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Chapter 1

Three-Moment Chi-Square Approximation for the
Distributions of Modified Levene Tests

Gamze GUVEN!, Birdal SENOGLU?

1 Introduction

The problem of testing homogeneity of variances has been the primary
concern of researchers and practitioners for decades. Because some statistical
procedures such as the Student’s t-test and the ANOVA F-test are sensitive to
violations of the homoscedasticity assumption,
verifying the homogeneity of variances is one of the initial steps in practice
across many areas, including economics, health sciences, and engineering, see
Ederington and Lee (1993), Li et al. (1997), Li et. al (2015), Esi and Baykal
(2020), Zhou et al. (2023) and references therein for detailed information.

There are numerous studies in literature for testing homogeneity of variances
of k independent groups. The hypothesis of interest is

Hy:0f = 0% = -+ = af (1)
against the alternative hypothesis H,: 07 # ajz for at least one i # j.

In this context, Bartlett (1937) introduced one of the earliest procedures, a
modified likelihood ratio test that is the most powerful when the normality
assumption holds. Levene (1960) proposed a test for equality of variances,
initially developed for equal sample sizes and later generalized to unbalanced
designs. This test performs a one-way ANOVA on modified data, where each
observation is replaced by its absolute deviation from its group mean. Layard
(1973) discussed two asymptotically robust tests, a simple chi-square test and a
test based on jackknife procedure. Brown and Forsythe (1974) referred to
Levene’s original test as W, and proposed two modified versions of it by
replacing the group mean with the 10% trimmed mean and the median, which
were denoted as W, , and W5, respectively. Simulation results reported by Brown

! Assoc. Prof., Eskisehir Osmangazi University, ORCID:0000-0002-8821-3179, gamzeguven@ogu.edu.tr
% Prof., Ankara University, ORCID: 0000-0003-3707-2393,
senoglu@science.ankara.edu.tr



and Forsythe (1974) indicated that W5, tends to be conservative for small sample
sizes under normality, whereas W;, exhibits greater robustness when the
underlying distributions are long tailed. Lim and Loh (1996) compared W5 test,
Bartlett test with and without kurtosis adjustment, Box-Andersen test, three
jackknife tests and their bootstrap counterparts in terms of robustness and power.
They concluded that W5, test and its bootstrap version, along with one jackknife
test and the kurtosis-adjusted Bartlett test, exhibit desirable robustness and power
properties. Sharma (1991) proposed a new jackknife test based on jackknifing
one group of observations at a time, while Sarkar et al. (1999) modified Levene’s
test using the weighted likelihood estimates of the population means. Cahoy
(2010) developed a bootstrap procedure based on variance-derived statistics.
More recently, Sharma and Kibria (2013) compared 25 different test procedures
under various conditions. Jayalath et al. (2017) introduced a bootstrap test based
on the ratio of mean absolute deviances and developed a two-stage approach that
first measures skewness to determine the suitable test for variance homogeneity.
Esmailzadeh (2019) compared five Levene-type tests in terms of power and size.

Although no single test for homogeneity of variances achieves uniform
superiority across scenarios studied in literature, Bartlett’s, Levene’s, and
particularly the variants of Levene’s procedure W, , and W5, are among the most
widely used tests in applied sciences. As mentioned earlier, the W, is obtained
by performing a one-way ANOVA on the absolute deviations from each group’s
10% trimmed mean, whereas W5 is defined analogously using the group median.
Under normality, Bartlett’s test is the most powerful but is sensitive to the
departures from normality. In contrast, W;, and W5, tests maintain better control
of Type I error rates in the presence of non-normal data, though their power may
be low for some distributions and sample size configurations, see Conover et al.
(1981) and Jayalath et al. (2017).

Motivated by their prevalent usage in applications, computational simplicity,
and robustness to departures from normality, we focus on the W, and W5 tests
in this study. For both procedures, the usual one-way ANOVA F-ratio is
computed on absolute deviations; p-values are obtained from the F reference
distribution with (k — 1, N — k) degrees of freedom, and H, in (1) is rejected
when the observed statistic exceeds the corresponding critical value. However,
W, and Wsq tests may fail to control the Type I error adequately in certain
distributional settings, especially for small samples. Inspired by Tiku (1965), we
approximate the null distributions of the W;, and Wg, test statistics using the
three-moment chi-square approximation, thereby overcoming this limitation. In
their study, approximation was applied to the distributions of the Watson’s Uj



and Anderson-Darling’s W2 statistics and resulting upper-tail percentage points
were shown to agree closely with those reported by Stephens (1964). Tiku and
Wong (1998) developed three-moment chi-square and four-moment F
approximations for unit-root testing in AR (1) models when the underlying
distributions are symmetric. Siiriicii and Sazak (2009) provided two-moment
normal and three-moment chi-square approximations for distribution of the sum
of independent Weibull random variates and showed that they are accurate and
useful for detecting production stabilities. Giiven (2023) used three-moment chi-
square and four-moment F approximations for the null distributions of Cochran’s
(1937) test and its robust version.

The remainder of the paper is organized as follows. Section 2 briefly reviews
Bartlett’s test, Levene’s test, and the W;, and W5, tests. Section 3 describes a
three-moment chi-square approximation for the null distributions of the W, and
W5, statistics. Section 4 conducts a Monte Carlo simulation study to evaluate the
simulated Type I error rate and power for W, W5, and their moment-matched
counterparts under different distributions and sample size configurations. Section
5 presents concluding remarks.

2 Descriptions of the Tests
In this section, the Bartlett, Levene, W;, and Wg, tests for testing the
homogeneity of variances are briefly described. Let X;1, Xip, ..., Xin, (i =
1,2,..,k;j =1,2,...,n;) be independent random samples of size n; drawn from
k normal groups, each with variance ¢/. Define the sample mean and variance
Z;-l:il(xij_)?i)z

ni—

of the ith group as X; and S? = , respectively. Also, total sample size

isN = Zi-;l n;.
Bartlett’s Test: Bartlett’s test statistics is defined as

_ (N-K)InSZ-Y¥  (n;-1)InS?
- 1+C

BT

where

k
_ 2 m-1)S?

SZ
a N-k

and the correction factor

€= 3(k1—1)( ﬁlﬁ N Ni—k)




The null hypothesis in (1) is rejected when
BT > xi_o(k — 1),

where yZ_,(k — 1) denotes the 100(1 — a)th percentile of the y2distribution
with (k — 1) degrees of freedom.

It is well known, however, that Bartlett’s test is highly sensitive to departures
from normality.

Levene’s Test: Levene’s test is defined as

_ (N-R)TE ni(F-2.)?
(k-1 X, 27 (2ij-2:)"

0

where

— _ n: _ n;
Zij = |XU _Xi|= Zi.= Zjélzij/ni and Z..= g=12j;12ij/N'

The null hypothesis is rejected when
Wy > F_q(k—1,N — k),

where F;_,(k —1,N — k) denotes the 100(1 — a)th percentile of the F-
distribution with (k — 1) and (N — k) degrees of freedom.

