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Chapter 1 

Three-Moment Chi-Square Approximation for the 

Distributions of Modified Levene Tests

Gamze GÜVEN1, Birdal ŞENOĞLU2

1 Introduction 

The problem of testing homogeneity of variances has been the primary 

concern of researchers and practitioners for decades. Because some statistical 

procedures such as the Student’s t-test and the ANOVA F-test are sensitive to 

violations of the homoscedasticity assumption, 

verifying the homogeneity of variances is one of the initial steps in practice 

across many areas, including economics, health sciences, and engineering, see 

Ederington and Lee (1993), Li et al. (1997), Li et. al (2015), Esi and Baykal 

(2020), Zhou et al. (2023) and references therein for detailed information.  

There are numerous studies in literature for testing homogeneity of variances 

of k independent groups. The hypothesis of interest is 

𝐻0: 𝜎1
2 = 𝜎2

2 = ⋯ = 𝜎𝑘
2        (1) 

against the alternative hypothesis 𝐻1: 𝜎𝑖
2 ≠ 𝜎𝑗

2 for at least one 𝑖 ≠ 𝑗.

In this context, Bartlett (1937) introduced one of the earliest procedures, a 

modified likelihood ratio test that is the most powerful when the normality 

assumption holds. Levene (1960) proposed a test for equality of variances, 

initially developed for equal sample sizes and later generalized to unbalanced 

designs. This test performs a one-way ANOVA on modified data, where each 

observation is replaced by its absolute deviation from its group mean. Layard 

(1973) discussed two asymptotically robust tests, a simple chi-square test and a 

test based on jackknife procedure.  Brown and Forsythe (1974) referred to 

Levene’s original test as 𝑊0 and proposed two modified versions of it by

replacing the group mean with the 10% trimmed mean and the median, which 

were denoted as 𝑊10 and 𝑊50, respectively. Simulation results reported by Brown

1 Assoc. Prof., Eskisehir Osmangazi University, ORCID:0000-0002-8821-3179, gamzeguven@ogu.edu.tr 
2 Prof., Ankara University, ORCID: 0000-0003-3707-2393,  

senoglu@science.ankara.edu.tr
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and Forsythe (1974) indicated that 𝑊50 tends to be conservative for small sample 

sizes under normality, whereas 𝑊10 exhibits greater robustness when the 

underlying distributions are long tailed. Lim and Loh (1996) compared 𝑊50 test, 

Bartlett test with and without kurtosis adjustment, Box-Andersen test, three 

jackknife tests and their bootstrap counterparts in terms of robustness and power. 

They concluded that 𝑊50 test and its bootstrap version, along with one jackknife 

test and the kurtosis-adjusted Bartlett test, exhibit desirable robustness and power 

properties. Sharma (1991) proposed a new jackknife test based on jackknifing 

one group of observations at a time, while Sarkar et al. (1999) modified Levene’s 

test using the weighted likelihood estimates of the population means. Cahoy 

(2010) developed a bootstrap procedure based on variance-derived statistics. 

More recently, Sharma and Kibria (2013) compared 25 different test procedures 

under various conditions. Jayalath et al. (2017) introduced a bootstrap test based 

on the ratio of mean absolute deviances and developed a two-stage approach that 

first measures skewness to determine the suitable test for variance homogeneity. 

Esmailzadeh (2019) compared five Levene-type tests in terms of power and size. 

Although no single test for homogeneity of variances achieves uniform 

superiority across scenarios studied in literature, Bartlett’s, Levene’s, and 

particularly the variants of Levene’s procedure 𝑊10 and 𝑊50 are among the most 

widely used tests in applied sciences. As mentioned earlier, the 𝑊10  is obtained 

by performing a one-way ANOVA on the absolute deviations from each group’s 

10% trimmed mean, whereas 𝑊50 is defined analogously using the group median. 

Under normality, Bartlett’s test is the most powerful but is sensitive to the 

departures from normality. In contrast, 𝑊10 and 𝑊50 tests maintain better control 

of Type I error rates in the presence of non-normal data, though their power may 

be low for some distributions and sample size configurations, see Conover et al. 

(1981) and Jayalath et al. (2017).  

Motivated by their prevalent usage in applications, computational simplicity, 

and robustness to departures from normality, we focus on the 𝑊10 and 𝑊50 tests 

in this study. For both procedures, the usual one-way ANOVA 𝐹-ratio is 

computed on absolute deviations; p-values are obtained from the 𝐹 reference 

distribution with (𝑘 − 1, 𝑁 − 𝑘) degrees of freedom, and 𝐻0 in (1) is rejected 

when the observed statistic exceeds the corresponding critical value. However, 

𝑊10 and 𝑊50 tests may fail to control the Type I error adequately in certain 

distributional settings, especially for small samples. Inspired by Tiku (1965), we 

approximate the null distributions of the 𝑊10 and 𝑊50 test statistics using the 

three-moment chi-square approximation, thereby overcoming this limitation. In 

their study, approximation was applied to the distributions of the Watson’s 𝑈𝑁
2  
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and Anderson-Darling’s 𝑊𝑁
2 statistics and resulting upper-tail percentage points 

were shown to agree closely with those reported by Stephens (1964). Tiku and 

Wong (1998) developed three-moment chi-square and four-moment F 

approximations for unit-root testing in AR (1) models when the underlying 

distributions are symmetric. Sürücü and Sazak (2009) provided two-moment 

normal and three-moment chi-square approximations for distribution of the sum 

of independent Weibull random variates and showed that they are accurate and 

useful for detecting production stabilities. Güven (2023) used three-moment chi-

square and four-moment F approximations for the null distributions of Cochran’s 

(1937) test and its robust version.  

The remainder of the paper is organized as follows. Section 2 briefly reviews 

Bartlett’s test, Levene’s test, and the 𝑊10 and 𝑊50 tests. Section 3 describes a 

three-moment chi-square approximation for the null distributions of the 𝑊10 and 

𝑊50 statistics. Section 4 conducts a Monte Carlo simulation study to evaluate the 

simulated Type I error rate and power for 𝑊10, 𝑊50, and their moment-matched 

counterparts under different distributions and sample size configurations. Section 

5 presents concluding remarks. 

 

2 Descriptions of the Tests 

In this section, the Bartlett, Levene, 𝑊10 and 𝑊50 tests for testing the 

homogeneity of variances are briefly described. Let 𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑛𝑖
 (𝑖 =

1,2, … , 𝑘; 𝑗 = 1,2, … , 𝑛𝑖) be independent random samples of size 𝑛𝑖 drawn from 

𝑘 normal groups, each with variance 𝜎𝑖
2. Define the sample mean and variance 

of the ith group as 𝑋̅𝑖 and 𝑆𝑖
2 =

∑ (𝑋𝑖𝑗−𝑋̅𝑖)2𝑛𝑖
𝑗=1

𝑛𝑖−1
, respectively. Also, total sample size 

is 𝑁 = ∑ 𝑛𝑖
𝑘
𝑖=1 . 

 

Bartlett’s Test: Bartlett’s test statistics is defined as 

 

𝐵𝑇 =
(𝑁−𝑘) ln 𝑆𝑎

2−∑ (𝑛𝑖−1)𝑘
𝑖=1 ln 𝑆𝑖

2

1+𝐶
  

 

where 

𝑆𝑎
2 =

∑ (𝑛𝑖−1)𝑆𝑖
2𝑘

𝑖=1

𝑁−𝑘
  

 

and the correction factor 

𝐶 =
1

3(𝑘−1)
(∑

1

𝑛𝑖−1

𝑘
𝑖=1 −

1

𝑁−𝑘
).  
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The null hypothesis in (1) is rejected when 

 

𝐵𝑇 > 𝜒1−𝛼
2 (𝑘 − 1), 

 

where 𝜒1−𝛼
2 (𝑘 − 1) denotes the 100(1 − 𝛼)th percentile of the 𝜒2distribution 

with (𝑘 − 1) degrees of freedom. 

 

It is well known, however, that Bartlett’s test is highly sensitive to departures 

from normality.  

 

Levene’s Test: Levene’s test is defined as 

 

𝑊0 =
(𝑁−𝑘) ∑ 𝑛𝑖

𝑘
𝑖=1 (𝑧̅𝑖.−𝑧̅..)2

(𝑘−1) ∑ ∑ (𝑧𝑖𝑗−𝑧̅𝑖.)
2𝑛𝑖

𝑗=1
𝑘
𝑖=1

,  

 

where 

 

𝑧𝑖𝑗 = |𝑋𝑖𝑗 − 𝑋̅𝑖|,  𝑧𝑖̅ . = ∑ 𝑧𝑖𝑗
𝑛𝑖
𝑗=1 𝑛𝑖⁄  and 𝑧̅. . = ∑ ∑ 𝑧𝑖𝑗

𝑛𝑖
𝑗=1

𝑎
𝑖=1 𝑁⁄ . 

 

The null hypothesis is rejected when 

 

𝑊0 > 𝐹1−𝛼(𝑘 − 1, 𝑁 − 𝑘), 

 

where 𝐹1−𝛼(𝑘 − 1, 𝑁 − 𝑘) denotes the 100(1 − 𝛼)th percentile of the F-

distribution with (𝑘 − 1) and (𝑁 − 𝑘) degrees of freedom. 

 

𝑾𝟏𝟎 Test: Brown and Forsythe (1974) revised Levene’s test by using trimmed 

mean rather than sample mean as follows 

 

𝑊10 =
(𝑁−𝑘) ∑ 𝑛𝑖

𝑘
𝑖=1 (𝑧̅𝑖.−𝑧̅..)2

(𝑘−1) ∑ ∑ (𝑧𝑖𝑗−𝑧̅𝑖.)
2𝑛𝑖

𝑗=1
𝑘
𝑖=1

,  

 

where 

 

𝑧𝑖𝑗 = |𝑋𝑖𝑗 − 𝑋̃𝑖(10)|,  𝑧𝑖̅ . = ∑ 𝑧𝑖𝑗
𝑛𝑖
𝑗=1 𝑛𝑖⁄  and 𝑧̅. . = ∑ ∑ 𝑧𝑖𝑗

𝑛𝑖
𝑗=1

𝑎
𝑖=1 𝑁⁄ . 
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Here, 𝑋̃𝑖(10) denotes the 10% trimmed mean of the ith group. 

 

The null hypothesis in (1) is rejected when 

 

𝑊10 > 𝐹1−𝛼(𝑘 − 1, 𝑁 − 𝑘), 

 

where 𝐹1−𝛼(𝑘 − 1, 𝑁 − 𝑘) denotes the 100(1 − 𝛼)th percentile of the F-

distribution with (𝑘 − 1) and (𝑁 − 𝑘) degrees of freedom. 

 

𝑾𝟓𝟎 Test: Brown and Forsythe (1974) also proposed the 𝑊50 test, which 

replaces the group mean in Levene’s test statistics with the group median. It is 

defined as 

 

𝑊50 =
(𝑁 − 𝑘) ∑ 𝑛𝑖

𝑘
𝑖=1 (𝑧𝑖̅ . −𝑧̅. . )2

(𝑘 − 1) ∑ ∑ (𝑧𝑖𝑗 − 𝑧𝑖̅ . )
2𝑛𝑖

𝑗=1
𝑘
𝑖=1

, 

 

where 

 

𝑧𝑖𝑗 = |𝑋𝑖𝑗 − 𝑋̃𝑖|,  𝑧𝑖̅ . = ∑ 𝑧𝑖𝑗
𝑛𝑖
𝑗=1 𝑛𝑖⁄  and 𝑧̅. . = ∑ ∑ 𝑧𝑖𝑗

𝑛𝑖
𝑗=1

𝑎
𝑖=1 𝑁⁄ . 

 

Here, 𝑋̃𝑖 denotes the median of the ith group. 

 

The null hypothesis in (1) is rejected when 

 

𝑊50 > 𝐹1−𝛼(𝑘 − 1, 𝑁 − 𝑘), 

 

where 𝐹1−𝛼(𝑘 − 1, 𝑁 − 𝑘) denotes the 100(1 − 𝛼)th percentile of the F-

distribution with (𝑘 − 1) and (𝑁 − 𝑘) degrees of freedom. 

 

Remark: Levene’s test statistics is based on absolute deviations from the 

group mean. Transformed observations 𝑍𝑖𝑗 = |𝑋𝑖𝑗 − 𝑋̅𝑖| are neither strictly 

independent within each group nor normally distributed, however Levene showed 

the correlation is of order 1/𝑛𝑖
2, so the resulting dependence has a negligible 

impact on the distribution of 𝑊0. In addition, since the one-way ANOVA 

procedures control the Type I error rates for moderate departures from normality, 

Levene’s method explicitly takes advantage of this fact. Consequently, 𝑊0 is 

approximated by an F-distribution with (𝑘 − 1) and (𝑁 − 𝑘) degrees of freedom 
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under null hypothesis. In line with Levene’s test, 𝑊10 and 𝑊50 tests use the same 

𝐹 reference distribution, see Elamir (2023), Gastwirth et. al (2009) and references 

therein. 

 

3 Three Moment Chi-Square Approximation for 𝑾𝟏𝟎 and 𝑾𝟓𝟎 Statistics 

Let 𝑊𝑇 denote the statistics of interest and define  

 

                                   𝑊𝐴
𝑇 = (𝑊𝑇 + 𝑎𝑇) 𝑏𝑇⁄                                                      (2) 

 

where 𝑇𝜖{10,50}. Let 𝜇1
′(𝑇)

 be the mean of 𝑊𝑇 and 𝜇2
(𝑇)

, 𝜇3
(𝑇)

 and 𝜇4
(𝑇)

 be 

variance, third and fourth central moments of  𝑊𝑇, respectively. Define the 

Pearson coefficients 

 

                  𝛽1
∗(𝑇)

= (𝜇3
(𝑇)

)
2

(𝜇2
(𝑇)

)
3

⁄  and 𝛽2
∗(𝑇)

= 𝜇4
(𝑇)

(𝜇2
(𝑇)

)
2

⁄ .                     (3) 

 

If the coefficients in (3) satisfy the condition 

 

                                  𝐸𝑇 = |𝛽2
∗(𝑇)

− (3 + 1.5 𝛽1
∗(𝑇)

)| ≤ 0.5,                            (4) 

 

then, the distribution of 𝑊𝐴
𝑇 is central chi-square with 𝜈𝑇 degrees of freedom. 𝑎𝑇, 

𝑏𝑇, and 𝜈𝑇 are obtained by equating the first three moments of both sides of (2) 

as follows 

 

                𝜈𝑇 = 8 𝛽1
∗(𝑇)⁄ , 𝑏𝑇 = √𝜇2

(𝑇)
2𝜈𝑇⁄   and 𝑎𝑇 = 𝑏𝑇𝜈𝑇 − 𝜇1

′(𝑇)
 .              (5) 

 

Note that the line 𝛽2
∗(𝑇)

= (3 + 1.5 𝛽1
∗(𝑇)

)  is known as the Type III line, see 

for details Pearson (1959) and Tiku (1965). Realize that we refer to 𝑊𝑇 as the 

statistics of interest and to 𝑊𝐴
𝑇 as its moment-matched chi-square counterpart. 

