teorisini Kullanarak

Bilgi Gizleme ve Steganaliz, Bilgisayar Mühendisliği Bölümü,

Trakya Üniversitesi, 2007.

[15] AMIN, M.M., SALLEH, M., İBRAHİM, S., KATMİN, M.R.,

SHAMSUDDIN, M.Z.I., Information Hiding Using Steganography,

Telecommunication Technology, 4th National Conference, Shah

Alam, Malaysia, 21- 25, 2003.

[16] ŞAHİN, A., Görüntü Steganografide Kullanılan Yeni Metodlar ve

Bu Metodların Güvenilirlikleri, Doktora Tezi, Bigisayar

Mühendisliği ABD, Trakya Üniversitesi, Edirne, 2007.

[17] KURTULDU, Ö., İmge Steganografisi İçin Yeni Yöntemler,

Yüksek Lisans Tezi, Bilgisayar Mühendisliği Anabilim Dalı, Deniz

Harp Okulu, İstanbul, 2008.

[18] AKAR, F., BMP Resimler İçin Veri Gizleme Tabanlı Bilgi

Güvenliği Uygulamaları, Elektrik Elektronik Mühendisliği, Deniz

Harp Okulu, İstanbul.

67

[19] AKBAL, T., Ses Verilerine Sıkıştırılmış ve Şifrelenmiş Ham

Verilerin Gömülmesi, Yüksek Lisans Tezi, Elektronik ve Bilgisayar

Eğitimi, Sakarya Üniversitesi, Sakarya, 2008.

[20] JIANG, J., JONES, S., Word Based Dynamic Algorithms for Data

Compression, IEEE Proceedings, Vol. 139, No. 6, December 1992.

[21] SALOMON, D., A Concise Introduction to Data Compression, pp.

61-91, 2008.

[22] SALOMON, D., Motta, G., Handbook of Data Compression, Fifth

Edititon, 2010.

[23] LIN, C.H., XIE, Y., WOLF, W., LZW-Based Code Compression

for VLIW Embedded Systems, Proceedings of the Design,

Automation and Test in Europe Conference and Exhibition

Designers, 1530-1591/4, 2004 IEEE.

[24] MESUT, A., CARUS, A., Kayıpsız Görüntü Sıkıştırma

Yöntemlerinin Karşılaştırılması, II. Mühendislik Bilimleri Genç

Araştırmacılar Kongresi, MBGAK, İstanbul, pp.93-100, 2005.

[25] TAO, T., MUKHERJEE, A., LZW Based Compressed Pattern

Matching, School of Electrical Engineering and Computer Science,

University of Central Florida, Orlando, Fl.32816 USA.

[26] ABU TALEB, S.A., MUSAFA, H.M.J., KHTOOM, A.M.,

GHARAYBIH, I.K., J-C., Improving LZW Image Compression,

European Journal of Scientific Research, pp.502-509, 2010 ISSN.

[27] HORSPOOL, R.N., Improving LZW, Dept. of Computer Science,

University of Victoria, P.O. Box 3055, Victoria, B.C., Canada V8W

3P6.

[28] SELÇUK, A.A., Word-Based Compression In Full Text Retrieval

Systems, M. Sc.Thesis, Bilkent University May, 1995.

68

[29] KNIESER, M.J., WOLFF, F.G., PAPACHRISTOU, C.A.,

WEYER, D.J., MCINTYRE, D.R., A Technique for High Ratio

LZW Compression, Proceedings of the Design, Automation and

Test in Europe Conference and Exhibition, 1530-1591/3, 2003

IEEE.

[30] ZEEH, C., The Lempel Ziv Algorithm, Seminar, Famous

Algorithms, January 16, 2003.

[31] ÇETİN, Ö., ÖZCERİT, A.T., BORU, B., Yüksek Gizli-Bilgi

Kapasitesine Sahip Yeni Bir Alındısız Video-Steganografi

Yöntemi, Teknik Eğitim Fakültesi Bilgisayar Sistemleri Bölümü,

Sakarya Üniversitesi, Electrical&Computer Engineering Dept.,

University of New Mexico.

[32] ÇİVİCİOĞLU, P., ALÇI, M., Güvenli İletişim İçin Veri Gizleme

Tekniklerinin Kullanımı, Elektrik Elektronik – Bilgisayar

Mühendisliği 10. Ulusal Kongresi, pp. 422-425, Kayseri.

[33] AKAR, F., VAROL, H.S., A New RGB Weighted Encoding

Technique for Efficient Information Hiding in Images, Journal of

Naval Science and Engineering, Number 2 Volume 2, July 2004.

[34] WELCH, T. A., A Technique for High-Performance Data

Compression, IEEE Computer, 17(6), 8-19, 1984.

[35] ZIV, J., LEMPEL, A., A Universal Algorithm for Sequential Data

Compression, IEEE Transactions on Information Theory, IT-23(3),

337-343, 1977.

[36] SAYOOD, K., Introduction to Data Compression, Morgan

Kaufman, San Francisco, California, 1996.

[37] http://marknelson.us/1989/10/01/lzw-data-compression/ (Erişim

tarihi: Mart 2012)

69

http://marknelson.us/1989/10/01/lzw-data-compression/

[38] ŞAHİN, A., BULUŞ, E., SAKALLI, M.T.,Gri Seviye Resimler

Üzerine Rastgele LSB Yöntemini Ve Sayı Teorisini Kullanarak

Bilgi Gizleme Ve Steganaliz, Trakya Üniversitesi Fen Bilimleri

Enstitüsü,1–3, (2006).

[39] AKAR, F., VAROL, H.S., A New RGB Weighted Encoding

Technique for Efficient Information Hiding in Images, Journal of

Naval Science and Engineering, Volume 2, 21–36, 2004.

[40] KATZENBEISSER S., PETITCOLAS F.A.P., Information Hiding

Techniques for Steganography and Digital Watermarking, Artech

House, INC. 685 Canton Street Norwood, MA 02062, 2000.

70

ÖZGEÇMİŞ

Esra Ayça GÜZELDERELİ, 21.04.1988 de Kars’ta doğdu. İlk, orta ve lise

eğitimini Ordu’da tamamladı. 2005 yılında Ordu Anadolu Meslek Lisesi,

Bilgisayar Bölümünden mezun oldu. 2005 yılında başladığı Karadeniz Teknik

Üniversitesi Bilgisayar Teknolojisi ve Programlama bölümünü 2007 yılında

bitirdi. 2007 yılında Gazi Üniversitesi, Bilgisayar Öğretmenliği bölümüne girdi

ve 2010 yılında mezun oldu. 2010 – 2012 yılları arasında Sakarya Üniversitesi,

Elektronik-Bilgisayar Eğitimi bölümünde yüksek lisans eğitimini tamamladı.

71