W 1o Test: Brown and Forsythe (1974) revised Levene’s test by using trimmed
mean rather than sample mean as follows

(N XK ni(z-2.)?
10 (k—-1) 2{'{:1 Z;;il(zij—z_i.)z'

where

~ _ n; _ n;
Zij = Xl] _Xi(lo)la Zi. = Zjélzij/ni and Z..= ?:12]';121']'/1\]’



Here, X i(10) denotes the 10% trimmed mean of the ith group.
The null hypothesis in (1) is rejected when
WlO > Fl—a(k - 1,N - k),

where F;_,(k —1,N — k) denotes the 100(1 — a)th percentile of the F-
distribution with (k — 1) and (N — k) degrees of freedom.

Wy Test: Brown and Forsythe (1974) also proposed the W5, test, which
replaces the group mean in Levene’s test statistics with the group median. It is
defined as

(N-K)Xk n (z.-2..)?
WSO = k n: — 2
(k=D X, Zj;l(zij - z.)

where

zij = |Xij — X

, Zj.= Z?ilzij/ni and Z..= ?ZIZ?LIZU/N.
Here, X; denotes the median of the ith group.

The null hypothesis in (1) is rejected when

Wso > Fy_q(k —1,N — k),

where F;_,(k—1,N — k) denotes the 100(1 — a)th percentile of the F-
distribution with (k — 1) and (N — k) degrees of freedom.

Remark: Levene’s test statistics is based on absolute deviations from the
group mean. Transformed observations Z;; = |Xij —)?l-| are neither strictly
independent within each group nor normally distributed, however Levene showed
the correlation is of order 1/n?, so the resulting dependence has a negligible
impact on the distribution of W,. In addition, since the one-way ANOVA
procedures control the Type I error rates for moderate departures from normality,
Levene’s method explicitly takes advantage of this fact. Consequently, W, is
approximated by an F-distribution with (k — 1) and (N — k) degrees of freedom



under null hypothesis. In line with Levene’s test, W, and W;, tests use the same
F reference distribution, see Elamir (2023), Gastwirth et. al (2009) and references
therein.

3 Three Moment Chi-Square Approximation for W,¢ and W5, Statistics
Let Wy denote the statistics of interest and define

Wi = (Wr +ar)/br (2)
where Te{10,50}. Let ,u;(T) be the mean of Wy, and ugT), ,ugT) and ,uiT) be

variance, third and fourth central moments of Wi, respectively. Define the
Pearson coefficients

B = (1) (57) and 55 = P /(1) ®

If the coefficients in (3) satisfy the condition

ET=

;(T) _ (3 +15 ﬁ;m)l <0.5, 4)

then, the distribution of W/ is central chi-square with vy degrees of freedom. ar,
by, and v are obtained by equating the first three moments of both sides of (2)
as follows

Vr = S/ﬁI(Ua by = Q/ﬂ;T)/ZVT and ar = byvr — .“;(T) . (5)

Note that the line ﬁ; ™ = (3 +1.58; (T)) is known as the Type III line, see

for details Pearson (1959) and Tiku (1965). Realize that we refer to W as the
statistics of interest and to W, as its moment-matched chi-square counterpart.

4 Simulation Study

This section begins with a comparison of Type I error rates for W, Wsq, Wi°
and W7°, followed by a power comparison between W2° and W°. The data
Xij,
designed to cover various tail thicknesses and degrees of asymmetry. In this study

i=12,..,k;j=12,..,n; are generated from six different distributions



(a) Normal (u = 0,0 = 1), (b) Uniform (0,1),
©)STS(r=2,d=0,u=0,0=1),(d)LTS(p =3.5u=0,0 =1),
(e) x2.s, () Beta (a = 10,b = 2)

distributions are considered and the skewness and kurtosis values of them are
given below, see Table 1.

Table 1. Skewness and kurtosis values for the distributions considered in the
simulation study.
@ ® @© (@ (¢ (H
Skewness 0 0 0 0 1.265 -0.921
Kurtosis 3 1.8 2437 6 5.4 3.789

From Table 1 it is evident that the first four distributions are symmetric, while
the last two are right-skewed and left-skewed, respectively. Detailed definitions
and properties of the LTS and STS distributions proposed by Tiku and Kumra
(1985) and Tiku and Vaughan (1999), respectively, are provided in the Appendix.

The simulation setup is organized as follows

Number of groups k 4
(5,5,5,5),(10,10,10,10),
(5,7,9,11), (10,15,20,25)

Sample sizes (n,, ny, n3, ny)

To estimate Type I error rates for Wy with Te{10,50}, we generate data under
the null hypothesis of homoscedasticity and compute W; then repeat this
procedure for R = 10,000 Monte Carlo replications. The Type I error rates for
Wy is the proportion of replications in which Wr exceeds the F critical value with
(k — 1, N — k) degrees of freedom.

Because the closed-form moments of Wr are analytically intractable, we
estimate its first four moments from the simulated Wy values via 10,000 Monte
Carlo replications. Using these estimates, we obtain E; from Eq. (4) and v, by,
and ay from Eq. (5), yielding a single set of (Er, vy, by, ar) for each T. We then
compute corresponding W/ values using Eq. (2) based on (ar, by) values for
each of the 10,000 simulated Wy values. The Type I error rates for W, is the
proportion of replications in which W/ exceeds the chi-square critical value
x%_,(vp). Equivalently, it is the proportion of replications in which Wy exceeds
the back-transformed cutoff ¢, = by x7_,(vr) — ar. Tables 2 and 3 report



u'l(T), ugT), ﬂfm, ﬁ;m, Er, and ¢, for the Wy statistics when T = 10 and T =
50, respectively.

Table 2. Simulated values of

,u;(w), #glo)) ﬁf(lo), ,8;(10), Ejo and ¢ 1o for Wy statistics.

#;(10) #gm) 1*(10) 2*(10) Eio  Cato
Sample sizes Normal (0,1)
(5,5.,5,5) 1.442 1.812 5704 11940 0.384 4.149
(5,7,9,11) 1.251 1.176  3.862 8.635 0.158 3413

(10,10,10,10)  1.125 0.949 3.633 8.479 0.029 3.063
(10,15,20,25) 1.112 0.888 3.274 8.183 0.272 2.980
Uniform (0,1)

(5,5.,5,5) 1.426 2.145 6.359 2.644 0.106 4.373
(5,7,9,11) 1.237 1.285 4.340 9.494 0.016 3.504
(10,10,10,10)  1.108 0.937 3.463 8.056 0.138 3.031
(10,15,20,25)  1.128 0.964 3.226 7.636 0.203 3.072
STS(r=2,d=0,u=0,0 =1)

(5,5,5,5) 1.418 1.766 4.858 10.297 0.009 4.084
(5,7,9,11) 1.249 1.240 3.871 8.543 0.263 3.469
(10,10,10,10)  1.095 0.902  3.345 7.919 0.099 2.979
(10,15,20,25)  1.150 0.969  3.409 8.133 0.020 3.105
LTS (p =3.5u=0,0=1)

(5,5,5,5) 1.605 2.060 5.309 11.380 0.415 4.489
(5,7,9,11) 1.360 1.323 3.936 9.376 0.472 3.654
(10,10,10,10)  1.131 0.887 3.097 7.700 0.055 2.994

(10,15,20,25)  1.119 0.846 3.140  7.691 0.019 2.940

xé

(5,5,5,5) 1.966 3487 7454 14.665 0.485 5.721
(5,7,9,11) 1.680 2394 5.686 11.988 0.459 4.792
(10,10,10,10)  1.301 1.285 3932 9.053 0.156 3.562
(10,15,20,25)  1.327 1314 3970 9.307 0.353 3.614

Beta (10, 2)
(5,5,5,5) 1.803 3.023 7.448 14.606 0.434 5.300
(5,7,9,11) 1.516 1.818 4.483 9.958 0.234 4216

(10,10,10,10)  1.279 1.247 3.971 9.296 0339 3.507
(10,15,20,25)  1.250 1.126 3307  7.982 0.021 3.354




Table 3. Simulated values of

,u;(SO), #gso)’ ,8:(50), B;(SO), Es5q and ¢, 50 for Wi statistics.