 

4 Simulation Study 

This section begins with a comparison of Type I error rates for 𝑊10, 𝑊50, 𝑊𝐴
10 

and 𝑊𝐴
50, followed by a power comparison between 𝑊𝐴

10 and 𝑊𝐴
50. The data 

𝑋𝑖𝑗 , 𝑖 = 1,2, … , 𝑘; 𝑗 = 1,2, … , 𝑛𝑖 are generated from six different distributions 

designed to cover various tail thicknesses and degrees of asymmetry. In this study  
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(a) Normal (𝜇 = 0, 𝜎 = 1), (b) Uniform (0,1),  

(c) STS (𝑟 = 2, 𝑑 = 0, 𝜇 = 0, 𝜎 = 1), (d) LTS (𝑝 = 3.5, 𝜇 = 0, 𝜎 = 1),  

(e) 𝜒ν=5
2 , (f) Beta (a = 10, b = 2) 

 

distributions are considered and the skewness and kurtosis values of them are 

given below, see Table 1. 

 

Table 1. Skewness and kurtosis values for the distributions considered in the 

simulation study. 

 (a) (b) (c) (d) (e) (f) 

Skewness 0 0 0 0 1.265 -0.921 

Kurtosis 3 1.8 2.437 6 5.4 3.789 

 

From Table 1 it is evident that the first four distributions are symmetric, while 

the last two are right-skewed and left-skewed, respectively. Detailed definitions 

and properties of the LTS and STS distributions proposed by Tiku and Kumra 

(1985) and Tiku and Vaughan (1999), respectively, are provided in the Appendix. 

 

The simulation setup is organized as follows 

 

Number of groups 𝑘 4 

Sample sizes (𝑛1, 𝑛2, 𝑛3, 𝑛4) 
(5,5,5,5), (10,10,10,10),  

(5,7,9,11),  (10,15,20,25) 

 

To estimate Type I error rates for 𝑊𝑇 with 𝑇𝜖{10,50}, we generate data under 

the null hypothesis of homoscedasticity and compute 𝑊𝑇 then repeat this 

procedure for 𝑅 = 10,000 Monte Carlo replications. The Type I error rates for 

𝑊𝑇 is the proportion of replications in which 𝑊𝑇 exceeds the 𝐹 critical value with 

(𝑘 − 1, 𝑁 − 𝑘) degrees of freedom.  

Because the closed-form moments of 𝑊𝑇  are analytically intractable, we 

estimate its first four moments from the simulated 𝑊𝑇 values via 10,000 Monte 

Carlo replications. Using these estimates, we obtain 𝐸𝑇 from Eq. (4) and 𝜈𝑇, 𝑏𝑇, 

and 𝑎𝑇 from Eq. (5),  yielding a single set of (𝐸𝑇 , 𝜈𝑇 , 𝑏𝑇 , 𝑎𝑇) for each 𝑇. We then 

compute corresponding 𝑊𝐴
𝑇 values using Eq. (2) based on (𝑎𝑇 , 𝑏𝑇) values for 

each of the 10,000 simulated 𝑊𝑇 values. The Type I error rates for 𝑊𝐴
𝑇  is the 

proportion of replications in which 𝑊𝐴
𝑇 exceeds the chi-square critical value 

𝜒1−𝛼
2 (𝜈𝑇). Equivalently, it is the proportion of replications in which 𝑊𝑇 exceeds 

the back-transformed cutoff 𝑐𝛼,𝑇 = 𝑏𝑇  𝜒1−𝛼
2 (𝜈𝑇) − 𝑎𝑇. Tables 2 and 3 report 

7



𝜇1
′(𝑇)

, 𝜇2
(𝑇)

, 𝛽1
∗(𝑇)

, 𝛽2
∗(𝑇)

, 𝐸𝑇, and 𝑐𝛼,𝑇 for the 𝑊𝑇 statistics when 𝑇 = 10 and 𝑇 =

50, respectively. 

 

Table 2. Simulated values of 

 𝜇1
′(10)

, 𝜇2
(10)

, 𝛽1
∗(10)

, 𝛽2
∗(10)

, 𝐸10 and 𝑐𝛼,10 for 𝑊10 statistics. 

  𝜇1
′(10)

 𝜇2
(10)

 𝛽1
∗(10)

 𝛽2
∗(10)

 𝐸10 𝑐𝛼,10 

Sample sizes                  Normal (0,1) 

(5,5,5,5) 1.442 1.812 5.704 11.940 0.384 4.149 

(5,7,9,11) 1.251 1.176 3.862 8.635 0.158 3.413 

(10,10,10,10) 1.125 0.949 3.633 8.479 0.029 3.063 

(10,15,20,25) 1.112 0.888 3.274 8.183 0.272 2.980 

Uniform (0,1) 

(5,5,5,5) 1.426 2.145 6.359 2.644 0.106 4.373 

(5,7,9,11) 1.237 1.285 4.340 9.494 0.016 3.504 

(10,10,10,10) 1.108 0.937 3.463 8.056 0.138 3.031 

(10,15,20,25) 1.128 0.964 3.226 7.636 0.203 3.072 

STS (𝑟 = 2, 𝑑 = 0, 𝜇 = 0, 𝜎 = 1) 

(5,5,5,5) 1.418 1.766 4.858 10.297 0.009 4.084 

(5,7,9,11) 1.249 1.240 3.871 8.543 0.263 3.469 

(10,10,10,10) 1.095 0.902 3.345 7.919 0.099 2.979 

(10,15,20,25) 1.150 0.969 3.409 8.133 0.020 3.105 

LTS (𝑝 = 3.5, 𝜇 = 0, 𝜎 = 1) 

(5,5,5,5) 1.605 2.060 5.309 11.380 0.415 4.489 

(5,7,9,11) 1.360 1.323 3.936 9.376 0.472 3.654 

(10,10,10,10) 1.131 0.887 3.097 7.700 0.055 2.994 

(10,15,20,25) 1.119 0.846 3.140 7.691 0.019 2.940 

𝜒5
2 

(5,5,5,5) 1.966 3.487 7.454 14.665 0.485 5.721 

(5,7,9,11) 1.680 2.394 5.686 11.988 0.459 4.792 

(10,10,10,10) 1.301 1.285 3.932 9.053 0.156 3.562 

(10,15,20,25) 1.327 1.314 3.970 9.307 0.353 3.614 

Beta (10, 2) 

(5,5,5,5) 1.803 3.023 7.448 14.606 0.434 5.300 

(5,7,9,11) 1.516 1.818 4.483 9.958 0.234 4.216 

(10,10,10,10) 1.279 1.247 3.971 9.296 0.339 3.507 

(10,15,20,25) 1.250 1.126 3.307 7.982 0.021 3.354 
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Table 3. Simulated values of 

𝜇1
′(50)

, 𝜇2
(50)

, 𝛽1
∗(50)

, 𝛽2
∗(50)

, 𝐸50 and 𝑐𝛼,50 for 𝑊50 statistics. 

 𝜇1
′(50)

 𝜇2
(10)

 𝛽1
∗(50)

 𝛽2
∗(50)

 𝐸50 𝑐𝛼,50 

Sample sizes                Normal (0,1) 

(5,5,5,5) 0.703 0.318 2.566 6.839 0.010 1.810 

(5,7,9,11) 0.808 0.433 2.769 7.371 0.217 2.103 

(10,10,10,10) 0.915 0.593 3.410 8.611 0.495 2.444 

(10,15,20,25) 0.958 0.642 3.022 7.614 0.081 2.541 

Uniform (0,1) 

(5,5,5,5) 0.531 0.205 3.082 7.518 0.106 1.427 

(5,7,9,11) 0.676 0.342 3.514 8.160 0.111 1.838 

(10,10,10,10) 0.803 0.546 4.732 10.167 0.070 2.285 

(10,15,20,25) 0.879 0.551 2.768 6.964 0.189 2.340 

STS (𝑟 = 2, 𝑑 = 0, 𝜇 = 0, 𝜎 = 1) 

(5,5,5,5) 0.623 0.272 3.101 7.454 0.198 1.656 

(5,7,9,11) 0.774 0.392 2.665 7.423 0.426 2.005 

(10,10,10,10) 0.882 0.619 3.935 8.847 0.055 2.452 

(10,15,20,25) 0.931 0.603 3.152 8.071 0.344 2.468 

LTS (𝑝 = 3.5, 𝜇 = 0, 𝜎 = 1) 

(5,5,5,5) 0.754 0.355 2.654 7.022 0.041 1.925 

(5,7,9,11) 0.883 0.503 3.218 8.290 0.463 2.287 

(10,10,10,10) 0.948 0.595 2.855 7.201 0.081 2.469 

(10,15,20,25) 0.999 0.644 2.516 6.809 0.035 2.572 

𝜒5
2 

(5,5,5,5) 0.763 0.387 4.051 9.463 0.388 2.005 

(5,7,9,11) 0.914 0.566 3.132 7.361 0.337 2.402 

(10,10,10,10) 0.988 0.731 4.109 9.261 0.097 2.695 

(10,15,20,25) 1.006 0.711 3.498 8.325 0.078 2.681 

Beta (10, 2) 

(5,5,5,5) 0.724 0.343 3.055 7.701 0.119 1.882 

(5,7,9,11) 0.872 0.518 3.270 8.167 0.262 2.298 

(10,10,10,10) 0.983 0.766 4.740 10.520 0.409 2.738 

(10,15,20,25) 0.989 0.688 3.206 7.956 0.148 2.631 

 

It can be seen from Tables 2 and 3 that the condition 𝐸𝑇 ≤ 0.5 in (4) is satisfied 

in all settings for 𝑇𝜖{10,50}. Therefore, the chi-square approximation is 

applicable. For the same settings, the simulated Type I error probabilities 𝑃1 (for 

𝑊10), 𝑃2 (for 𝑊𝐴
10 ), 𝑃3(𝑊50) and 𝑃4 (for 𝑊𝐴

50) are reported in Table 4. Under 

the null hypothesis 𝐻0: 𝜎1
2 = 𝜎2

2 = ⋯ = 𝜎𝑘
2, these are defined as  

 

𝑃1 = Pr {𝑊10 > 𝐹1−𝛼(𝑘 − 1, 𝑁 − 𝑘)|𝐻0}, 𝑃2 = Pr { 𝑊𝐴
10 > 𝜒1−𝛼

2 (𝜈10) ∣ 𝐻0}, 

𝑃3 = Pr {𝑊50 > 𝐹1−𝛼(𝑘 − 1, 𝑁 − 𝑘)|𝐻0}, 𝑃4 = Pr { 𝑊𝐴
50 > 𝜒1−𝛼

2 (𝜈50) ∣ 𝐻0}. 

It should be realized that 𝑃2 and 𝑃4 are equivalent to  
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𝑃2 = Pr { 𝑊10 > 𝑐𝛼,10 ∣ 𝐻0} and 𝑃4 = Pr { 𝑊50 > 𝑐𝛼,50 ∣ 𝐻0}, 

 

respectively. 

 

Table 4. Simulated Type I error probabilities 𝑃1 (for 𝑊10), 𝑃2 (for 𝑊𝐴
10 ), 

𝑃3(𝑊50) and 𝑃4 (for 𝑊𝐴
50). 

  𝑃1  𝑃2         𝑃3         𝑃4 

Sample sizes       Normal (0,1) 

(5,5,5,5) 0.089 0.048 0.003 0.049 

(5,7,9,11) 0.077 0.049 0.011 0.048 

(10,10,10,10) 0.059 0.050 0.027 0.049 

(10,15,20,25) 0.062 0.048 0.035 0.049 

Uniform (0,1) 

(5,5,5,5) 0.096 0.046 0.001 0.052 

(5,7,9,11) 0.079 0.048 0.008 0.048 

(10,10,10,10) 0.062 0.051 0.022 0.049 

(10,15,20,25) 0.069 0.051 0.029 0.049 

STS (𝑟 = 2, 𝑑 = 0, 𝜇 = 0, 𝜎 = 1) 

(5,5,5,5) 0.090 0.050 0.002 0.048 

(5,7,9,11) 0.076 0.049 0.009 0.048 

(10,10,10,10) 0.057 0.049 0.030 0.050 

(10,15,20,25) 0.072 0.048 0.033 0.047 

LTS (𝑝 = 3.5, 𝜇 = 0, 𝜎 = 1) 

(5,5,5,5) 0.104 0.047 0.005 0.047 

(5,7,9,11) 0.086 0.047 0.018 0.048 

(10,10,10,10) 0.058 0.050 0.028 0.051 

(10,15,20,25) 0.060 0.048 0.039 0.048 

𝜒5
2 

(5,5,5,5) 0.153 0.045 0.008 0.047 

(5,7,9,11) 0.139 0.047 0.025 0.051 

(10,10,10,10) 0.088 0.049 0.037 0.045 

(10,15,20,25) 0.102 0.048 0.045 0.049 

Beta (10, 2) 

(5,5,5,5) 0.133 0.045 0.005 0.049 

(5,7,9,11) 0.122 0.047 0.018 0.049 

(10,10,10,10) 0.086 0.045 0.042 0.047 

(10,15,20,25) 0.089 0.051 0.042 0.049 

 

According to Table 4, the 𝑊10 test is liberal for both balanced and unbalanced 

sample sizes.  On the other hand, the 𝑊50 test is conservative for all sample sizes 

except for the underlying distribution is 𝜒5
2 when the sample size is equal to 

(10,15,20,25) and Beta (10, 2) when the sample sizes are equal to (10,10,10,10) 

and (10,15,20,25). Realize that the distributions 𝜒5
2 and Beta (10, 2) are both 
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skewed. For 𝑊𝐴
10 and 𝑊𝐴

50, the simulated Type I error rates are very close to the 

predetermined nominal level 0.050 regardless of the considered distributions and 

sample-size configurations.  

Based on simulated Type I error rates, our attention is restricted to the  

𝑊𝐴
10and 𝑊𝐴

50 statistics to enable a meaningful and fair power comparison. Power 

values for 𝑊𝐴
10and 𝑊𝐴

50 are presented in Figure 1 as a curves for different 𝜆 

values, under the configurations of variance ratios 𝜎1
2: 𝜎2

2: 𝜎3
2: 𝜎4

2 = 1: 𝜆: 𝜆2: 𝜆3 

for both equal and unequal sample-size settings. It should be noted that when 𝜆 =

1, the configuration reduces to homoscedastic case, so the simulated power 

values are equal to the simulated Type I error rates.  

 

 
(a) Normal  
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(b) Uniform  

 
(c) STS  
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(d) LTS  

 
(e) Chi-square 
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(f) Beta  

 

Figure 1. Simulated power curves for 𝑊𝐴
10and 𝑊𝐴

50 statistics under the 

configurations of variance ratios 𝜎1
2: 𝜎2

2: 𝜎3
2: 𝜎4

2 = 1: 𝜆: 𝜆2: 𝜆3 when the 

underlying distributions are Normal, Uniform, STS, LTS, Chi-Square and Beta. 

 

The results in Figure 1 indicate that 𝑊𝐴
50 test exhibits substantially greater 

power than 𝑊𝐴
10 for small sample sizes, while the power advantage of 𝑊𝐴

50 over 

𝑊𝐴
10 is particularly pronounced when the underlying distribution is skewed. For 

moderate sample sizes, two statistics show similar power performance regardless 

of whether sample sizes are equal or not. As expected, increasing 𝜆 (stronger 

heteroscedasticity) values lead to higher power values for both tests. 

 

5 Concluding Remarks 

In this study, we conducted a comparative assessment of Brown-Forsythe tests 

based on the 10% trimmed mean and the median, denoted 𝑊10 and 𝑊50, 

respectively, for testing homogeneity of variances. These tests are widely used 

because they are robust to non-normality and straightforward to implement. 

Although they are often treated as approximately 𝐹 distributed under the null 

hypothesis, the 𝐹 reference distribution can yield size distortions from small to 

moderate samples under certain distributional settings. To better approximate the 

14



null distribution of 𝑊10 and 𝑊50, a three-moment chi-square approximation is 

used and moment-matched counterparts, 𝑊𝐴
10and 𝑊𝐴

50 are defined. Accuracy of 

this approximation is investigated by Monte Carlo simulation for small and 

moderate sample sizes under symmetric and asymmetric distributions. Monte 

Carlo results show that 𝑊10 is liberal and 𝑊50 is conservative in general.  On the 

other hand, the simulated Type I error rates of 𝑊𝐴
10and 𝑊𝐴

50 are very close to the 

nominal level 0.050 across all distributional settings and designs. In addition, 

𝑊𝐴
50 exhibits higher power than 𝑊𝐴

10 for small samples, with the advantage most 

pronounced under skewness. According to the simulation results, 𝑊𝐴
50 is 

preferred for small-sample sizes while the use of either the 𝑊𝐴
10 or the 𝑊𝐴

50 

statistic is recommended for moderate sample sizes. To the best of our 

knowledge, this is the first study that employs and evaluates a three-moment, chi-

square approximation specifically for the Brown-Forsythe trimmed-mean and 

median tests. The methodology presented here can be extended to alternative 

distributional approximations in the context of variance-homogeneity in a future 

study. 

 

Appendix  

LTS Distribution: The probability density function (pdf) of LTS distribution is 

 

𝑓(𝑥) =
1

√𝑡𝛽(1 2⁄ ,𝑝−1 2⁄ )𝜎
(1 +

(𝑥−𝜇)2

𝑡𝜎2
)

−𝑝

, −∞ < 𝑥 < ∞, 𝑝 ≥ 2, 𝑡 = 2𝑝 − 3. 

 

Here, 𝜇, 𝜎 and 𝑝 denote the location, scale and shape parameters, respectively. 

If random variable 𝑋 is distributed as LTS, it is denoted by 𝑋 ∼ 𝐿𝑇𝑆(𝑝, 𝜇, 𝜎). The 

mean and variance of 𝑋 are 𝐸(𝑋) = 𝜇 and 𝑉(𝑋) = 𝜎2, respectively. The 

kurtosis (𝛽2) values of LTS distribution are given below for certain values of 𝑝  

 

𝑝 = 2.5 3.5 5 10 ∞ 

𝛽2 = ∞ 6 4.2 3.4 3 

 

STS Distribution: The pdf of STS distribution is  

 

𝑓(𝑥) =
𝐶

√2𝜋𝜎
(1 +

𝜆

2𝑟
(

𝑥−𝜇

𝜎
)

2
)

𝑟

𝑒𝑥𝑝 (−
1

2
(

𝑥−𝜇

𝜎
)

2
) , −∞ < 𝑥 < ∞, 

 

where 𝑟 is a constant, 𝜆 = 𝑟 (𝑟 − 𝑑)⁄ , 𝑑 < 𝑟 and  
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𝐶 = 1 ∑ (𝑟
𝑗
)𝑟

𝑗=0⁄ (
𝜆

2𝑟
)

𝑗
((2𝑗)! 2𝑗(𝑗)!⁄ ).  

 

Here, 𝜇 and 𝜎 denote the location and scale parameters, respectively. If 

random variable 𝑋 is distributed as STS, it is denoted by 𝑋 ∼ 𝑆𝑇𝑆(𝑟, 𝑑, 𝜇, 𝜎).  

The mean and variance of 𝑋 are  

𝐸(𝑋) = 𝜇 and 𝑉(𝑋) = 𝐶 ∑ (𝑟
𝑗
) (

𝜆

2𝑟
)

𝑗
((2(𝑗 + 1))! 2𝑗+1(𝑗 + 1)!⁄ )𝑟

𝑗=0 𝜎2, 

respectively. The kurtosis (𝛽2) values of STS distribution for certain values of 𝑑 

are given below when 𝑟 = 2 and 4  

 

𝑑 = -1 -0.5 0.0 0.5 1.0 1.5 2.5 3.5 

    𝑟 =2     

 2.648 2.559 2.437 2.265 2.026 1.711 - - 

    𝑟 =4     

 2.541 2.464 2.370 2.255 2.118 1.957 1.591 1.297 

 

Here, the dashed entries are used for 𝑑 > 𝑟 since the kurtosis values are 

defined when 𝑑 < 𝑟 and it is clearly seen that the kurtosis values are less than 3.  
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Chapter 2 

Photodetect�on and Solar Energy Harvest� ng
Us�ng Schottky Junct�ons 

İlhan CANDAN1, Seza� ASUBAY2 
Abstract 
Schottky junct�ons, formed at the �nterface between a metal and a sem�conductor, 

play a cr�t�cal role �n modern optoelectron�cs due to the�r un�que ab�l�ty to fac�l�tate 
ultrafast charge separat�on w�thout requ�r�ng p–n junct�ons. Th�s chapter explores the 
phys�cal pr�nc�ples, mater�al systems, and dev�ce arch�tectures underp�nn�ng the 
appl�cat�on of Schottky junct�ons �n photodetect�on and solar energy harvest�ng. By 
explo�t�ng the bu�lt-�n electr�c f�eld at the metal–sem�conductor �nterface, Schottky 
dev�ces enable eff�c�ent carr�er extract�on, mak�ng them h�ghly su�table for broadband 
photodetectors, �nfrared sensors, and low-cost photovolta�c systems. The chapter 
beg�ns by d�scuss�ng the fundamentals of Schottky barr�er format�on, Ferm�-level 
p�nn�ng, and charge transport mechan�sms, �nclud�ng therm�on�c em�ss�on and 
tunnel�ng. It then rev�ews a w�de range of mater�als used �n Schottky-based dev�ces, 
�nclud�ng trad�t�onal sem�conductors l�ke s�l�con, compound sem�conductors such as 
GaAs and InGaN, and emerg�ng mater�als l�ke two-d�mens�onal sem�conductors and 
metal ox�des. A key focus �s on Schottky solar cells, wh�ch offer s�mpl�f�ed 
arch�tectures and potent�al cost advantages over convent�onal p–n junct�on solar cells. 
We also explore hot-carr�er �nject�on �n plasmon�c metal–sem�conductor �nterfaces, 
an approach that leverages l�ght–matter �nteract�on at the nanoscale to surpass 
trad�t�onal eff�c�ency l�m�ts. F�nally, the chapter outl�nes current challenges such as 
barr�er he�ght opt�m�zat�on, �nterface stab�l�ty, and contact eng�neer�ng, along w�th 
recent strateg�es to address them. Through a comb�nat�on of theoret�cal �ns�ghts and 
pract�cal examples, th�s chapter prov�des a comprehens�ve understand�ng of how 

1 As�st. Prof. Dr. D�cle Un�vers�ty, Sc�ence Faculty, Dept. of Phys�cs, 21280 D�yarbakır Turkey,  
Orc�d no: 0000-0001-9489-5324 

, 2 Prof. Dr. D�cle Un�vers�ty, Sc�ence Faculty, Dept. of Phys�cs, 21280 D�yarbakır Turkey
Orc�d no: 0000-0003-2171-8479
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photodetection technologies. -generation light-harvesting and Schottky junctions 
are being harnessed for next



 1. Introduct�on
The cont�nuous demand for eff�c�ent energy convers�on and advanced

optoelectron�c dev�ces has dr�ven s�gn�f�cant research �nto novel mater�als and 
arch�tectures for photodetect�on and solar energy harvest�ng [1, 2]. Among 
var�ous approaches, Schottky junct�ons—formed at the metal–sem�conductor 
�nterface—have emerged as a prom�s�ng platform due to the�r un�que electron�c 
and opt�cal propert�es [3]. Unl�ke convent�onal p–n junct�ons, Schottky contacts 
rely on the rect�fy�ng barr�er created by the work funct�on d�fference between a 
metal and a sem�conductor, enabl�ng ultrafast carr�er transport, low fabr�cat�on 
complex�ty, and compat�b�l�ty w�th d�verse mater�al systems [4, 5]. 

In the context of photodetect�on, Schottky junct�ons offer several advantages 
[6, 7]. The bu�lt-�n electr�c f�eld at the �nterface fac�l�tates rap�d separat�on of 
photogenerated carr�ers, y�eld�ng fast response t�mes and broad spectral 
sens�t�v�ty. By carefully eng�neer�ng the cho�ce of metal, sem�conductor, and
�nterface qual�ty, Schottky-based photodetectors can ach�eve h�gh respons�v�ty 
and detect�v�ty across ultrav�olet, v�s�ble, and �nfrared reg�mes. Add�t�onally, 
the�r relat�vely s�mple structure allows �ntegrat�on �nto flex�ble and transparent  
platforms, wh�ch �s attract�ve for next-generat�on wearable and b�omed�cal 
sensors. 
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Figure 1. (a) Schematic illustration of the van der Waals (vdW) integration 

process for metal–semiconductor junctions: (i) deposition of a metal film onto a 

sacrificial substrate; (ii) delamination of the metal layer; (iii) alignment with the 

target semiconductor; and (iv) lamination of the contact followed by probe 

window opening. (b–d) Cross-sectional schematics and transmission electron 

microscopy (TEM) images of transferred Au electrodes on MoS₂, showing 

atomically sharp and contamination-free metal–semiconductor interfaces. (e) 

Optical micrographs of a MoS₂ device with transferred electrodes (top) and after 

mechanical release of the electrodes (bottom). The MoS₂ layer remains intact 

following integration and separation of the Au thin film, confirming that the 

transferred interface is dominated by vdW interactions without direct chemical 

bonding. (f–h) In contrast, cross-sectional schematics and TEM images of 

conventionally electron-beam-deposited Au electrodes on MoS₂ reveal 

significant interfacial damage. High-energy Au atoms and clusters bombard the 

MoS₂ surface, leading to defect generation, interdiffusion, chemical bonding, and 

the formation of a disordered glassy layer. (i) Optical images further demonstrate 
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this difference: when deposited electrodes are mechanically removed, the 

underlying MoS₂ surface is severely damaged, indicating strong chemical 

bonding and direct metal–semiconductor interactions in deposited junctions [3]. 

For solar energy harvesting, Schottky junction solar cells provide an 

alternative to traditional silicon-based devices [8, 9]. Although they typically 

exhibit lower efficiency compared to optimized p–n junction cells, they offer 

unique benefits, such as low-cost fabrication, tunable spectral absorption, and the 

potential to exploit hot-carrier effects. Recent progress in nanostructuring, 

plasmonic enhancement, and two-dimensional (2D) semiconductors has further 

expanded the scope of Schottky junction photovoltaics. By combining nanoscale 

engineering with advanced materials, researchers are addressing fundamental 

challenges such as barrier height control, recombination losses, and light 

absorption enhancement. 

 

 

Figure 2. MOS structure’s schematic diagram [10]. 

 

This chapter provides an overview of the fundamental principles of Schottky 

junctions, their role in photodetection and solar energy harvesting, and recent 

advancements that highlight their potential as building blocks for future 

optoelectronic technologies. 
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2. Fundamentals of Schottky Junctions 

2.1 Formation and Energy Band Structure 

A Schottky junction is formed when a metal with an appropriate work 

function is brought into contact with a semiconductor. At thermal equilibrium, 

the difference in Fermi levels leads to the formation of a depletion region in the 

semiconductor and a built-in potential at the interface [11, 12]. 

For an n-type semiconductor, if the metal work function 𝜙𝑚 is greater than 

the semiconductor electron affinity χ, a barrier is formed for electron flow from 

the semiconductor to the metal, known as the Schottky barrier height (SBH). 

The ideal SBH is given by: 

 

𝜙𝐵𝑛 = 𝜙𝑚 − 𝜒        (1) 

 

In practice, however, Fermi level pinning and interface states can modify the 

effective barrier height. 

 

 

Figure 3. Au/SnO2/n-LTPS MOS Schottky diode’s schematic 

cross-section [10, 13]. 

 

2.2 Current Transport Mechanisms 

Current through a Schottky junction under forward bias occurs primarily via 

thermionic emission, where electrons overcome the potential barrier [14, 15]. 

The current density J is described by the Richardson equation: 
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𝐽 = 𝐴 ∗ 𝑇2 exp (− 
 𝑞𝜙𝐵𝑛

𝑘𝑇
) [exp (

𝑞𝑉

𝑛𝑘𝑇
) − 1] (2) 

Where: 

• A∗ is the Richardson constant,

• T is temperature,

• 𝜙𝐵𝑛 is the barrier height,

• n is the ideality factor,

• V is applied voltage.

3. Schottky Junctions in Photodetectors

3.1 Working Principle 

Photodetectors based on Schottky junctions operate by converting incident 

photons into electrical signals. When light with energy hν > Eg  strikes the 

semiconductor side of the junction, electron-hole pairs are generated [6]. The 

built-in electric field at the Schottky barrier separates the charge carriers, 

allowing for a photocurrent to be measured. 

Unlike photoconductive detectors, Schottky photodiodes are typically faster 

due to the short transit time across the depletion region and low capacitance. 

Figure 4. (a) Current–voltage (I–V) characteristics and (b) variation of the 

surface state density (NSS) as a function of EC−ESS for Au/n-GaN and 

Au/ZrO₂/n-GaN Schottky junctions. The inset shows the schematic structure of 

the Au/ZrO₂/n-GaN diode [16]. 
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3.2 Key Performance Parameters 

• Responsivity (R): The output current per unit incident optical power, 

typically in A/W. 

• Quantum Efficiency (QE): The ratio of the number of charge carriers 

collected to the number of incident photons. 

• Response Time: Time taken by the device to respond to an optical signal. 

• *Detectivity (D)**: A measure of the signal-to-noise ratio, often used for 

low-light applications. 

 

The performance of Schottky photodetectors is commonly characterized using 

several key parameters that determine their suitability for various photodetection 

applications. Responsivity (R) represents the output current generated per unit of 

incident optical power and is typically expressed in amperes per watt (A/W). It 

reflects the device’s ability to convert incoming light into an electrical signal. 