#;(so) #glo) 1*(50) ,82*(50) Eso  Caso
Sample sizes Normal (0,1)
(5,5,5,5) 0.703 0.318 2.566 6.839 0.010 1.810
(5,7,9,11) 0.808 0.433 2.769 7.371 0.217 2.103

(10,10,10,10) 0.915 0.593 3.410 8.611 0.495 2444
(10,15,20,25) 0.958 0.642 3.022 7.614 0.081 2.541
Uniform (0,1)

(5,5,5,5) 0.531 0.205 3.082 7.518 0.106 1.427
(5,7,9,11) 0.676 0.342 3.514 8.160 0.111 1.838
(10,10,10,10) 0.803 0.546 4.732 10.167 0.070 2.285
(10,15,20,25) 0.879 0.551 2.768 6.964 0.189 2.340
STSr=2d=0,u=0,0=1)

(5,5,5,5) 0.623 0.272 3.101 7.454 0.198 1.656
(5,7,9,11) 0.774 0.392  2.665 7.423 0.426 2.005
(10,10,10,10) 0.882 0.619 3.935 8.847 0.055 2452
(10,15,20,25) 0.931 0.603 3.152 8.071 0.344 2.468
LTS (p = 35,4 = 0,0 = 1)

(5,5,5,5) 0.754 0.355 2.654 7.022  0.041 1.925
(5,7,9,11) 0.883 0.503 3.218 8.290 0.463 2.287
(10,10,10,10) 0.948 0.595 2.855 7.201 0.081 2.469

(10,15,20,25)  0.999 0.644 2.516  6.809 0.035 2.572

X2

(5,5,5,5) 0.763  0.387 4.051 9.463 0.388 2.005
(5,7,9,11) 0914 0.566 3.132 7361 0.337 2402
(10,10,10,10) 0988 0.731 4.109  9.261 0.097 2.695
(10,15,20,25) 1.006 0.711 3.498  8.325 0.078 2.681

Beta (10, 2)
(5,5,5,5) 0.724 0.343  3.055 7.701 0.119 1.882
(5,7,9,11) 0.872 0.518 3.270 8.167 0.262 2.298

(10,10,10,10) 0983 0.766 4.740 10.520 0.409 2.738
(10,15,20,25)  0.989 0.688 3.206  7.956 0.148 2.631

It can be seen from Tables 2 and 3 that the condition E7 < 0.5 in (4) is satisfied
in all settings for Te{10,50}. Therefore, the chi-square approximation is
applicable. For the same settings, the simulated Type I error probabilities P; (for
Wio), P, (for W), P3(Ws) and P, (for W;°) are reported in Table 4. Under
the null hypothesis Hy: 62 = 07 = -+ = g, these are defined as

Py =Pr{Wio > Fi_o(k = 1,N — k)|Ho}, P, = Pr{W,° > x{_,(v10) | Ho},
Py = Pr{Wso > Fi_q(k — 1, N — k)|Ho}, Py = Pr{W3° > x7_o(vso) | Ho}.
It should be realized that P, and P, are equivalent to



Py =Pr{Wjy > cq0 | Ho} and P, = Pr{ W5y > ¢4 50 | Ho},
respectively.

Table 4. Simulated Type I error probabilities P; (for W), P, (for Wi°),
P3 (Wso) and P4_ (for WASO)

Py P, Ps Py
Sample sizes Normal (0,1)
(5,5,5,5) 0.089 0.048 0.003 0.049

(5,7,9,11) 0.077 0.049 0.011 0.048
(10,10,10,10)  0.059 0.050 0.027 0.049
(10,15,20,25) 0.062 0.048 0.035 0.049
Uniform (0,1)
(5,5,5,5) 0.096 0.046 0.001 0.052
(5,7,9,11) 0.079 0.048 0.008 0.048
(10,10,10,10) 0.062 0.051 0.022 0.049
(10,15,20,25) 0.069 0.051 0.029 0.049
STS(r=2,d=0,u=0,0=1)
(5,5,5,5) 0.090 0.050 0.002 0.048
(5,7,9,11) 0.076  0.049 0.009 0.048
(10,10,10,10)  0.057 0.049 0.030 0.050
(10,15,20,25) 0.072 0.048 0.033 0.047
LTS (p =3.5,u=0,06 =1)
(5,5,5,5) 0.104 0.047 0.005 0.047
(5,7,9,11) 0.086 0.047 0.018 0.048
(10,10,10,10) 0.058 0.050 0.028 0.051
(10,15,20,25) 0.060 0.048 0.039 0.048
X2
(5,5,5,9) 0.153 0.045 0.008 0.047
(5,7,9,11) 0.139 0.047 0.025 0.051
(10,10,10,10) 0.088 0.049 0.037 0.045
(10,15,20,25) 0.102 0.048 0.045 0.049
Beta (10, 2)
(5,5,5,9) 0.133 0.045 0.005 0.049
(5,7,9,11) 0.122 0.047 0.018 0.049
(10,10,10,10) 0.086 0.045 0.042 0.047
(10,15,20,25) 0.089 0.051 0.042 0.049

According to Table 4, the W, test is liberal for both balanced and unbalanced
sample sizes. On the other hand, the W5, test is conservative for all sample sizes
except for the underlying distribution is yZ when the sample size is equal to
(10,15,20,25) and Beta (10, 2) when the sample sizes are equal to (10,10,10,10)
and (10,15,20,25). Realize that the distributions yZ and Beta (10, 2) are both

10



skewed. For W% and W7°, the simulated Type I error rates are very close to the
predetermined nominal level 0.050 regardless of the considered distributions and
sample-size configurations.

Based on simulated Type I error rates, our attention is restricted to the
W %and WO statistics to enable a meaningful and fair power comparison. Power
values for W;%nd W;° are presented in Figure 1 as a curves for different A
values, under the configurations of variance ratios of: 03:0%:02 = 1: 1: 12: 23
for both equal and unequal sample-size settings. It should be noted that when A =
1, the configuration reduces to homoscedastic case, so the simulated power
values are equal to the simulated Type I error rates.

10 50

Test Wy = W,
(ny, Ny, Nz, Ng) = (5,5, 5, 5) (N4, Np, N3, Ny) =(5,7,9, 11)
1.00
0.80
060
0.40
020
0.05
0.00
-
[F]
3
o (nq, Ny, N3, ny) = (10, 10, 10, 10) (nq, Ny, N3, ny) = (10, 15, 20, 25)
1.00
0.80
060
0.40
020
0.05
0.00
4 8 12 16 4 8 12 16

(a) Normal

1"



Power

Power

- 10 50
Test W, Wy

(ny, Ny, Ny, ng) = (5, 5, 5, 5) (ny, Ny, N3, ny) =(5,7,9,11)

(ny, ng, ng, ng) = (10, 10, 10, 10) (n4, Ny, ng, ng) = (10, 15, 20, 25)

(b) Uniform

_ 0 50
Test A W

(nq, Ny, Ng, ng) = (5, 5,5, 5) (nq, Ny, Nz, ng) =(5,7,9,11)

(ny, Ny, N3, ng) = (10, 10, 10, 10) (N4, Ng, N3, ng) = (10, 15, 20, 25)
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Power

- 10 —
Test A Wy

(ny, ng, Nz, ny) = (5, §, 5, 5) (nq, Ny, N3, Ny) =(5,7,9,11)

Power

(ny, ng, ng, ng) = (10, 10, 10, 10) (ny, ng, ng, ng) = (10, 15, 20, 25)

(d) LTS

_ 0 50
Test W, W,

(n4, ng, nz, ny) =(5, 5, 5, 5) (nq, Ny, Nz, ng)=(5,7,9,11)

v A e e e
-

(ny, Ny, Ny, ny) = (10, 10, 10, 10) (ny, Ny, Ny, ) = (10, 15, 20, 25)

(e) Chi-square
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Test W, — W

(ny, Ny, Ny, ng) = (5, 5, 5, 5) (ny, Ny, N3, ny) =(5,7,9,11)

(ny, ng, ng, ng) = (10, 10, 10, 10) (n4, Ny, ng, ng) = (10, 15, 20, 25)

Figure 1. Simulated power curves for W1%nd W2 statistics under the
configurations of variance ratios of: 05: 02: 62 = 1: 1: 12: 23 when the

underlying distributions are Normal, Uniform, STS, LTS, Chi-Square and Beta.

The results in Figure 1 indicate that W° test exhibits substantially greater
power than W0 for small sample sizes, while the power advantage of W2° over
W20 is particularly pronounced when the underlying distribution is skewed. For
moderate sample sizes, two statistics show similar power performance regardless
of whether sample sizes are equal or not. As expected, increasing A (stronger
heteroscedasticity) values lead to higher power values for both tests.

5 Concluding Remarks

In this study, we conducted a comparative assessment of Brown-Forsythe tests
based on the 10% trimmed mean and the median, denoted W;, and W;y,
respectively, for testing homogeneity of variances. These tests are widely used
because they are robust to non-normality and straightforward to implement.
Although they are often treated as approximately F distributed under the null
hypothesis, the F reference distribution can yield size distortions from small to
moderate samples under certain distributional settings. To better approximate the

14



null distribution of W;, and W5, a three-moment chi-square approximation is
used and moment-matched counterparts, W1%nd W7° are defined. Accuracy of
this approximation is investigated by Monte Carlo simulation for small and
moderate sample sizes under symmetric and asymmetric distributions. Monte
Carlo results show that W, is liberal and W5 is conservative in general. On the
other hand, the simulated Type I error rates of W;%and W are very close to the
nominal level 0.050 across all distributional settings and designs. In addition,
W20 exhibits higher power than W0 for small samples, with the advantage most
pronounced under skewness. According to the simulation results, W0 is
preferred for small-sample sizes while the use of either the W2° or the W°
statistic is recommended for moderate sample sizes. To the best of our
knowledge, this is the first study that employs and evaluates a three-moment, chi-
square approximation specifically for the Brown-Forsythe trimmed-mean and
median tests. The methodology presented here can be extended to alternative
distributional approximations in the context of variance-homogeneity in a future
study.

Appendix
LTS Distribution: The probability density function (pdf) of LTS distribution is

— 1 c-w\P o
fe) = VtB(1/2,p-1/2)a (1 + to2 ) )T <X<p=2t=2p-3

Here, p, 0 and p denote the location, scale and shape parameters, respectively.
If random variable X is distributed as LTS, it is denoted by X ~ LTS (p, 1, o). The
mean and variance of X are E(X) =pu and V(X) = 02, respectively. The
kurtosis (f8,) values of LTS distribution are given below for certain values of p

p= 2.5 3.5 5 10 oo
B, = o0 6 42 34 3

STS Distribution: The pdf of STS distribution is

Fo) =1+ g(g)z)r exp(~2(2E)) o < x < on

where 7 is a constant, A = r/(r —d), d < r and
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c=1/%5-(}) (%)J (@D/25()).

Here, ¢ and ¢ denote the location and scale parameters, respectively. If

random variable X is distributed as STS, it is denoted by X ~ STS(r,d, u, o).
The mean and variance of X are

EX)=u and VX)) =CXi(7) (;—r)] (G +1)1/27%1( + DY) o2,

respectively. The kurtosis (f8,) values of STS distribution for certain values of d
are given below when r =2 and 4

d= -1 -0.5 0.0 0.5 1.0 1.5 2.5 3.5
r=2
2.648 2.559 2437 2265 2.026 1.711
r=4

2.541 2464 2370 2255 2.118 1957 1591 1.297

Here, the dashed entries are used for d > r since the kurtosis values are
defined when d < r and it is clearly seen that the kurtosis values are less than 3.
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Chapter 2

Photodetection and Solar Energy Harvesting
Using Schottky Junctions

Ilhan CANDAN!, Sezai ASUBAY?
Abstract

Schottky junctions, formed at the interface between a metal and a semiconductor,
play a critical role in modern optoelectronics due to their unique ability to facilitate
ultrafast charge separation without requiring p—n junctions. This chapter explores the
physical principles, material systems, and device architectures underpinning the
application of Schottky junctions in photodetection and solar energy harvesting. By
exploiting the built-in electric field at the metal-semiconductor interface, Schottky
devices enable efficient carrier extraction, making them highly suitable for broadband
photodetectors, infrared sensors, and low-cost photovoltaic systems. The chapter
begins by discussing the fundamentals of Schottky barrier formation, Fermi-level
pinning, and charge transport mechanisms, including thermionic emission and
tunneling. It then reviews a wide range of materials used in Schottky-based devices,
including traditional semiconductors like silicon, compound semiconductors such as
GaAs and InGaN, and emerging materials like two-dimensional semiconductors and
metal oxides. A key focus is on Schottky solar cells, which offer simplified
architectures and potential cost advantages over conventional p—n junction solar cells.
We also explore hot-carrier injection in plasmonic metal-semiconductor interfaces,
an approach that leverages light-matter interaction at the nanoscale to surpass
traditional efficiency limits. Finally, the chapter outlines current challenges such as
barrier height optimization, interface stability, and contact engineering, along with
recent strategies to address them. Through a combination of theoretical insights and
practical examples, this chapter provides a comprehensive understanding of how

photodetection technologies. -generation light-harvesting and Schottky junctions
are being harnessed for next
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1. Introduction

The continuous demand for efficient energy conversion and advanced
optoelectronic devices has driven significant research into novel materials and
architectures for photodetection and solar energy harvesting [1, 2]. Among
various approaches, Schottky junctions—formed at the metal-semiconductor
interface—have emerged as a promising platform due to their unique electronic
and optical properties [3]. Unlike conventional p—n junctions, Schottky contacts
rely on the rectifying barrier created by the work function difference between a
metal and a semiconductor, enabling ultrafast carrier transport, low fabrication
complexity, and compatibility with diverse material systems [4, 5].