Quantum efficiency (QE), on the other hand, defines the ratio of the number of 

charge carriers collected to the number of incident photons, providing a measure 

of how efficiently the device utilizes incoming photons for charge generation. 

Another important characteristic is the response time, which indicates how 

quickly the photodetector reacts to variations in the optical signal—an essential 

factor for high-speed communication and imaging applications. Lastly, 

detectivity (D) serves as a measure of the signal-to-noise ratio, describing the 

detector’s capability to sense weak optical signals, particularly in low-light 

environments. High detectivity is especially desirable for applications requiring 

sensitive light detection, such as night vision, astronomy, and remote sensing. 

 

3.3 Material Systems for Schottky Photodetectors 

Several materials have been employed to enhance the performance of 

Schottky photodetectors: 

• Silicon (Si): Widely used due to its mature fabrication technology, 

suitable for visible to near-infrared detection. 

• Gallium Arsenide (GaAs): Offers higher electron mobility and absorption 

efficiency. 

• Two-Dimensional Materials (e.g., MoS₂, graphene): Enable ultrafast and 

broadband photodetection with sub-nanometer thicknesses. 
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• Plasmonic Metals (Au, Ag): Used to enhance light absorption via surface 

plasmon resonance. 

 

To improve the efficiency and functionality of Schottky photodetectors, a 

variety of materials have been explored and integrated into device architectures. 

Silicon (Si) remains the most widely used material owing to its well-established 

fabrication technology and compatibility with existing semiconductor 

processing, making it particularly suitable for photodetection across the visible to 

near-infrared spectral range. Gallium arsenide (GaAs) is another prominent 

material that offers superior electron mobility and higher optical absorption 

efficiency compared to silicon, enabling faster response times and enhanced 

sensitivity. In recent years, two-dimensional (2D) materials such as molybdenum 

disulfide (MoS₂) and graphene have attracted significant attention due to their 

exceptional electronic and optical properties, ultrafast carrier dynamics, and 

atomic-scale thickness, which facilitate broadband and ultrafast photodetection. 

Additionally, plasmonic metals such as gold (Au) and silver (Ag) have been 

incorporated to enhance light absorption through surface plasmon resonance 

effects, thereby boosting the overall photoresponse of Schottky-based detectors. 

The strategic combination of these materials continues to drive innovation in 

high-performance, miniaturized, and energy-efficient photodetection 

technologies. 

 

3.4 Applications 

Schottky photodetectors have found widespread applications across a range of 

advanced optical and electronic systems due to their fast response times, high 

sensitivity, and compatibility with various semiconductor materials. They are 

extensively employed in optical communication systems, where rapid detection 

of optical signals is essential for high-speed data transmission. In addition, 

Schottky photodetectors are well-suited for ultraviolet (UV) and X-ray detection 

owing to their ability to operate efficiently at short wavelengths and their low 

dark current characteristics. These devices are also utilized in imaging sensors, 

where their excellent temporal resolution enhances image quality and enables 

high-speed image capture. Furthermore, Schottky photodetectors play an 

important role in light detection and ranging (LIDAR) as well as time-of-flight 

(ToF) systems, contributing to precise distance measurement and three-
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dimensional imaging in applications such as autonomous vehicles and remote 

sensing. 

 

4. Schottky Junctions in Solar Energy Harvesting 

4.1 Operating Principle of Schottky Solar Cells 

Schottky solar cells leverage the same metal-semiconductor junction to 

separate photo-generated carriers [17]. However, compared to p–n junction solar 

cells, Schottky devices often suffer from lower open-circuit voltage due to high 

recombination rates and limited built-in potential. 

Nevertheless, their simplified structure, low-temperature fabrication, and 

tunability of barrier height via material selection make them attractive for niche 

photovoltaic applications [18]. 

 

4.2 Device Architectures 

Typical Schottky solar cells consist of: 

• Front contact metal (forming the Schottky barrier) 

• Semiconductor absorber (e.g., Si, GaAs, perovskites) 

• Back contact (ohmic or Schottky, depending on design) 

 

Advanced architectures may include: 

• Core–shell nanostructures 

• Transparent conducting oxides (TCOs) as front electrodes 

• Plasmonic nanoparticles for light trapping and absorption enhancement 

 

4.3 Material Choices 

Metals: Au, Ag, Al, and Pt are commonly used, chosen based on their work 

function and optical properties. 

Semiconductors: 

o Si and GaAs: Conventional, well-studied choices. 

o ZnO and TiO₂: Used in ultraviolet and dye-sensitized solar cells. 

o Organic semiconductors: Enable flexible, lightweight solar devices. 

o 2D materials: Offer unique opportunities for tunable bandgaps and ultra-

thin devices. 
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4.4 Performance Challenges and Strategies 

Challenges in Schottky solar cells include: 

• Low open-circuit voltage (Voc) due to small built-in potential. 

• Interface recombination at the metal-semiconductor contact. 

• Fermi level pinning limiting tunability of barrier height. 

To overcome these, several strategies are used: 

• Insertion of interfacial layers (e.g., oxide barriers) to passivate defects. 

• Use of high work function metals to increase barrier height. 

• Nanostructuring to increase light absorption and carrier collection. 

 

5. Emerging Trends and Research Directions 

5.1 Plasmonic Enhancement 

Integrating plasmonic nanoparticles (e.g., Au nanospheres) with Schottky 

devices can significantly enhance light absorption due to local field enhancement 

and hot-electron injection mechanisms. These effects are especially beneficial in 

sub-bandgap photon utilization and broadband absorption [19]. 

 

5.2 Schottky Junctions with 2D Materials 

Atomically thin materials like graphene and transition metal dichalcogenides 

(TMDs) have emerged as promising candidates for Schottky-based devices [20]. 

These materials offer: 

• Tunable electronic and optical properties 

• High carrier mobility 

• Minimal bulk recombination 

 

Graphene/semiconductor Schottky solar cells have demonstrated enhanced 

transparency, flexibility, and mechanical robustness. 

 

5.3 Flexible and Transparent Devices 

Schottky junctions are particularly suited for flexible and transparent 

electronics [21, 22]. Using metal nanowires, conductive polymers, or ultrathin 

films, researchers are developing conformable photodetectors and solar cells for 

wearable and portable systems. 
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5.4 Integration with CMOS and Photonic Platforms 

The compatibility of Schottky diodes with standard CMOS processes enables 

their integration into existing electronic and photonic circuits [23]. Applications 

include on-chip photodetectors, optical interconnects, and monolithic integration 

of photovoltaic cells. 

 

Future Perspectives 

The future of Schottky junction–based devices lies in the convergence of 

advanced materials and innovative device architectures. One promising direction 

is the integration of two-dimensional (2D) materials such as graphene, MoS₂, and 

other transition metal dichalcogenides with metals to form tunable Schottky 

contacts. Their atomically thin nature enables precise control over barrier height, 

reduced recombination losses, and flexible, transparent optoelectronic platforms. 

Similarly, perovskite–metal hybrid junctions have gained attention for solar 

energy harvesting, where the unique optoelectronic properties of perovskites 

combined with Schottky interfaces can potentially yield high-efficiency, low-cost 

devices. 

In photodetection, future research is expected to focus on multifunctional 

Schottky detectors that combine high-speed response with broadband sensitivity, 

while exploiting plasmonic and hot-carrier effects to extend detection into the 

mid-infrared region. For solar cells, innovations in nanophotonic light 

management and quantum-engineered structures may allow Schottky junctions 

to surpass some of their traditional efficiency limits. 

Ultimately, the continued synergy between materials discovery, nanoscale 

fabrication, and theoretical modeling will determine how far Schottky junction 

technologies can advance, with the potential to redefine next-generation 

optoelectronics and sustainable energy solutions. 

 

6. Conclusion 

Schottky junctions, based on the rectifying interface between metals and 

semiconductors, have demonstrated considerable promise in advancing both 

photodetection and solar energy harvesting technologies. Their fundamental 

advantage lies in the intrinsic electric field at the metal–semiconductor interface, 

which enables efficient carrier separation, rapid response times, and broad 

spectral tunability without requiring complex doping processes. This makes them 
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attractive for applications ranging from ultraviolet and infrared photodetectors to 

thin-film and nanostructured photovoltaic devices. 

In photodetection, Schottky junction devices benefit from their inherently fast 

carrier dynamics, enabling high-speed operation crucial for optical 

communication, imaging, and sensing. By leveraging plasmonic effects, interface 

engineering, and novel material platforms such as two-dimensional 

semiconductors, their performance has been extended toward enhanced 

sensitivity, lower noise levels, and adaptability to flexible and transparent 

substrates. 

For solar energy harvesting, Schottky junctions offer an alternative to 

conventional p–n junction solar cells, particularly in applications where cost, 

weight, and ease of fabrication are critical. While their conversion efficiencies 

are currently lower than those of mature silicon technologies, significant progress 

has been made in overcoming limitations through barrier height optimization, 

nanostructuring for enhanced light trapping, and the integration of advanced 

materials. These strategies have opened pathways toward exploiting hot-carrier 

phenomena and plasmonic enhancement, potentially pushing Schottky-based 

solar devices into new realms of efficiency and functionality. 

Looking forward, the synergy between nanotechnology, materials innovation, 

and device engineering will be essential in realizing the full potential of Schottky 

junctions. Continued research efforts aimed at addressing stability, scalability, 

and interfacial control will determine their broader adoption in commercial 

applications. Ultimately, Schottky junctions stand as a versatile platform, 

bridging fundamental physics with practical optoelectronic solutions, and 

offering exciting prospects for next-generation photodetection and renewable 

energy technologies. 
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Chapter 3 

Performance Evaluation of Numerical Root Finding 

Methods Using Fibonacci and Golden Ratio Algorithms

Bayram KÖSE1, Bahar DEMİRTÜRK2, Şükran KONCA3 

Abstract 

Root finding techniques are essential in numerical methods for solving 

complex engineering equations when analytical methods are insufficient. These 

techniques efficiently locate the zeros (roots) of a function, minimizing 

computational effort. They are also crucial in optimization problems to find the 

minimum value of a function. For example, root finding problems may be 

encountered, such as the intersection points of gears with different numbers of 

teeth, the moments when the current in an electric circuit is zero, the moments 

when the electric field along the line connecting two interacting charges is zero, 

or the calculation of function roots when calculating the eigenvalues of a system. 

The root finding method is also used in optimization problems. In optimization 

algorithm, root search is a method used to find the minimum value of a function. 

In this method, we try to find the point where the function is closest to zero by 

calculating the values of the function at points within a range. This point gives 

the minimum of the function. If the function has more than one minima, the root 

search method can find only one of them. This is one of the disadvantages of the 

root search method. Also, it may require a lot of processing to calculate the values 

of the function. Therefore, more efficient and faster optimization algorithms 

continue to be developed. Algebraic properties are vital in designing efficient 

algorithms, and the choice of algorithm depends on the function's characteristics. 

When we look at recent studies; Gemechu and Thota (Gemechu and Thota, 

2020) developed new iteration algorithms for finding the root of a given nonlinear 

equation using nonlinear Taylor polynomial interpolation and an error correction 

term modified by the concept of fixed point. Thota (Thota, 2019) developed a 

new root-finding algorithm using exponential series. Sabharwa (Sabharwa, 2019) 
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designed and implemented a new algorithm that is a dynamic mixture of halving 

and regula falsi algorithms. Semenov (Semenov, 2015) proposed a method for 

computing all roots of systems of nonlinear algebraic equations in a 

multidimensional interval based on the Krawczyk operator. Vatansever and 

Hatun (Vatansever and Hatun, 2015) developed a graphical interface program 

based on Newton methods.  

This study analyzes the performance of the Fibonacci search algorithm and 

the golden ratio search algorithm in finding the roots of selected polynomial, 

trigonometric, and logarithmic test functions. The results from these methods are 

compared by calculating the absolute error, average absolute error, and average 

approximation errors to determine the most efficient approach with the least error. 

Using Matlab, we obtained these error metrics by comparing the number of 

iterations required to find the roots for each algorithm, the proximity of the roots 

found by each algorithm, and the results against the actual root values. The 

findings were evaluated to provide insights and recommendations on which 

algorithm is preferable in different scenarios based on numerical stability. 

Finally, we assessed the results and offered suggestions on the optimal algorithm 

choice for various situations considering numerical stability. 

 

Keywords. Root-finding algorithms, Optimization algorithms, Golden ratio 

search algorithm, Fibonacci search algorithm. 
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1. INTRODUCTION

Fibonacci numbers, which also form the basis of mathematical concepts such 

as the Golden Ratio and Pascal's triangle, are a special sequence of numbers 

defined by Italian mathematician Leonardo Fibonacci in the 13th century. In the 

book Liber Abaci, Fibonacci mentioned the question of a pair of rabbits. "If a pair 

of rabbits gives birth to a new pair of rabbits every month and it takes a month 

for the newborn pair to mature, find out how many rabbits there will be at the end 

of 100 months." The answer to the question was the Fibonacci sequence with the 

numbers 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, .... Clearly, Fibonacci sequence 

is a sequence of numbers where each number can be written as the sum of the 

two numbers that precede it. When each number after the first number in the 

Fibonacci number sequence is divided by the number after it, the result constantly 

approaches the number 0.618. The golden ratio is a geometric and numerical ratio 

that can be discovered between the parts of a whole, which has been applied in 

art and architecture, and is thought to give the dimensions that can be called the 

smoothest in terms of aesthetics and harmony. It is possible to encounter the 

golden ratio in the leaf arrangement of many plants in nature, in the ratio of each 

part to each other, from the anatomy of the human body to the arrangement of 

internal organs. When a line segment needs to be divided into two parts in 

accordance with the Golden Ratio, this line should be divided at such a point that 

the ratio of the smaller part to the larger part should be equal to the ratio of the 

larger part to the whole line (Markowsky, 1992). 

Consider the interval [𝑥𝑎 , 𝑥𝑢] where 𝑥𝑎 is the lower bound and 𝑥𝑢 is the upper 

bound and the function has only one maximum. That is, the function is unimodal 

in this interval. In the golden ratio search algorithm, the search is performed by 

dividing the range by the golden ratio. 

 

Let the length of the interval [𝑥𝑎 , 𝑥𝑢] be  𝑙0. Let us divide this interval into 

subintervals 𝑙1 and 𝑙2 such that, 𝑙0 = 𝑙1 + 𝑙2 and 
𝑙1

𝑙0
=

𝑙2

𝑙1
 

 
𝑙1

𝑙0
=

𝑙2

𝑙1
⇒

𝑙1

𝑙1+𝑙2
=

𝑙2

𝑙1
. 

 

If the inverse of the equation is taken, then  
𝑙2

𝑙1
= 𝑅 

 

1 + 𝑅 =
1

𝑅
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and the characteristic equation 𝑅2 + 𝑅 − 1 = 0 is obtained. Looking at the roots 

of this equation, the positive root  

 

𝑅 =
√5 − 1

2
= 0,61803 … 

gives the golden ratio. 

 

The series given by the recurrence relation 𝐹𝑛+1 = 𝐹𝑛 + 𝐹𝑛−1 for 𝐹0 = 0 and 

𝐹1 = 1 for ∀𝑛 ≥ 1 is called the Fibonacci series. Here 𝐹𝑛 is the n-th Fibonacci 

number. The ratio of two consecutive terms in the Fibonacci series; 

 

 0/1 = 0, 1/1 = 1, 1/2 = 0.5, 2/3 = 0.667, 3/5 = 0.6, 5/8 = 0.625, 8/13 = 0.615 ... 

 

and if continued in this way, eventually the ratio of consecutive Fibonacci 

numbers  

lim
𝑛→∞

𝐹𝑛−1

𝐹𝑛
≅ 0,61803 … 

 

reaches the golden ratio (Koshy, 2001). 

 

2. MATERIALS AND METHODS 

2.1.  Existence of Roots for Algebraic Equations 

Finding the roots of algebraic equations plays a crucial role in solving 

optimization problems and engineering applications. Consequently, the ability to 

efficiently find equation roots is a fundamental skill for mathematical modeling 

and solving problems in various engineering fields.  

Now, let's present some basic theorems related to the existence and uniqueness 

of these roots, commonly found in analysis textbooks (Xue-Mei Li, David Mond, 

2013). 

 

Theorem 2.1.1. (Bolzano Theorem) 

If the function f is continuous on the interval [a,b] and f(a).f(b)<0, then there 

exists a c in the open interval (a,b) such that f(c)=0.  
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Figure 1. Bolzano Theorem 

 

Theorem 2.1.2. If the function f is continuous, then the function | f | is 

continuous. 

Now let us give and prove the following theorem as an obvious consequence 

of the above basic analysis theorems. This theorem will be used in the paper as 

the Root Search method in the Optimization Algorithm (Xue-Mei Li, David 

Mond, 2013). 

 

Theorem 2.1.3. (Root Search in Optimization Algorithm) 

For Ι=[a,b] and Ι⊂R, if the function  f:Ι→R is continuous, then it has at least 

one minima on this interval and if  |𝑓(𝑥𝑖)| = 0 then there exists at least one 𝑥𝑖 ∈

𝛪,  (𝑖 ∈ 𝑁) satisfying this equality. 

 

Proof. From the Extreme Value Theorem, if the function is continuous, it has 

at least one minima. If |𝑓(𝑥𝑖)| = 0, then 𝑓(𝑥𝑖) = 0. Since this continuous 

function f  has at least one minimum in the given closed-bounded interval and 

|𝑓(𝑥𝑖)| = 0 this minimum takes its zero value at the roots 𝑥 = 𝑥𝑖 , 𝑖 ∈ 𝑁, in the 

given interval. Thus there is at least one 𝑥𝑖 ∈ 𝛪,  𝑖 ∈ 𝑁, satisfying the equality 

𝑓(𝑥𝑖) = 0 (Köse et al., 2024). 

 

 2.2. Root Finding Methods 

A root-finding algorithm is a numerical method or algorithm for finding a 

value of x in a given function that makes the value of the function zero. There is 

such a point x such that f(x)=0 and this x value is called the root of the function.  

Consider a function f(x) in one variable. Suppose we want to solve the 

following linear optimization model.  
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Max f(x) 

a≤x≤b 

 

For some x, f '(x) may not exist or it may be very difficult to solve the equation 

f '(x)=0. How can the optimum value of the function 𝑓(𝑥) be found if there is 

only one vertex in a given interval? 

If 𝑓(𝑥) is unimodal in the interval [𝑎, 𝑏], there is only one local maximum 𝑥̅  

in the interval [𝑎, 𝑏]  and it is solved by the linear optimisation problem model 

given above. 𝑥̅  is the optimum solution of this model in the interval [𝑎, 𝑏]. If 

𝑥1 < 𝑥2  at the points 𝑥1 and 𝑥2, which are two points in the interval [𝑎, 𝑏], we 

can narrow the interval until we find the solution when we examine the function 

𝑓(𝑥). When 𝑓(𝑥1) and 𝑓(𝑥2) are analysed, one of the following three cases 

occurs. In all three cases, the optimum solution is in the interval [𝑎, 𝑏]. 

 

Case 1. Since 𝑓(𝑥1) < 𝑓(𝑥2)  and 𝑓(𝑥), is increasing in at least part of the 

interval [𝑥1, 𝑥2], the optimum solution cannot occur in the interval [𝑎, 𝑥1] due to 

the unimodality of 𝑓(𝑥). Therefore 𝑥̅ ∈ (𝑥1, 𝑏]. 

 

Case 2. If 𝑓(𝑥1) = 𝑓(𝑥2), 𝑓(𝑥) is decreasing in some part of the interval [𝑥1, 

𝑥2] and the optimum solution is in a < 𝑥2. Therefore 𝑥̅ ∈  [a, 𝑥2). 

 

Case 3. If 𝑓(𝑥1) > 𝑓(𝑥2), then 𝑥̅ ∈  [a, 𝑥2). 

 

The interval in which 𝑥̅ is to be found in the interval [a, 𝑥2) or (𝑥1, b] is called 

the uncertainty interval. Many search algorithms utilise these ideas to reduce this 

uncertainty range.  

 

Many of these algorithms use the following steps: 

 

Step 1. Start with [a,b] as the uncertainty interval for x. Examine f(x) for 

reasonably chosen points 𝑥1 and 𝑥2.  

 

Step 2. Determine which of cases 1, 2 or 3 it fits and reduce the uncertainty 

interval accordingly. 

 

Step 3. Examine f(x) for two new points (the algorithm specifies how to 

choose these two new points). Return to Step 2 until the uncertainty interval is 

small enough (Winston, 2003; Kubat, Uygun). 
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Tolerance control: Refers to repeat this process until a tolerance value is 

reached within a specified margin of error.  

 

Continuing with iterations: Repeating steps over the newly determined 

range until the maximum number of iterations is reached to narrow the range.  

By applying the steps in this order, the root of the function can be found by 

the root finding algorithms. This process, by narrowing the range containing the 

root at each iteration, will eventually lead to a very approximate root value (Köse 

et al., 2024). 

If we apply the root-finding methods to the first derivative of the function as 

we apply them to the function itself, we identify the critical points of the function. 

Thus, if the function is multimodal in the given interval, these critical points are 

candidates for local maximum or local minimum points. If the function is 

unimodal, the image of this critical point is a candidate absolute maximum or 

absolute minimum value. Therefore, the following methods are applied to the 

function and then to its first derivative to find both the root of the function and its 

optimum value.   

Let’s investigate two specific approaches: the Fibonacci search algorithm and 

the golden ratio search algorithm. 

 

2.2.1. Golden Ratio Search Algorithm 

Given the function 𝑦 = 𝑓(𝑥), let f  be continuous on the interval [𝑥𝑎 , 𝑥𝑢]. Let 

𝑥𝑎 be the lower boundary and 𝑥𝑢 be the upper boundary and the points  𝑥1 and 

𝑥2 are chosen according to the golden ratio rule as follows: 

 

Let 𝑥1 = 𝑥𝑎 +
√5−1

2
. ( 𝑥𝑢 − 𝑥𝑎). 

Let 𝑥2 = 𝑥𝑢 −
√5−1

2
. ( 𝑥𝑢 − 𝑥𝑎). 

 

Calculate the values of f (𝑥1) and  f(𝑥2). 

  

If f(𝑥1)<f(𝑥2), the search for roots in the interval [𝑥𝑎, 𝑥1] continues. Then 

𝑥𝑢 = 𝑥1 is taken. 

  

If f(𝑥2)<f(𝑥1), we continue to search for roots in the interval [𝑥2, 𝑥𝑢]. In this 

case, 𝑥𝑎 = 𝑥2 is taken (Köse et al., 2024). 
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2.2.2. Fibonacci Search Algorithm 

The Fibonacci Search Algorithm is to search an ordered sequence using 

Fibonacci numbers. In this algorithm, the ordered sequence to be searched is 

divided into parts based on Fibonacci numbers. Research on Fibonacci numbers 

and the performance of this algorithm has an important place in computer science. 

The Fibonacci Search Algorithm works as follows: 

1. It is checked whether the sequence to be searched is greater or less than the 

largest Fibonacci number. 

2. If the number to be searched is smaller, the previous Fibonacci number is 

added to the current number. 

3. This process continues from the largest range to the smallest, narrowing the 

range. 

4. Finally, when the range is reduced to 1, the number is found (or not found 

if the number is not in the series) (Köse et al., 2024). 

 

3. PERFORMANCE MEASURES AND RESULTS 

3.1. Test Functions and Simulation Graphs 

Three different functions were used to test the Golden Ratio search algorithm 

and Fibonacci search algorithms used to find the root of univariate algebraic 

functions. The test functions are respectively defined with the intervals given next 

to them 

 

𝑓(𝑥) = 𝑥4 + 𝑥3 − 7𝑥2 − 𝑥 + 6, [−3.5,3.5] 

𝑔(𝑥) = 𝑐𝑜𝑠𝑥 −
𝑥3

5
,    [−3.5,3.5] 

ℎ(𝑥) = log(𝑥2 + 1.5𝑥 + 1),    [−3.5,3.5] 

 

will be considered. The graphs of these functions are given in Figure 2. 
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Figure 2. Graphs of the functions f, g and h 

 

 
Figure 3. Graphs of | f |, |g| and |h| functions 

 

 

3.1.1. Simulation Graphs of Approaching the Minimum Value with the 

Golden Ratio Search Algorithm 

 

 
Figure 4. Graphs of | f |, |g| and |h| functions approaching the minimum value 

with the Golden Ratio Search method 

 

Figure 5 shows the speed at which the functions | f |, |g| and |h| approach the 

minimum value using the Golden Ratio Search Algorithm with the number of 

iterations. 
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Figure 5. Speed of approaching the minimum value of |f|, |g| and |h| functions 

with the Golden Ratio Search method (number of iterations) 

 

 
Figure 6. Approximation graphs of | f |, |g| and |h| functions to the minimum 

value with Fibonacci Search method 
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3.1.2. Graphs of Simulated Approach to Minimum Value with Fibonacci 

Search Algorithm 

Figure 7 shows the speed of approaching the minimum value of the |f |, |g| 

and |h| functions using the Fibonacci Search Algorithm with the number of 

iterations. 

 

 
Figure 7. Speed of approaching the minimum value of | f |, |g| and |h| functions 

with Fibonacci Search method (number of iterations) 

 

3.1. Error Accounts in Performance Evaluation 

 

The problem of finding the root of algebraic equations is a fundamental 

element of numerical analysis and computer science. In this study, the 

approximate values obtained by numerical and optimization methods and the 

difference between these values and the actual values, i.e. the error values, are of 

critical importance. This section discusses the equations representing the errors 

and finally presents the computational results of these errors for performance 

evaluation of the algorithms.  

 

3.1.1. Mean absolute error (MAE) 

Mean absolute error (MAE) is frequently used in regression and time series 

problems because it is easy to interpret. MAE is a measure of the difference 

between two continuous variables, i.e. the average of the absolute values of the 

differences between actual and predicted values, and measures the magnitude of 

deviations between predictions and actual values. (Chai & Draxler, 2014). (Chai, 

T., & Draxler, R. R. (2014). The Mean Absolute Error formula is given by the 

formula in Equation (1) 

 

MAE =
1

𝑛
∑ |𝑥𝑔 − 𝑥𝑖|

𝑛

𝑖=1
   (1) 
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where 𝑥𝑔: real root, 𝑥𝑖: approximate root obtained at step i, 𝑛: total number 

of iterations. 

 

3.1.2.  Mean Absolute Approximation Error (MAAE) 

Mean Absolute Approximation Error (MAAE) is a type of error used to 

determine how accurate these approximations are when the true value of a given 

quantity is unknown but can be approximated. It is usually calculated as the 

average of the absolute values of the difference between the values obtained at 

each step in an iteration process and the values calculated at the previous step. 

This error measure is commonly used to assess how accurate an estimate is, 

especially in numerical analysis, optimization, and engineering. Mean Absolute 

Error of Approximation is often used in computational processes or modeling 

operations. For example, at each step of an iterative algorithm, the average value 

of the difference between the values obtained and the values calculated in the 

previous step can be calculated to evaluate how accurate and stable this algorithm 

works. Furthermore, this error measure can be used in various scientific research 

and experiments to assess how insignificant the difference between 

measurements is. In this way, it provides information about the accuracy and 

reliability of the data and increases the credibility of the results. The mean 

absolute error of approximation is given in Equation (2) where 

 

𝑥𝑖: approximate root obtained in step i, 

𝑘: number of iterations with minimum error 

 

𝑀𝐴𝐴𝐸 =
1

𝑘
∑ |

𝑥𝑖+1−𝑥𝑖

𝑥𝑖+1
|

𝑘

𝑖=0
                (2) 

 

While calculating the Mean Absolute Approximate Error throughout this 

study, since the root 𝑥𝑖+1  in the denominator of Equation (2) is zero in some 

cases, this term will be ignored in order to avoid undefinedness and the Mean 

Absolute Approximate Error will be calculated with the formula given in 

Equation (3). 

 

𝑀𝐴𝐴𝐸 =
1

𝑘
∑ |𝑥𝑖+1 − 𝑥𝑖|𝑘

𝑖=0        (3) 
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3.2. Analysis and Comparison 

Since it is necessary to consider both error values and error reduction rate 

when evaluating algorithm effectiveness, especially for complex problems and 

large data sets, simulations are performed for the test functions selected here. The 

test set is compared by finding the optimal roots of the selected test functions for 

each algorithm, and this comparison is evaluated with the performance metrics 

Mean Absolute Error (MAE) and Mean Absolute Approximation Error (MAAE). 

Since it is expected to achieve a level of precision using a minimum of iterations 

and computational resources, the algorithms' estimates are evaluated with the 

following performance metrics. 

The rate of convergence to the minimum value, optimum points and global 

minimum values of the nonlinear test functions used in the testing phase are given 

in the table below and absolute errors are calculated. 