In the context of photodetection, Schottky junctions offer several advantages
[6, 7]. The built-in electric field at the interface facilitates rapid separation of
photogenerated carriers, yielding fast response times and broad spectral
sensitivity. By carefully engineering the choice of metal, semiconductor, and
interface quality, Schottky-based photodetectors can achieve high responsivity
and detectivity across ultraviolet, visible, and infrared regimes. Additionally,
their relatively simple structure allows integration into flexible and transparent
platforms, which is attractive for next-generation wearable and biomedical

SENSors.
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Figure 1. (a) Schematic illustration of the van der Waals (vdW) integration
process for metal-semiconductor junctions: (i) deposition of a metal film onto a
sacrificial substrate; (ii) delamination of the metal layer; (iii) alignment with the
target semiconductor; and (iv) lamination of the contact followed by probe
window opening. (b—d) Cross-sectional schematics and transmission electron
microscopy (TEM) images of transferred Au electrodes on MoS:, showing
atomically sharp and contamination-free metal-semiconductor interfaces. (e)
Optical micrographs of a MoS: device with transferred electrodes (top) and after
mechanical release of the electrodes (bottom). The MoS: layer remains intact
following integration and separation of the Au thin film, confirming that the
transferred interface is dominated by vdW interactions without direct chemical
bonding. (f~h) In contrast, cross-sectional schematics and TEM images of
conventionally electron-beam-deposited Au electrodes on MoS: reveal
significant interfacial damage. High-energy Au atoms and clusters bombard the
MoS: surface, leading to defect generation, interdiffusion, chemical bonding, and

the formation of a disordered glassy layer. (i) Optical images further demonstrate
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this difference: when deposited electrodes are mechanically removed, the
underlying MoS: surface is severely damaged, indicating strong chemical
bonding and direct metal-semiconductor interactions in deposited junctions [3].

For solar energy harvesting, Schottky junction solar cells provide an
alternative to traditional silicon-based devices [8, 9]. Although they typically
exhibit lower efficiency compared to optimized p—n junction cells, they offer
unique benefits, such as low-cost fabrication, tunable spectral absorption, and the
potential to exploit hot-carrier effects. Recent progress in nanostructuring,
plasmonic enhancement, and two-dimensional (2D) semiconductors has further
expanded the scope of Schottky junction photovoltaics. By combining nanoscale
engineering with advanced materials, researchers are addressing fundamental
challenges such as barrier height control, recombination losses, and light

absorption enhancement.

00, Mt 777
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Oxide

Semiconductor

I

Ohmic contact
Figure 2. MOS structure’s schematic diagram [10].

This chapter provides an overview of the fundamental principles of Schottky
junctions, their role in photodetection and solar energy harvesting, and recent
advancements that highlight their potential as building blocks for future
optoelectronic technologies.
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2. Fundamentals of Schottky Junctions

2.1 Formation and Energy Band Structure

A Schottky junction is formed when a metal with an appropriate work
function is brought into contact with a semiconductor. At thermal equilibrium,
the difference in Fermi levels leads to the formation of a depletion region in the
semiconductor and a built-in potential at the interface [11, 12].

For an n-type semiconductor, if the metal work function ¢,, is greater than
the semiconductor electron affinity y, a barrier is formed for electron flow from
the semiconductor to the metal, known as the Schottky barrier height (SBH).
The ideal SBH is given by:

bn = bm — X (1)

In practice, however, Fermi level pinning and interface states can modify the
effective barrier height.

Glass substrate

Figure 3. Au/SnO2/n-LTPS MOS Schottky diode’s schematic
cross-section [10, 13].

2.2 Current Transport Mechanisms
Current through a Schottky junction under forward bias occurs primarily via
thermionic emission, where electrons overcome the potential barrier [14, 15].

The current density J is described by the Richardson equation:
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] =AxT?exp (— %) [exp (:—V) - 1] )

Where:
e Ax is the Richardson constant,
e T is temperature,
e (g, is the barrier height,
e nis the ideality factor,
e Visapplied voltage.

3. Schottky Junctions in Photodetectors

3.1 Working Principle

Photodetectors based on Schottky junctions operate by converting incident
photons into electrical signals. When light with energy hv > E, strikes the
semiconductor side of the junction, electron-hole pairs are generated [6]. The
built-in electric field at the Schottky barrier separates the charge carriers,
allowing for a photocurrent to be measured.

Unlike photoconductive detectors, Schottky photodiodes are typically faster
due to the short transit time across the depletion region and low capacitance.

(a) (b)

- Imerface Interface

stales states

Au n- GaN Au 210 n-GaN

Figure 4. (a) Current—voltage (I-V) characteristics and (b) variation of the
surface state density (NSS) as a function of EC—ESS for Au/n-GaN and
Au/ZrO2/n-GaN Schottky junctions. The inset shows the schematic structure of
the Au/ZrO»/n-GaN diode [16].
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3.2 Key Performance Parameters

¢ Responsivity (R): The output current per unit incident optical power,
typically in A/W.

e Quantum Efficiency (QE): The ratio of the number of charge carriers
collected to the number of incident photons.

e Response Time: Time taken by the device to respond to an optical signal.

o *Detectivity (D)**: A measure of the signal-to-noise ratio, often used for

low-light applications.

The performance of Schottky photodetectors is commonly characterized using
several key parameters that determine their suitability for various photodetection
applications. Responsivity (R) represents the output current generated per unit of
incident optical power and is typically expressed in amperes per watt (A/W). It
reflects the device’s ability to convert incoming light into an electrical signal.
Quantum efficiency (QE), on the other hand, defines the ratio of the number of
charge carriers collected to the number of incident photons, providing a measure
of how efficiently the device utilizes incoming photons for charge generation.
Another important characteristic is the response time, which indicates how
quickly the photodetector reacts to variations in the optical signal—an essential
factor for high-speed communication and imaging applications. Lastly,
detectivity (D) serves as a measure of the signal-to-noise ratio, describing the
detector’s capability to sense weak optical signals, particularly in low-light
environments. High detectivity is especially desirable for applications requiring

sensitive light detection, such as night vision, astronomy, and remote sensing.

3.3 Material Systems for Schottky Photodetectors
Several materials have been employed to enhance the performance of
Schottky photodetectors:

e Silicon (Si): Widely used due to its mature fabrication technology,
suitable for visible to near-infrared detection.

e Gallium Arsenide (GaAs): Offers higher electron mobility and absorption
efficiency.

e Two-Dimensional Materials (e.g., MoS2, graphene): Enable ultrafast and
broadband photodetection with sub-nanometer thicknesses.
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¢ Plasmonic Metals (Au, Ag): Used to enhance light absorption via surface

plasmon reésonance.

To improve the efficiency and functionality of Schottky photodetectors, a
variety of materials have been explored and integrated into device architectures.
Silicon (Si) remains the most widely used material owing to its well-established
fabrication technology and compatibility with existing semiconductor
processing, making it particularly suitable for photodetection across the visible to
near-infrared spectral range. Gallium arsenide (GaAs) is another prominent
material that offers superior electron mobility and higher optical absorption
efficiency compared to silicon, enabling faster response times and enhanced
sensitivity. In recent years, two-dimensional (2D) materials such as molybdenum
disulfide (MoS:) and graphene have attracted significant attention due to their
exceptional electronic and optical properties, ultrafast carrier dynamics, and
atomic-scale thickness, which facilitate broadband and ultrafast photodetection.
Additionally, plasmonic metals such as gold (Au) and silver (Ag) have been
incorporated to enhance light absorption through surface plasmon resonance
effects, thereby boosting the overall photoresponse of Schottky-based detectors.
The strategic combination of these materials continues to drive innovation in
high-performance, miniaturized, and energy-efficient photodetection
technologies.

3.4 Applications

Schottky photodetectors have found widespread applications across a range of
advanced optical and electronic systems due to their fast response times, high
sensitivity, and compatibility with various semiconductor materials. They are
extensively employed in optical communication systems, where rapid detection
of optical signals is essential for high-speed data transmission. In addition,
Schottky photodetectors are well-suited for ultraviolet (UV) and X-ray detection
owing to their ability to operate efficiently at short wavelengths and their low
dark current characteristics. These devices are also utilized in imaging sensors,
where their excellent temporal resolution enhances image quality and enables
high-speed image capture. Furthermore, Schottky photodetectors play an
important role in light detection and ranging (LIDAR) as well as time-of-flight
(ToF) systems, contributing to precise distance measurement and three-
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dimensional imaging in applications such as autonomous vehicles and remote

sensing.

4. Schottky Junctions in Solar Energy Harvesting

4.1 Operating Principle of Schottky Solar Cells

Schottky solar cells leverage the same metal-semiconductor junction to
separate photo-generated carriers [17]. However, compared to p—n junction solar
cells, Schottky devices often suffer from lower open-circuit voltage due to high
recombination rates and limited built-in potential.

Nevertheless, their simplified structure, low-temperature fabrication, and
tunability of barrier height via material selection make them attractive for niche
photovoltaic applications [18].

4.2 Device Architectures

Typical Schottky solar cells consist of:

e Front contact metal (forming the Schottky barrier)

¢ Semiconductor absorber (e.g., Si, GaAs, perovskites)

e Back contact (ohmic or Schottky, depending on design)

Advanced architectures may include:

e Core—shell nanostructures

e Transparent conducting oxides (TCOs) as front electrodes

¢ Plasmonic nanoparticles for light trapping and absorption enhancement

4.3 Material Choices

Metals: Au, Ag, Al, and Pt are commonly used, chosen based on their work
function and optical properties.

Semiconductors:

o Siand GaAs: Conventional, well-studied choices.

o ZnO and TiO2: Used in ultraviolet and dye-sensitized solar cells.

o Organic semiconductors: Enable flexible, lightweight solar devices.

o 2D materials: Offer unique opportunities for tunable bandgaps and ultra-

thin devices.
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4.4 Performance Challenges and Strategies
Challenges in Schottky solar cells include:
e Low open-circuit voltage (Voc) due to small built-in potential.
¢ Interface recombination at the metal-semiconductor contact.
¢ Fermi level pinning limiting tunability of barrier height.
To overcome these, several strategies are used:
e Insertion of interfacial layers (e.g., oxide barriers) to passivate defects.
e Use of high work function metals to increase barrier height.
¢ Nanostructuring to increase light absorption and carrier collection.

5. Emerging Trends and Research Directions

5.1 Plasmonic Enhancement

Integrating plasmonic nanoparticles (e.g., Au nanospheres) with Schottky
devices can significantly enhance light absorption due to local field enhancement
and hot-electron injection mechanisms. These effects are especially beneficial in
sub-bandgap photon utilization and broadband absorption [19].

5.2 Schottky Junctions with 2D Materials

Atomically thin materials like graphene and transition metal dichalcogenides
(TMDs) have emerged as promising candidates for Schottky-based devices [20].
These materials offer:

e Tunable electronic and optical properties

¢ High carrier mobility

e Minimal bulk recombination

Graphene/semiconductor Schottky solar cells have demonstrated enhanced

transparency, flexibility, and mechanical robustness.

5.3 Flexible and Transparent Devices

Schottky junctions are particularly suited for flexible and transparent
electronics [21, 22]. Using metal nanowires, conductive polymers, or ultrathin
films, researchers are developing conformable photodetectors and solar cells for

wearable and portable systems.
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5.4 Integration with CMOS and Photonic Platforms

The compatibility of Schottky diodes with standard CMOS processes enables
their integration into existing electronic and photonic circuits [23]. Applications
include on-chip photodetectors, optical interconnects, and monolithic integration
of photovoltaic cells.

Future Perspectives

The future of Schottky junction—based devices lies in the convergence of
advanced materials and innovative device architectures. One promising direction
is the integration of two-dimensional (2D) materials such as graphene, MoS., and
other transition metal dichalcogenides with metals to form tunable Schottky
contacts. Their atomically thin nature enables precise control over barrier height,
reduced recombination losses, and flexible, transparent optoelectronic platforms.
Similarly, perovskite-metal hybrid junctions have gained attention for solar
energy harvesting, where the unique optoelectronic properties of perovskites
combined with Schottky interfaces can potentially yield high-efficiency, low-cost
devices.

In photodetection, future research is expected to focus on multifunctional
Schottky detectors that combine high-speed response with broadband sensitivity,
while exploiting plasmonic and hot-carrier effects to extend detection into the
mid-infrared region. For solar cells, innovations in nanophotonic light
management and quantum-engineered structures may allow Schottky junctions
to surpass some of their traditional efficiency limits.

Ultimately, the continued synergy between materials discovery, nanoscale
fabrication, and theoretical modeling will determine how far Schottky junction
technologies can advance, with the potential to redefine next-generation

optoelectronics and sustainable energy solutions.

6. Conclusion

Schottky junctions, based on the rectifying interface between metals and
semiconductors, have demonstrated considerable promise in advancing both
photodetection and solar energy harvesting technologies. Their fundamental
advantage lies in the intrinsic electric field at the metal-semiconductor interface,
which enables efficient carrier separation, rapid response times, and broad
spectral tunability without requiring complex doping processes. This makes them
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attractive for applications ranging from ultraviolet and infrared photodetectors to
thin-film and nanostructured photovoltaic devices.

In photodetection, Schottky junction devices benefit from their inherently fast
carrier dynamics, enabling high-speed operation crucial for optical
communication, imaging, and sensing. By leveraging plasmonic effects, interface
engineering, and novel material platforms such as two-dimensional
semiconductors, their performance has been extended toward enhanced
sensitivity, lower noise levels, and adaptability to flexible and transparent
substrates.