In the table below, i is the number of iterations, 𝑓, 𝑔 and ℎ are the test 

functions, 𝑥𝑓 , 𝑥𝑔 ve 𝑥ℎ are the real roots of 𝑓, 𝑔 and ℎ respectively, 

𝑜𝑝𝑡𝑥𝑓 , 𝑜𝑝𝑡𝑥𝑔 and 𝑜𝑝𝑡𝑥ℎ indicate the optimum points of the functions 𝑓, 𝑔 and ℎ 

respectively, and 𝑜𝑝𝑡𝑦𝑓 , 𝑜𝑝𝑡𝑦𝑔 𝑣𝑒 𝑜𝑝𝑡𝑦ℎ   indicate the optimum values of the 

functions 𝑓, 𝑔 and ℎ respectively. In the table, various statistics such as best 

solution, optimum solution, absolute error, average absolute error, average 

absolute approximation error, average absolute error depending on the number of 

iterations and average absolute approximation error depending on the number of 

iterations are presented for the Golden Ratio algorithm (GR) and Fibonacci 

Search Algorithm (FIB). 
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Table 1. Absolute errors of test functions 

Test Functions Statistics GR FIB 

  

 

𝒇 

 

Real roots 

𝑥1 = −3 

𝑥2 = −1 

𝑥3 = 1 

𝑥4 = 2 

  

i 20 4 

𝑥𝑓  1 1 

𝑜𝑝𝑡𝑥f  0.99995 0.9752 

𝑜𝑝𝑡𝑦𝑓  0.0002 0.1992 

Absolute error 0 0.0248 

Average absolute error 0.0487 0.0875 

Average absolute error depending on the 

number of iterations 0.0487 0.3156 

Average absolute approximation error 0.0102 0.2238 

Average absolute approximation error 

depending on the number of iterations 0.9163 1.0585 

 

 

𝒈 

 

Real roots 

𝑥1 = 1.2091 

  

i 17 9 

𝑥g   1.2091 1.2092 

𝑜𝑝𝑡𝑥g 1.2092 1.2092 

𝑜𝑝𝑡𝑦g  0.0001 0.0001 

Absolute error 0 0 

Average absolute error  0.0606 0.0620 

Average absolute error depending on the 

number of iterations 

0.0712 0.1375 

Average absolute approximation error 0.02 0.2355 

Average absolute approximation error 

depending on the number of iterations 

1.0777 0.4806 

 

 

𝒉 

 

Real roots 

𝑥1=0 

𝑥1 = −1.5  

i 20 11 

𝑥ℎ   -1.5 -1.5 

𝑜𝑝𝑡𝑥h  -1.5 -1.5 

𝑜𝑝𝑡𝑦ℎ  0 0 

Absolute error 0 0 

Average absolute error 0.0794 0.0598 

Average absolute error depending on the 

number of iterations 

0.0794 0.1087 

Average absolute approximation error 0.0750 0.1 

Average absolute approximation error 

depending on the number of iterations 

0.9163 0.3933 
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For the function f, FIB reached the lowest absolute error value (0.0248) with 

the lowest number of iterations (4 iterations), while the GR method reached the 

lowest average absolute error (0.00005) at higher iterations (20 iterations). Again, 

when the average absolute errors depending on the number of iterations for the 

function f are compared, it is seen that the GR method produces more accurate 

results (0.0487<0.0875). When the average absolute approximation errors are 

considered, it is seen that the GR method gives the most successful result 

(0.0102<0.2238). It is also seen that the GR method gives more successful results 

in the average absolute approximation error depending on the number of 

iterations (0.9163<1.0585). In summary, it is seen that the GR method is more 

accurate and more successful than the FIB method in all error calculations. 

For the function g, GR and FIB methods have very close average absolute 

error (GR) 0.0606<0.0620 (FIB), while FIB has the least number of iterations (9 

iterations). Regarding the mean absolute approximation errors, GR method 

achieved the most accurate result (0.02<0.2355). While the average absolute error 

based on the number of iterations reached the most successful result with GR, the 

average absolute approximation error based on the number of iterations reached 

the most precise value with the FIB method 0.4806. For the function g, the FIB 

method is more successful than the GR method with the fewest iterations and the 

average absolute approximation error based on the number of iterations. This 

shows that the performance of the algorithms may vary for different function 

types. 

In the tests on the function h, the FIB method has the lowest mean absolute 

error (0.0598) but the highest mean absolute approximation error (0.1) with 11 

iterations. GR is again a successful method in the calculation of the average 

absolute error according to the number of iterations (0.0794), while the FIB 

method gives the best result in the calculation of the average absolute 

approximation error according to the number of iterations (0.3933). 

 

4. CONCLUSION AND EVALUATION 

The results given in Table 1 show that the performance of different 

optimization algorithms on various test functions may vary and that the choice of 

the optimal root-finding method should be carefully considered depending on the 

specific problem situation. 

According to these results, both methods have advantages and disadvantages 

in certain situations. Below are some observations based on the test functions and 

the results obtained: 
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Golden Ratio Search (GR). The GR method is notable for the lowest 

absolute errors (0.00) for the functions f, g and h. It shows that the GR method 

can be effective for these types of functions. Considering the average absolute 

errors, it was observed that they were 0.0487, 0.0606 and 0.0794 for the functions 

f, g and h, respectively. Considering the mean absolute approximation errors, the 

results are 0.0102, 0.02 and 0.0750 for the functions f, g and h, respectively. 

Accordingly, the GR method gives mostly successful results in the calculation of 

the mean absolute error. In the mean absolute approximation error calculation, it 

performs the best in all three functions. 

Fibonacci Search (FIB). The FIB method shows that it can provide faster 

results compared to the GR method with minimum iterations for all functions. 

The FIB method generally gives better results in the calculation of the average 

absolute approximation error depending on the number of iterations. This shows 

that Fibonacci search can be advantageous for specific problems. 

In general, the performance of each method varies depending on the properties 

of the function under test. This shows that the properties of the function should 

be carefully analyzed when choosing an optimal root-finding method. In addition, 

other factors such as the number of iterations and the precision of approximating 

the root of each method should also be taken into account. The differences 

between the methods are due to the approximation strategies and mathematical 

structures of the algorithms, so it is important to choose the method that best suits 

the nature of a particular problem. 
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Chapter 4 

A Savings Model under 

Nonlocal Boundary Conditions1

Olgun CABRİ2, Hanlar REŞİDOĞLU3 

1. Introduction

In recent years, the solutions to many physical phenomena have been modeled 

by non-classical parabolic or hyperbolic initial–boundary value problems 

involving integral terms. These integrals may appear either within the structure 

of the partial differential equation itself or in its boundary conditions [7]. 

Nonlocal boundary conditions establish relationships between the values of a 

solution or its derivatives at distinct boundary points or interior locations within 

the domain. Boundary conditions expressed in integral form can be regarded as a 

special case of such nonlocal conditions [13]. 

Problems of this nature arise in various applied fields, including chemical 

diffusion, heat conduction, thermoelasticity, population dynamics, vibration 

analysis, nuclear reactor processes, and several biological systems [7]. 

A large number of physical problems in which classical boundary conditions 

are replaced by integral ones are associated with wave or diffusion-type equations 

(see [2,3,8,9,10]). 

Numerous numerical studies have been conducted on problems involving 

integral boundary conditions [3,4,5,7,11,14].  

In this study, a family savings model used in the field of economics is 

examined. The model is described by a diffusion equation subject to integral 

boundary conditions. This study aims to reduce the diffusion model with integral 

boundary conditions to a Sturm–Liouville form and to derive the eigenvalues and 

eigenfunctions for an explicit expression of the solution. 

1 This paper originates from the Ph.D. dissertation of Dr. Olgun Cabri, supervised by Prof. Dr. Hanlar Reşidoğlu. 
2 Asst. Prof., Artvin Coruh University, Department of Business Management, Hopa, 08600, Artvin, Turkey, 

 Email: olguncabri@artvin.edu.tr Orcid: 0000-0002-0690-9667  
3 Prof. Dr., Igdir University, Department of Mathematics, 76000, Igdir, Turkey, 

Email: hanlar.residoglu@igdir.edu.tr, Orcid: 0000-0002-3283-9535 
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2. Family Saving Model

The family saving model, originally introduced in [6], describes the income

level of a family at a given point in time as follows: 

𝑑𝑥 = 𝛷(𝑥, 𝑡)𝑑𝑡 + 𝛤(𝑥, 𝑡)𝑑𝑋,  𝐺 ≥ 0       (1) 

In this equation, Φ(𝑥, 𝑡)denotes a specific function representing the difference 

between a family’s income and expenditures, and thus the rate of saving. The 

term Γ(𝑥, 𝑡) represents the random fluctuation of income. If this equation is 

generalized to describe the saving behavior of all families in society, disregarding 

the dynamics of individual households, the function 𝑝(𝑥, 𝑡), which represents the 

density distribution of family savings, satisfies the following diffusion-type 

partial differential equation: 

𝜕𝑝

𝜕𝜏
= −

𝜕

𝜕𝜉
((𝑐 + 𝛷)𝑝) +

1

2

𝜕2

𝜕𝜉2
(𝑏𝑝) + 𝑔. 

In the literature, such equations are generally referred to as Kolmogorov-type 

equations. We consider this equation with initial condition 

𝑝(𝜉, 0) = 𝜓(𝜉),  0 ≤ 𝑥 ≤ 𝑙   (2) 

and with boundary conditions  

∫ 𝑝(𝜉, 𝑡)
𝑙

0
𝑑𝜉 = 𝑀(𝑡),  𝑡 ≥ 0,       (3) 

∫ 𝜉𝑝
𝑙

0
(𝑥, 𝑡)𝑑𝜉 = 𝑄(𝑡),  𝑡 ≥ 0.        (4) 

Here, 𝑀0(𝑡) denotes the number of families within the interval, while 𝑄0(𝑡)

represents the total amount of savings [6]. 

3. Problem

Let us consider the following non-homogeneous problem defined in the region

𝐷 = {(𝜉, 𝑡): 0 < 𝜉 < 1,0 < 𝜏 < 𝑇} subject to two nonlocal boundary conditions: 

𝜕𝑝

𝜕𝜏
= 𝛼2 𝜕2𝑝

𝜕𝜉2 + 𝑔(𝜉, 𝜏),     (5) 

𝑝(𝜉, 0) = 𝜓(𝜉),   (6) 

53



∫ 𝑝(𝜉, 𝑡)𝑑𝜉 = 𝑀(𝜏)
1

0
,                                        (7) 

 

∫ 𝜉𝑝(𝜉, 𝜏)𝑑𝜉 = 𝑄(𝜏).
1

0
                                 (8) 

 

 

The functions 𝑔(𝜉, 𝜏), 𝑀(𝜏), 𝑄(𝜏) and ψ(𝜉) are assumed to be defined on the 

region 𝐷 and to be continuously differentiable. For a solution, the following 

compatibility conditions must be satisfied: 

 

∫ 𝜉𝜓(𝜉)𝑑𝜉 = 𝑀(0)
1

0

, ∫ 𝜓(𝜉)𝑑𝜉 = 𝑄(0)
1

0

. 

 

Implementing the substitution, 

𝑝(𝜉, 𝜏) = (𝜉, 𝜏) + (12𝑄(𝜏) − 6𝑀(𝜏))𝜉 + 4𝑀(𝜏) − 6𝑄(𝜏).  

The given boundary-value problem is transformed into 

 

𝜕𝜌

𝜕𝑡
= 𝑎2 𝜕2𝜌

𝜕𝜉2 + 𝐺(𝜉, 𝜏),                                    (9) 

 

𝜌(𝜉, 0) = 𝜓(𝜉),                               (10) 

 

∫ 𝜌(𝜉, 𝑡)𝑑𝜉 = 0,
1

0
                          (11) 

 

∫ 𝜉𝜌(𝑥, 𝑡)𝑑𝜉 = 0,
𝑙

0
                         (12) 

 

Where 

 

𝐺(𝜉, 𝜏) = 𝑔(𝜉, 𝜏) − (12𝑄′(𝜏) − 6𝑀′(𝜏))𝜉 + 4𝑀′(𝜏) − 6𝑄′(𝜏) 

𝜑(𝜉) = 𝜓(𝜉) − (12𝑄(0) − 6𝑀(0))𝜉 + 4𝑀(0) − 6𝑄(0). 

 

Due to linearity of problem (11-12), the solution can be represented as the 

superposition of the solutions corresponding to two separate boundary value 

problems. The first problem is given by 

 

𝜕𝜌

𝜕𝜏
= 𝛼2 𝜕2𝜌

𝜕𝜉2,                                    (13) 

 

𝜌(𝜉, 0) = 𝜓(𝜉),                            (14) 
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∫ 𝜌(𝜉, 𝜏)𝑑𝜉 = 0
1

0
,                           (15) 

 

∫ 𝜉𝜌(𝜉, 𝜏)𝑑𝜉 = 0,
1

0
,                         (16) 

 

the second problem is described by   

 

𝜕𝜌

𝜕𝜏
= 𝛼2 𝜕2𝜌

𝜕𝜉2 + 𝐺(𝜉, 𝜏),                                   (17) 

 

𝜌(𝜉, 0) = 0,                              (18) 

 

∫ 𝜌(𝜉, 𝜏)𝑑𝜉 = 0
1

0
,                              (19) 

 

∫ 𝜉𝜌(𝜉, 𝜏)𝑑𝜉 = 0.
1

0
                             (20) 

 

If 𝜌1(𝜉, 𝜏)is the solution of the boundary value problem (13)–(16) and 

𝜌2(𝜉, 𝜏)is the solution of the boundary value problem (17)–(20), then the solution 

of the boundary value problem (9)–(12) is given by the sum 

 

𝜌(𝜉, 𝜏) = 𝜌1(𝜉, 𝜏) + 𝜌2(𝜉, 𝜏). 

 

Let us transform the nonlocal boundary conditions (15)–(16) into their 

equivalent local forms. By (17), we get 

 

∫ 𝜌𝜏(𝜉, 𝜏)𝑑𝜉 =
1

0

𝛼2 ∫ 𝜌𝜉𝜉(𝜉, 𝜏)𝑑𝜉,
1

0

 

⇒
𝑑

𝑑𝜏
(∫ 𝜌(𝜉, 𝜏)𝑑𝑥

1

0

) = 𝛼2 ∫ 𝜌𝜉𝜉(𝜉, 𝜏)𝑑𝜉,
1

0

 

⇒ 0 = 𝛼2 ∫ 𝜉𝜌𝜉𝜉(𝜉, 𝜏)𝑑𝜉.
1

0

 

 

Using integration by parts, one obtains 

 

𝜌𝜉(1, 𝜏) − 𝜌𝜉(0, 𝜏) = 0. 
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If we apply a similar procedure to the other boundary condition, we obtain: 

 

∫ 𝜉𝜌𝜏(𝜉, 𝜏)𝑑𝜉 =
1

0

𝛼2 ∫ 𝜉𝜌𝜉𝜉(𝜉, 𝜏)𝑑𝜉
1

0

 

⇒
𝑑

𝑑𝜏
(∫ 𝜉𝜌𝑡𝜏(𝜉, 𝜏)𝑑𝜉

1

0

) = 𝛼2 ∫ 𝜉𝜌𝜉𝜉(𝜉, 𝜏)𝑑𝜉
1

0

 

⇒ 0 = 𝛼2 ∫ 𝜉𝜌𝜉𝜉(𝜉, 𝜏)𝑑𝜉
1

0

 

 

Thus, by integration by parts we get 

 

𝜌𝜉(1, 𝜏) − 𝜌(1, 𝜏) + 𝜌(0, 𝜏) = 0. 

 

Hence, the boundary value problem (13)–(16) is transformed into the 

equivalent local problem: 

 

𝜕𝜌

𝜕𝜏
= 𝛼2 𝜕2𝜌

𝜕𝜉2,                                   (21) 

 

𝜌(𝜉, 0) = 𝜓(𝜉),                            (22) 

 

𝜌𝜉(1, 𝜏) − 𝜌𝜉(0, 𝜏) = 0,
 
                            (23) 

 

𝜌𝜉(1, 𝜏) − 𝜌(1, 𝜏) + 𝜌(0, 𝜏) = 0.
 
                                (24) 

 

 

Using Fourier method, 

 

𝜌(𝜉, 𝜏) = 𝑌(𝜉)𝑍(𝜏) 

 

we obtain following Sturm Liouville problem 

 

𝑌′′(𝜉) + 𝜆𝑌(𝜉) = 0,                                         (25) 

 

𝑌′(1) − 𝑌′(0) = 0,                               (26) 

 

𝑌′(1) − 𝑌(1) + 𝑌(0) = 0,                                (27) 
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and differential equation 

 

𝑍′(𝜏) + 𝛼2𝑍(𝜏) = 0.                                        (28) 

 

It is well known from [12] that the boundary conditions (26)-(27) are regular. 

So the eigenfunctions of the problem form a Riesz basis. 

 

4. Analysis of Eigenvalues and Eigenfunctions  

Let us investigate the eigenvalues and eigenfunctions of the Sturm–Liouville 

equations (25)– (27). Let 𝜆 = µ2.  

 

• When 𝜆 = µ2 < 0, the problem possesses only the trivial solution.. 

• For 𝜆 = 0 the problem has a double eigenvalue, and the corresponding 

solution is of the form 

 

𝑌0(𝜉) = 𝐴0 + 𝐵0𝜉. 

 

The eigenfunctions corresponding to this eigenvalue are 

 

𝑌0,1(𝜉) = 1, 𝑌0,2(𝑥) = 𝜉. 

 

• For 𝜆 = µ2 > 0, In this case, the solution takes the form 

•  

𝑌(𝜉) = 𝑎1 𝑐𝑜𝑠 √µ 𝜉 + 𝑎2 𝑠𝑖𝑛 √µ 𝜉. 

 

By applying boundary condition (26) to the obtained solution, we get 

 

− 𝑠𝑖𝑛 √µ 𝑎1 + (𝑐𝑜𝑠 √µ − 1)𝑎2 = 0. 

 

 

Next, by applying boundary condition (27), we obtain 

 

(1 − 𝑐𝑜𝑠 √µ − √µ 𝑠𝑖𝑛 √µ)𝑎1 + (√µ 𝑐𝑜𝑠 √µ − 𝑠𝑖𝑛 √µ)𝑎2 = 0. 

 

Hence, the characteristic equation takes the form 

 

𝛥 = 2 − 2 𝑐𝑜𝑠 √µ − √µ 𝑠𝑖𝑛 √µ = 0. 
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 If we set√µ = 𝑟 in the characteristic equation, it can be rewritten as 

 

𝛥 = 2 − 2 𝑐𝑜𝑠 𝑟 − 𝑟 𝑠𝑖𝑛 𝑟 = 0.                               (29) 

 

Applying the half-angle identities for sine and cosine to equation (29), the 

characteristic equation becomes as  

 

⇒ 𝛥 = 2 − 2𝑟𝑠𝑖𝑛
𝑟

2
cos 

𝑟

2
− 2(1 − 2 sin2

𝑟

2
)  = 0, 

⇒ 𝛥 = 𝑠𝑖𝑛
𝑟

2
(𝑟 cos

𝑟

2
− sin

𝑟

2
) = 0. 

 

One of the roots of this equation satisfies the condition sin (𝑟/2)) = 0 , and 

it is easily seen that these roots are given by 

 

𝑟2𝑚 = 2𝜋𝑚, 𝑚 = 1,2. ..   (30) 

 

The remaining roots are obtained from the equation: 

 

𝑟 cos
𝑟

2
− sin

𝑟

2
= 0 ⇒ tan (

r

2
) =

r

2
. 

 

These roots satisfy 𝑟2𝑚+1 ∈ [2𝜋𝑚 +
𝜋

2
, (2𝑚 + 1)𝜋]. Let us derive an 

asymptotic formula. Let 𝑟2𝑚 = (2𝑚 + 1)𝜋 − 𝜀. Following [1], we apply the 

Lagrange inversion formula. 

 

Thus we have 

 

2 𝑐𝑜𝑠( 𝜀) + 𝜀 𝑠𝑖𝑛( 𝜀) + 2

𝑠𝑖𝑛( 𝜀)
= (2𝑚 + 1)𝜋 = 𝑘−1, 

⇒
𝜀

𝜀 (
2 𝑐𝑜𝑠( 𝜀) + 𝜀 𝑠𝑖𝑛( 𝜀) + 2

𝑠𝑖𝑛( 𝜀)
)

= 𝑘, 

⇒ 𝜀 =
(2𝑚 + 1)𝜋

2
− 𝑐1 (

(2𝑚 + 1)𝜋

2
)

−1

− 𝑐2 (
(2𝑚 + 1)𝜋

2
)

−3

. .. 
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Where 

 

𝑐𝑗 =
1

𝑗!
{(

𝑑

𝑑𝜀
)

𝑗−1

ℎ(𝜀)𝑗}|
𝜀=0

,  ℎ(𝜀) = 𝜀 (
2 𝑐𝑜𝑠( 𝜀) + 𝜀 𝑠𝑖𝑛( 𝜀) + 2

𝑠𝑖𝑛( 𝜀)
). 

 

Once the coefficients 𝑐𝑗  are evaluated, the roots are found asymptotically as 

 

𝑟2𝑚+1 = (2𝑚 + 1)𝜋 − 4((2𝑚 + 1)𝜋)−1 −
32

3
((2𝑚 + 1)𝜋)−3 

−
832

15
((2𝑚 + 1)𝜋)

−5
+ 𝑂 (

1

𝑚7
). 

 

Thus, the eigenfunctions corresponding to these eigenvalues are obtained as 

 

𝑌2𝑚 = 𝑐𝑜𝑠( 2𝜋𝑚)𝜉, 

𝑌2𝑚+1 = sin (𝑟2𝑚+1 (
1

2
− 𝜉)). 

 

The norms of these eigenfunctions are given by 

 

‖𝑌0,1(𝜉)‖
2

= 1, ‖𝑌0,2(𝜉)‖
2

= 1/√3, 

‖𝑌2𝑚(𝜉)‖2 = ∫ 𝑐𝑜𝑠( 2𝜋𝑚𝜉)2
1

0

𝑑𝜉 =
1

2
+

𝑠𝑖𝑛( 4𝜋𝑚𝜉)

8𝜋𝑚
|

0

1

=
1

2
,

 

‖𝑌2𝑚+1(𝜉)‖2 =
1

2
−

𝑠𝑖𝑛𝑟2𝑚+1

𝑟2𝑚+1
.

 
 

The solution to problem (28) is expressed as 

 

𝑍(𝜏) = 𝐶𝑛𝑒𝛼2𝑟𝑚
2 𝜏. 

 

As a result, the solution of problem (13)–(16) is obtained as  

 

𝜌1(𝜉, 𝜏) = 𝐴0 + 𝐴1𝜉 + ∑ 𝐴2𝑚
∞
𝑚=1 𝑐𝑜𝑠( 2𝜋𝑚𝜉)𝑒−𝛼24𝜋2𝑚2𝜏 +

∑ 𝐵𝑚 (sin (𝑟2𝑛+1 (
1

2
− 𝜉)))∞

𝑚=1 𝑒−𝛼2𝑟𝑚
2𝜏. 
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In this expression, the coefficients take the form 

𝐴0 = ∫ 𝜓(𝜉)𝑑𝜉
1

0

, 

𝐴1 = 3 ∫ 𝜉𝜓(𝜉)𝑑𝜉 −
1

2
𝐴0,

1

0
 

𝐴2𝑚 = 2 ∫ 𝜓(𝜉) 𝑐𝑜𝑠( 2𝜋𝑚)𝜉𝑑𝜉
1

0

, 𝑚 = 1,2. ..

 

𝐵2𝑚 =
1

‖𝑌2𝑚+1(𝜉)‖2
∫ 𝜓(𝜉) (sin (𝑟2𝑚+1 (

1

2
− 𝜉))) 𝑑𝜉  

1

0

, 𝑚 = 1,2. .. 

 

For the solution of the nonhomogeneous boundary value problem (17)–(20), 

if the function 𝐺(𝑥, 𝑡)is expanded in terms of the eigenfunctions, we get 

 

𝐺(𝜉, 𝑡) = ∑ 𝐶𝑛(𝑡)𝑌2𝑛(𝜉) +

∞

𝑛=0

𝐷𝑛(𝑡)𝑌2𝑛+1(𝜉). 

 

Hence the solution of (21-24) is obtained by 

 

𝜌2(𝜉, 𝑡) = ∑ [∫ 𝐶𝑛(𝜏)𝑒−𝛼2(2𝑛𝜋2)(𝑡−𝜏)𝑑𝜏
𝑡

0

]

∞

𝑛=0

𝑌2𝑚(𝜉)

+ [∫ 𝐷𝑛(𝜏)𝑒−𝛼2𝑟𝑛
2(𝑡−𝜏)𝑑𝜏

𝑡

0

] 𝑌2𝑚+1(𝜉), 

 

Where 

 

𝐶𝑛(𝜏) = 2 ∫ 𝐺(𝜉, 𝜏)𝑌2𝑛(𝜉)𝑑𝜉,
𝜏

0
 

𝐷𝑛(𝜏) =
1

‖𝑌2𝑚+1(𝜉)‖2
∫ 𝐺(𝜉, 𝜏)𝑌2𝑛+1(𝑥)𝑑𝜉

1

0

. 
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5. Example 

Let us consider the following PDE modeling the density of family savings in 

the region  𝐷 = {(𝜉, 𝑡): 0 < 𝜉 < 1,0 < 𝜏 < 𝑇}  

 

𝜕𝜌

𝜕𝜉
= 𝛼2

𝜕2𝜌

𝜕𝜉2
+ 𝑓(𝜉, 𝜏), 

𝜌(𝜉, 0) = 𝜑(𝜉), 

∫ 𝜌(𝜉, 𝑡)𝑑𝑥 = 𝑀0,
1

0

 

∫ 𝜉𝜌(𝜉, 𝑡)𝑑𝜉 = 𝑄0.
1

0

 

 

In this problem, the total number of families and the total savings are assumed 

to be constant. The solution of this problem is given by 

 

𝜌(𝜉, 𝜏) = 𝑢(𝜉, 𝜏) + (12𝑄0 − 6𝑀0)𝜉 + 4𝑀0 − 6𝑄0. 

 

Here, since the function 𝑢(𝜉, 𝜏) tends to zero as time progresses, it follows that 

as 𝜏 → ∞ 

 

𝜌(𝜉, 𝜏) = (12𝑄0 − 6𝑀0)𝜉 + 4𝑀0 − 6𝑄.0 

 

That is, as time progresses, the distribution evolves into a linear profile. Here, 

if the average saving 𝑄0/𝑀0 > 1/2, the slope becomes positive, indicating that 

the saving shifts toward families with higher savings. Conversely, if the average 

saving 𝑄0/𝑀0 < 1/2, the slope becomes negative, and the distribution shifts 

toward families with lower savings. When the average saving equals 𝑄0/𝑀0 =

1/2, the slope is zero, and the distribution becomes uniform, representing an 

equal level of savings throughout. 
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Chapter 5 

Kamada-Kawai Algorithm: A Comprehensive Analysis 

from Global Graph Layout to Modern Challenges

Ümit SARP1, Bilal DEMİR2 

Abstract 

Graph drawing plays a critical role in transforming complex relational data 

into understandable visual representations. Among force-directed algorithms, the 

Kamada-Kawai (KK) algorithm, introduced in 1989, stands out by preserving the 

global structure and symmetry, using graph-theoretic shortest path distances to 

determine ideal distances between nodes. This article explains the mathematical 

foundations and energy minimization principle of the Kamada-Kawai algorithm. 

Its primary application areas, such as Social Network Analysis (SNA), 

Bioinformatics, and Software Engineering, are examined in detail. A Social 

Network Analysis case study is presented on a randomized "small-world" graph 

using the networkx library. Furthermore, the algorithm's performance on special 

topological structures like Polygonal Cycle Graphs and Dendrimer Graphs is 

analyzed with Python code examples. Finally, the algorithm's fundamental 

limitations, such as its high computational cost, its challenges, and modern 

approaches to these problems, like Multilevel algorithms, are discussed 

comprehensively. 

Keywords: Kamada-Kawai, Graph Drawing, Force-Directed Algorithms. 
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1. Introduction 

Relational data is one of the cornerstones of modern science. In many fields, 

from social networks to biological systems, and from software architecture to 

logistics networks, entities and the relationships between them are most naturally 

modeled as graphs [1-3]. When these graphs contain thousands of nodes, raw data 

tables make the complex structures they contain incomprehensible to human 

perception. At this point, graph drawing, or data visualization, plays a critical role 

by transforming these abstract structures into intuitive and understandable 

geometric representations. 

The purpose of this study is to comprehensively examine the Kamada-Kawai 

algorithm [4], a fundamental and powerful data visualization algorithm that 

researchers and analysts working with graph data can frequently utilize. 

The question of what constitutes a "good" graph drawing has been defined by 

"aesthetic criteria" in the field of graph drawing. Among these, the most widely 

accepted criteria are: minimizing the number of edge crossings, visually 

reflecting the inherent symmetries of the graph, and distributing nodes evenly in 

the drawing area. The Kamada-Kawai algorithm excels particularly in "reflecting 

graph-theoretic distance" and "preserving symmetry." 

 

2. Fundamentals of the Kamada-Kawai Algorithm 

The algorithm, introduced by Tomihisa Kamada and Satoru Kawai in 1989 

[4], diverges from other force-directed methods with a fundamental philosophy. 

While most methods apply attractive forces only between adjacent nodes (local 

interactions), the KK algorithm aims to preserve the global structure of the graph. 

The basic principle of the algorithm is: In a graph drawing, the geometric 

(Euclidean) distance between any two nodes ( , )i j  should be proportional to the 

graph-theoretic shortest path distance ( ijd ) between them. 

 

2.1. Mathematical Model: The Energy Function 

To model this principle, the KK algorithm defines an energy function that 

aims to minimize the total potential energy (or stress) of the system: 

 

21
(| | )

2

= − − ij i j ij

i j

E k p p l  
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The components in this formula are: 

• ip  and jp : The position vectors of nodes i  and j  in 2D or 3D space. 

• ijl  (Ideal Distance): The "ideal" spring length between the nodes. 

= ij ijl L d  (where ijd  is the shortest path distance between i  and j ). 

•  ijk  (Spring Stiffness): Determines the stiffness of the spring. 
2/=ij ijk K d . 

 

This model makes the springs between nodes that are "close" on the graph 

(short shortest path) much stiffer. This means the algorithm is forced to position 

local structures correctly first, but it does so while considering the global 

positions of all other nodes. 

 

2.2. Algorithm Steps 

• Pre-computation (Most Expensive Step): The shortest path distances ( ijd

) between \textit{all} pairs of nodes ( , )i j  in the graph are calculated 

(Usually with Floyd-Warshall or multiple BFS). 

• Calculation of Ideal Distances: The ijl  and ijk  values are calculated for all 

pairs. 