For solar energy harvesting, Schottky junctions offer an alternative to
conventional p—n junction solar cells, particularly in applications where cost,
weight, and ease of fabrication are critical. While their conversion efficiencies
are currently lower than those of mature silicon technologies, significant progress
has been made in overcoming limitations through barrier height optimization,
nanostructuring for enhanced light trapping, and the integration of advanced
materials. These strategies have opened pathways toward exploiting hot-carrier
phenomena and plasmonic enhancement, potentially pushing Schottky-based
solar devices into new realms of efficiency and functionality.

Looking forward, the synergy between nanotechnology, materials innovation,
and device engineering will be essential in realizing the full potential of Schottky
junctions. Continued research efforts aimed at addressing stability, scalability,
and interfacial control will determine their broader adoption in commercial
applications. Ultimately, Schottky junctions stand as a versatile platform,
bridging fundamental physics with practical optoelectronic solutions, and
offering exciting prospects for next-generation photodetection and renewable
energy technologies.
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Chapter 3

Performance Evaluation of Numerical Root Finding
Methods Using Fibonacci and Golden Ratio Algorithms

Bayram KOSE!, Bahar DEMIRTURK?2, Siikran KONCA3

Abstract

Root finding techniques are essential in numerical methods for solving
complex engineering equations when analytical methods are insufficient. These
techniques efficiently locate the zeros (roots) of a function, minimizing
computational effort. They are also crucial in optimization problems to find the
minimum value of a function. For example, root finding problems may be
encountered, such as the intersection points of gears with different numbers of
teeth, the moments when the current in an electric circuit is zero, the moments
when the electric field along the line connecting two interacting charges is zero,
or the calculation of function roots when calculating the eigenvalues of a system.
The root finding method is also used in optimization problems. In optimization
algorithm, root search is a method used to find the minimum value of a function.
In this method, we try to find the point where the function is closest to zero by
calculating the values of the function at points within a range. This point gives
the minimum of the function. If the function has more than one minima, the root
search method can find only one of them. This is one of the disadvantages of the
root search method. Also, it may require a lot of processing to calculate the values
of the function. Therefore, more efficient and faster optimization algorithms
continue to be developed. Algebraic properties are vital in designing efficient
algorithms, and the choice of algorithm depends on the function's characteristics.

When we look at recent studies; Gemechu and Thota (Gemechu and Thota,
2020) developed new iteration algorithms for finding the root of a given nonlinear
equation using nonlinear Taylor polynomial interpolation and an error correction
term modified by the concept of fixed point. Thota (Thota, 2019) developed a
new root-finding algorithm using exponential series. Sabharwa (Sabharwa, 2019)
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designed and implemented a new algorithm that is a dynamic mixture of halving
and regula falsi algorithms. Semenov (Semenov, 2015) proposed a method for
computing all roots of systems of nonlinear algebraic equations in a
multidimensional interval based on the Krawczyk operator. Vatansever and
Hatun (Vatansever and Hatun, 2015) developed a graphical interface program
based on Newton methods.

This study analyzes the performance of the Fibonacci search algorithm and
the golden ratio search algorithm in finding the roots of selected polynomial,
trigonometric, and logarithmic test functions. The results from these methods are
compared by calculating the absolute error, average absolute error, and average
approximation errors to determine the most efficient approach with the least error.
Using Matlab, we obtained these error metrics by comparing the number of
iterations required to find the roots for each algorithm, the proximity of the roots
found by each algorithm, and the results against the actual root values. The
findings were evaluated to provide insights and recommendations on which
algorithm is preferable in different scenarios based on numerical stability.
Finally, we assessed the results and offered suggestions on the optimal algorithm
choice for various situations considering numerical stability.

Keywords. Root-finding algorithms, Optimization algorithms, Golden ratio
search algorithm, Fibonacci search algorithm.
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1. INTRODUCTION

Fibonacci numbers, which also form the basis of mathematical concepts such
as the Golden Ratio and Pascal's triangle, are a special sequence of numbers
defined by Italian mathematician Leonardo Fibonacci in the 13th century. In the
book Liber Abaci, Fibonacci mentioned the question of a pair of rabbits. "If a pair
of rabbits gives birth to a new pair of rabbits every month and it takes a month
for the newborn pair to mature, find out how many rabbits there will be at the end
of 100 months." The answer to the question was the Fibonacci sequence with the
numbers 0, 1, 1,2, 3,5, 8, 13, 21, 34, 55, 89, 144, .... Clearly, Fibonacci sequence
is a sequence of numbers where each number can be written as the sum of the
two numbers that precede it. When each number after the first number in the
Fibonacci number sequence is divided by the number after it, the result constantly
approaches the number 0.618. The golden ratio is a geometric and numerical ratio
that can be discovered between the parts of a whole, which has been applied in
art and architecture, and is thought to give the dimensions that can be called the
smoothest in terms of aesthetics and harmony. It is possible to encounter the
golden ratio in the leaf arrangement of many plants in nature, in the ratio of each
part to each other, from the anatomy of the human body to the arrangement of
internal organs. When a line segment needs to be divided into two parts in
accordance with the Golden Ratio, this line should be divided at such a point that
the ratio of the smaller part to the larger part should be equal to the ratio of the
larger part to the whole line (Markowsky, 1992).

Consider the interval [x,, x,,] where x,, is the lower bound and x,, is the upper
bound and the function has only one maximum. That is, the function is unimodal
in this interval. In the golden ratio search algorithm, the search is performed by
dividing the range by the golden ratio.

Let the length of the interval [x,, x,,] be [,. Let us divide this interval into

subintervals [y and [, such that, [y = [; + I, and;—1 = ;—2
0 1

L _ L L _ b
lo 1 L+l I

: . l
If the inverse of the equation is taken, then l—z =R
1

1+R—1
"R
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and the characteristic equation R? + R — 1 = 0 is obtained. Looking at the roots
of this equation, the positive root

V5 -1
R = = 0,61803 ...

gives the golden ratio.

The series given by the recurrence relation F,,,; = F, + F,,_; for F; = 0 and
F; =1 for Vn = 1 is called the Fibonacci series. Here F, is the n-th Fibonacci
number. The ratio of two consecutive terms in the Fibonacci series;

0/1=0,11=1,1/2=0.5,2/3=0.667,3/5=0.6,5/8 =0.625, 8/13 =0.615 ...

and if continued in this way, eventually the ratio of consecutive Fibonacci
numbers

Fny

lim =(0,61803 ...

n—oo

reaches the golden ratio (Koshy, 2001).

2. MATERIALS AND METHODS

2.1. Existence of Roots for Algebraic Equations

Finding the roots of algebraic equations plays a crucial role in solving
optimization problems and engineering applications. Consequently, the ability to
efficiently find equation roots is a fundamental skill for mathematical modeling
and solving problems in various engineering fields.

Now, let's present some basic theorems related to the existence and uniqueness
of these roots, commonly found in analysis textbooks (Xue-Mei Li, David Mond,
2013).

Theorem 2.1.1. (Bolzano Theorem)

If the function f'is continuous on the interval [a,b] and f{a).f(b)<0, then there
exists a ¢ in the open interval (a,b) such that f{c)=0.
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Figure 1. Bolzano Theorem

Theorem 2.1.2. If the function f is continuous, then the function | /| is
continuous.

Now let us give and prove the following theorem as an obvious consequence
of the above basic analysis theorems. This theorem will be used in the paper as
the Root Search method in the Optimization Algorithm (Xue-Mei Li, David
Mond, 2013).