• Initialization: Nodes are assigned to random positions ( ip ). 

• Iterative Refinement: Until the system energy E  falls below a certain 

threshold, the node causing the most "imbalance" in the system is found, and 

its position is moved to a new position that locally minimizes the energy 

using the Newton-Raphson method. 

 

3. Application Areas 

Kamada-Kawai's ability to preserve global structure and symmetry has made 

it a valuable tool in many disciplines. 

 

3.1. Social Network Analysis (SNA) 

In social networks [5], nodes represent individuals, and edges represent 

relationships (friendship, collaboration, communication). The KK algorithm is 

invaluable here because: 

• Community Detection: It visually groups together clusters (cliques) that are 

in dense communication with each other. 

• Centrality and Bridges: It places "influential" individuals at the center of 

the network (those with a low average shortest path) in the center of the 
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drawing. "Bridge" (broker) individuals who connect different clusters are 

positioned strategically between these clusters. 

 

3.2. Bioinformatics and Systems Biology 

Biological systems, such as protein-protein interaction (PPI) networks or gene 

regulation networks, are often complex and modular. For these structures, often 

studied in chemical graph theory [6], KK helps biologists discover functional 

relationships by visually clustering groups of proteins with similar functional 

tasks (modules or complexes). 

 

3.3. Software Engineering and Database Modeling 

In large-scale software projects, inter-class dependencies, function call 

graphs, or database schemas (Entity-Relationship diagrams) can be modeled as 

graphs. KK facilitates the understanding of software architecture by grouping 

tightly coupled modules (high cohesion) and clearly separating loose connections 

(low coupling) between different modules. 

 

4. Case Study: Social Network Analysis (SNA) 

To demonstrate the power of Kamada-Kawai, let's create a randomized 

"small-world" graph that models a hypothetical email communication network in 

an organization of 50 people in Figure 1. Such graphs reflect the high clustering 

(people often form friend groups) and short average path lengths (everyone is 

reachable in a few steps) characteristic of social networks. 
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Figure 1: Small-World 

 

4.1. Step 1: Generating Randomized Data (Graph) 

Let's use the networkx library in Python to create a watts_strogatz_graph with 

50 nodes (employees), where each node has an average of 4 neighbors (close 

colleagues) and a 0.1 probability of forming new random connections 

(acquaintances from other departments). 
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PyCode:  

import networkx as nx 

import matplotlib.pyplot as plt 

# 1. Case Study Graph: 50 employees, 4 close contacts on average, 10% random links 

N = 50 

K = 4 

P = 0.1 

G_sna = nx.watts_strogatz_graph(n=N, k=K, p=P, seed=42) 

print(f"Graph Created: {len(G_sna.nodes)} Nodes, {len(G_sna.edges)} Edges") 

# 2. Calculate Layout: Kamada-Kawai 

print("Calculating Kamada-Kawai layout...") 

pos_sna = nx.kamada_kawai_layout(G_sna) 

print("Layout complete.") 

 

4.2. Step 2: Visualization and Analysis 

Let's assume we are drawing this pos_sna layout. This code has been updated 

to be clearly visible on an A4 printout. 

 

PyCode:  

# 3. Draw the Graph 

plt.figure(figsize=(10, 10), dpi=200) 

node_size_updated = 200 

nx.draw_networkx(G_sna, pos_sna,  

                 node_size=node_size_updated,  

                 node_color='skyblue',  

                 edge_color='gray',  

                 with_labels=False, 

                 font_size=12) # Font size increased in case labels are used 

# Title  

plt.title("50-Person Social Network Case Study with Kamada-Kawai", fontsize=16) 

plt.axis('off') 

plt.show() 

 

4.3. Case Analysis (Interpretation of Results) 

What does the Kamada-Kawai layout show us? 

• Local Clusters: Local groups created with the k=4 parameter (e.g., people 

in the same department) are visually clustered closely together. KK clearly 

separates these clusters. 

• Central Actors: Nodes that are central to the overall communication of the 

network (those with the lowest average shortest path) are pulled towards the 

center of the entire drawing. These are the "key" or "most connected" 

employees in the organization. 
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• Bridges (Brokers): Random connections formed with the p=0.1 probability 

create "bridges" connecting different clusters. In the KK layout, these nodes 

are positioned between two or more clusters, connecting them. This is much 

more understandable than the "hairball" effect that algorithms focusing only 

on local forces, like Fruchterman-Reingold [7], would produce. 

 

5. Performance on Special Graph Topologies 

The KK algorithm's goal of preserving global structure makes it an ideal 

visualization tool, especially for symmetric or complex structures. In this section, 

the performance of the KK algorithm is demonstrated with Python code using the 

custom functions you provided for Polygonal Cycle Graphs [8,9] and Dendrimer 

Graphs [6,10] in Figure 2. 

The code block below creates these two special graph structures and, for 

comparison, Tree/Lattice structures, calculates the Kamada-Kawai layout for 

each, and visualizes the results in a 2x2 panel with high-resolution and larger 

vertices. 

  

PyCode:  

import networkx as nx 

import matplotlib.pyplot as plt 

import math 

import warnings 

warnings.filterwarnings("ignore", category=UserWarning) 

# --- Helper Function 1: Polygonal Cycle Graph --- 

# (With reference to Sarp et al. [8,9]) 

def polygonal_cycle_graph(m, n): 

    """Generates the polygonal cycle graph for the nth m-gonal number. """ 

    def P_m(k): 

        return k * ((m - 2) * k - m + 4) // 2 

    V = list(range(1, P_m(n) + 1)) 

    G = nx.Graph() 

    G.add_nodes_from(V) 

    if n == 1: 

        return G 

 

    for i in V: 

        # Add edge for nodes not equal to P_m(j) 

        if i > 1 and i < P_m(n) and not any(P_m(j) == i for j in range(2, n + 1)): 

             G.add_edge(i, i + 1) 

    # Add edge between P_m(i) and P_m(i+1) 

    for i in range(1, n): 

        G.add_edge(P_m(i), P_m(i + 1)) 

    # Add edge between (P_m(i-1) + 1) and (P_m(i) + 1) 
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    # P_m(0) = 0 for n > 1 

    for i in range(1, n): 

        start_node = P_m(i - 1) + 1 

        end_node = P_m(i) + 1 

        if end_node <= P_m(n): # Stay within the graph boundaries 

            G.add_edge(start_node, end_node) 

    return G 

# --- Helper Function 2: Dendrimer Graph (Gamma Graph) --- 

# (With reference to Trinajstic [6] and Bulut & Akar [10]) 

def create_gamma_graph(n, k, p, h): 

    G = nx.Graph() 

    # 1. Create the central C_n core 

    core_nodes = [f'C_{i}' for i in range(n)] 

    G.add_nodes_from(core_nodes) 

    for i in range(n): 

        G.add_edge(core_nodes[i], core_nodes[(i + 1) % n]) 

    # Determine core attachment points 

    if n >= 6: 

        attachment_points_indices = [0, math.floor(n/3), math.floor(2*n/3)] 

    elif n == 5: 

        attachment_points_indices = [0, 1, 3] 

    elif n == 4: 

        attachment_points_indices = [0, 1, 2] 

    else: # n=3 

        attachment_points_indices = [0, 1, 2]    

    core_attachment_nodes = [core_nodes[i] for i in attachment_points_indices] 

    current_generation_branches = [] 

    # 2. Add initial arms (Generation 0 branches) 

    for i, core_node in enumerate(core_attachment_nodes): 

        current_node = core_node 

        for j in range(k): 

            spacer_node = f'S_{i}_{j}_g0' 

            G.add_node(spacer_node) 

            G.add_edge(current_node, spacer_node) 

            current_node = spacer_node 

        current_generation_branches.append(current_node) 

    # 3. Iteratively add subsequent generations (h >= 1) 

    for gen in range(1, h + 1): 

        next_generation_branches = [] 

        branch_counter = 0 

        for parent_node in current_generation_branches: 

            for branch_idx in range(p): 

                current_node = parent_node 

                for j in range(k): 

                    new_spacer_node = f'S_{gen}{branch_counter}{branch_idx}_{j}' 

                    G.add_node(new_spacer_node) 

                    G.add_edge(current_node, new_spacer_node) 
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                    current_node = new_spacer_node 

                next_generation_branches.append(current_node) 

                branch_counter += 1 

        current_generation_branches = next_generation_branches   

    return G 

# --- 1. Step: Create Graphs --- 

print("Generating graphs for special topologies...") 

# Graph 1: Polygonal Cycle (m=3, n=6) -> 3-gon (triangle), 6th level 

G_pc = polygonal_cycle_graph(m=3, n=6) 

# Graph 2: Dendrimer (Gamma_{6,2,3,1}) -> n=6, k=2, p=3, h=1 

G_dend = create_gamma_graph(n=6, k=2, p=3, h=1) 

# Graph 3: Balanced Tree (3 branches, 3 levels) 

G_tree = nx.balanced_tree(r=3, h=3) 

# Graph 4: Grid/Lattice Graph (8x8) 

G_grid = nx.grid_2d_graph(m=8, n=8) 

# --- 2. Step: Calculate Kamada-Kawai Layouts --- 

print("Calculating Kamada-Kawai layouts...") 

pos_pc = nx.kamada_kawai_layout(G_pc) 

pos_dend = nx.kamada_kawai_layout(G_dend) 

pos_tree = nx.kamada_kawai_layout(G_tree) 

pos_grid = nx.kamada_kawai_layout(G_grid) 

print("All layouts calculated.") 

 

# --- 3. Step: Draw 4 Graphs in 2x2 Subplots --- 

# High resolution dpi=250 (suitable for A4) 

fig, axs = plt.subplots(2, 2, figsize=(12, 12), dpi=250) 

node_size_large = 100 

 

# Subplot title  

subplot_title_fontsize = 14 

main_title_fontsize = 18 

 

# Graph 1: Polygonal Cycle 

axs[0, 0].set_title('Polygonal Cycle Graph (m=3, n=6)', fontsize=subplot_title_fontsize) 

nx.draw_networkx(G_pc, pos_pc, ax=axs[0, 0], node_size=node_size_large, 

node_color='purple', with_labels=False) 

axs[0, 0].axis('off') 

 

# Graph 2: Dendrimer 

axs[0, 1].set_title(r'Dendrimer $\Gamma_{6,2,3,1}$ (n=6, k=2, p=3, h=1)', 

fontsize=subplot_title_fontsize) 

nx.draw_networkx(G_dend, pos_dend, ax=axs[0, 1], node_size=node_size_large, 

node_color='orange', with_labels=False) 

axs[0, 1].axis('off') 

 

# Graph 3: Tree 

axs[1, 0].set_title('Balanced Tree (r=3, h=3)', fontsize=subplot_title_fontsize) 
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nx.draw_networkx(G_tree, pos_tree, ax=axs[1, 0], node_size=node_size_large, 

node_color='green', with_labels=False) 

axs[1, 0].axis('off') 

 

# Graph 4: Grid/Lattice 

axs[1, 1].set_title('Grid/Lattice Graph (8x8)', fontsize=subplot_title_fontsize) 

nx.draw_networkx(G_grid, pos_grid, ax=axs[1, 1], node_size=node_size_large, 

node_color='red', with_labels=False) 

axs[1, 1].axis('off') 

 

plt.suptitle("Performance of Kamada-Kawai Algorithm on Special Graph Topologies", 

fontsize=main_title_fontsize) 

plt.tight_layout(rect=[0, 0.03, 1, 0.95]) 

plt.show() 

 

 
Figure 2: Performance on Special Graph 
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5.1. Interpretation of Code Results 

When the code above is executed, the characteristic behavior of the Kamada-

Kawai algorithm on these different structures is observed: 

Polygonal Cycle Graph: KK recognizes the nested triangle (m=3) layers 

(n=6) of the graph produced by the polygonal_cycle_graph function [8,9] and 

visualizes them while preserving the symmetry of these layers. 

Dendrimer Graph ( ): KK places the 6-gon core (n=6) of the dendrimer 

produced by create_gamma_graph [6,10] at the center and symmetrically spreads 

the generations (h=1) connected via spacers (k=2) to the periphery, perfectly 

displaying the molecule's hierarchical structure. 

Balanced Tree: Despite having no root information, KK finds the "center" of 

the graph (usually nodes near the root) and opens the branches outwards 

symmetrically. 

Grid/Lattice: KK recognizes the highly regular structure of the grid graph 

and reconstructs it into an almost perfect square grid by reflecting the shortest 

path distances (Manhattan distance) to Euclidean distances. 

 

6. Limitations, Challenges, and Modern Approaches 

Despite Kamada-Kawai's aesthetic success, it has serious practical challenges. 

 

6.1. Limitations and Challenges 

Computational Complexity (The Biggest Limitation): The first step of the 

algorithm is to compute the All-Pairs Shortest Path (APSP) matrix. In dense 

graphs, this takes 
3(| | )O V  (Floyd-Warshall) or in sparse graphs (| | | |)O V E  

(BFS from each node) time [11, 12]. This makes the algorithm practically 

unusable for graphs larger than a few thousand nodes (e.g., V > 2000). 

Local Minima: The energy minimization process (Newton-Raphson) can get 

stuck in a "good enough" local minimum instead of the "ideal" global minimum 

energy state. This can happen, especially when starting from a poor initial 

position. 

 

6.2. Modern Approaches and Improvements 

To overcome these limitations, modern graph drawing tools [11, 12] and 

researchers [13, 14] have developed various strategies: 

Multilevel Approaches: One of the most effective solutions [13]. Instead of 

drawing the large graph directly, the algorithm "coarsens" the graph—creating a 

smaller, representative graph by merging nodes. KK is run quickly on this much 
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smaller graph. Then, the layout is "uncoarsened," and the nodes of the original 

graph are settled into place with local adjustments. 

Sampling: To avoid the 
3(| | )O V  cost, the entire APSP matrix is not 

calculated. Instead, a random subset of nodes (landmark nodes) is selected, and 

distances are approximated based only on these nodes [14]. 

Hybrid Approaches: Used to prevent KK from getting stuck in local minima. 

The graph is first roughly laid out with a faster algorithm that preserves less 

global structure, such as Fruchterman-Reingold (FR). This "good enough" layout 

is then used as a starting point for the KK algorithm, which performs the final 

"polishing." 

GPU and Parallel Computing: The APSP calculation and the force 

calculations in energy minimization are inherently parallelizable operations. 

Modern approaches aim to achieve significant speedups by moving these 

computations to GPUs. 

 

7. Conclusion 

The Kamada-Kawai algorithm has been one of the cornerstones of graph 

drawing literature since its presentation in 1989.  Its energy model, based on 

graph-theoretic distances, produces aesthetically superior drawings that 

emphasize global structure and symmetry, especially in fields like Social 

Network Analysis and Bioinformatics. 

However, its high computational cost, severely limits the algorithm's direct 

applicability in the "big data" era. Therefore, in modern applications, Kamada-

Kawai lives on as a "refinement" step, often within Multilevel techniques or 

hybrid approaches combined with algorithms like Fruchterman-Reingold. 
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