Theorem 2.1.3. (Root Search in Optimization Algorithm)

For /=/a,b] and I CR, if the function f:/—R is continuous, then it has at least
one minima on this interval and if |f(x;)| = 0 then there exists at least one x; €
I, (i € N) satisfying this equality.

Proof. From the Extreme Value Theorem, if the function is continuous, it has
at least one minima. If |f(x;)| =0, then f(x;) = 0. Since this continuous
function f has at least one minimum in the given closed-bounded interval and
|f(x;)| = 0 this minimum takes its zero value at the roots x = x;, i € N, in the
given interval. Thus there is at least one x; € I, i € N, satisfying the equality
f(x;) = 0 (Kose et al., 2024).

2.2. Root Finding Methods

A root-finding algorithm is a numerical method or algorithm for finding a
value of x in a given function that makes the value of the function zero. There is
such a point x such that f(x)=0 and this x value is called the root of the function.

Consider a function f{x) in one variable. Suppose we want to solve the
following linear optimization model.
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Max f(x)

a<x<b

For some x, f"'(x) may not exist or it may be very difficult to solve the equation
f'(x)=0. How can the optimum value of the function f(x) be found if there is
only one vertex in a given interval?

If f(x) is unimodal in the interval [a, b], there is only one local maximum x
in the interval [a, b] and it is solved by the linear optimisation problem model
given above. X is the optimum solution of this model in the interval [a, b]. If
x; < x, at the points x; and x,, which are two points in the interval [a, b], we
can narrow the interval until we find the solution when we examine the function
f(x). When f(x;) and f(x,) are analysed, one of the following three cases
occurs. In all three cases, the optimum solution is in the interval [a, b].

Case 1. Since f(x;) < f(x;) and f(x), is increasing in at least part of the
interval [x4, x, ], the optimum solution cannot occur in the interval [a, x;] due to
the unimodality of f(x). Therefore X € (x, b].

Case 2. If f(x1) = f(x,), f(x) is decreasing in some part of the interval [x;,
X, ] and the optimum solution is in a < x,. Therefore X € [a, x;).

Case 3. If f(x1) > f(x,), then X € [a, x,).

The interval in which X is to be found in the interval [a, x;) or (x4, b] is called
the uncertainty interval. Many search algorithms utilise these ideas to reduce this
uncertainty range.

Many of these algorithms use the following steps:

Step 1. Start with /a,b] as the uncertainty interval for x. Examine f{x) for
reasonably chosen points x; and x,.

Step 2. Determine which of cases 1, 2 or 3 it fits and reduce the uncertainty
interval accordingly.

Step 3. Examine f{x) for two new points (the algorithm specifies how to

choose these two new points). Return to Step 2 until the uncertainty interval is
small enough (Winston, 2003; Kubat, Uygun).
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Tolerance control: Refers to repeat this process until a tolerance value is
reached within a specified margin of error.

Continuing with iterations: Repeating steps over the newly determined
range until the maximum number of iterations is reached to narrow the range.

By applying the steps in this order, the root of the function can be found by
the root finding algorithms. This process, by narrowing the range containing the
root at each iteration, will eventually lead to a very approximate root value (Kose
et al., 2024).

If we apply the root-finding methods to the first derivative of the function as
we apply them to the function itself, we identify the critical points of the function.
Thus, if the function is multimodal in the given interval, these critical points are
candidates for local maximum or local minimum points. If the function is
unimodal, the image of this critical point is a candidate absolute maximum or
absolute minimum value. Therefore, the following methods are applied to the
function and then to its first derivative to find both the root of the function and its
optimum value.

Let’s investigate two specific approaches: the Fibonacci search algorithm and
the golden ratio search algorithm.

2.2.1. Golden Ratio Search Algorithm
Given the function y = f(x), let f be continuous on the interval [x,, x,,]. Let
x, be the lower boundary and x,, be the upper boundary and the points x; and
X, are chosen according to the golden ratio rule as follows:

V5-1

Letx; = x4 +T.(xu —Xg).
5-1
Letx, = xy, —‘/—T.(xu — Xq).

Calculate the values of f'(x1) and f{(x5).

If f{x1)<f(x,), the search for roots in the interval [x,, x;{] continues. Then
X, = Xq is taken.

If f{x,)<f(x1), we continue to search for roots in the interval [x,, x;,]. In this
case, X, = X, is taken (Kdse et al., 2024).
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2.2.2. Fibonacci Search Algorithm

The Fibonacci Search Algorithm is to search an ordered sequence using
Fibonacci numbers. In this algorithm, the ordered sequence to be searched is
divided into parts based on Fibonacci numbers. Research on Fibonacci numbers
and the performance of this algorithm has an important place in computer science.

The Fibonacci Search Algorithm works as follows:

1. It is checked whether the sequence to be searched is greater or less than the
largest Fibonacci number.

2. If the number to be searched is smaller, the previous Fibonacci number is
added to the current number.

3. This process continues from the largest range to the smallest, narrowing the
range.

4. Finally, when the range is reduced to 1, the number is found (or not found
if the number is not in the series) (Kose et al., 2024).

3. PERFORMANCE MEASURES AND RESULTS

3.1. Test Functions and Simulation Graphs

Three different functions were used to test the Golden Ratio search algorithm
and Fibonacci search algorithms used to find the root of univariate algebraic
functions. The test functions are respectively defined with the intervals given next
to them

fO)=x*+x3>-7x*—-x+6,  [-3.53.5]
3
x
g(x) = cosx — = [-3.5,3.5]

h(x) = log(x? + 1.5x + 1), [—3.5,3.5]

will be considered. The graphs of these functions are given in Figure 2.

42



Figure 2. Graphs of the functions £, g and %

Figure 3. Graphs of | /|, |g| and |/| functions

3.1.1. Simulation Graphs of Approaching the Minimum Value with the
Golden Ratio Search Algorithm

i valos via golden at

hing to minimum value via golden ratio method

. Approching to minimum value via golden ratio method

R pirfelogic 1 St 1)

Gokden rae, cptimum solusior

Figure 4. Graphs of | /|, |g| and |/| functions approaching the minimum value
with the Golden Ratio Search method

Figure 5 shows the speed at which the functions | /|, |g| and |4| approach the

minimum value using the Golden Ratio Search Algorithm with the number of

iterations.
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Figure 5. Speed of approaching the minimum value of |f], |g| and |h| functions
with the Golden Ratio Search method (number of iterations)
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3.1.2. Graphs of Simulated Approach to Minimum Value with Fibonacci
Search Algorithm

Figure 7 shows the speed of approaching the minimum value of the |f|, |g|
and |Ak| functions using the Fibonacci Search Algorithm with the number of
iterations.

Approaching the misimum valus via Fibonace method . Approathing to misimum valu via Fibonacei method A ing o minimum vaka via Fibonacci method
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Figure 7. Speed of approaching the minimum value of | /|, |g| and || functions
with Fibonacci Search method (number of iterations)

3.1. Error Accounts in Performance Evaluation

The problem of finding the root of algebraic equations is a fundamental
element of numerical analysis and computer science. In this study, the
approximate values obtained by numerical and optimization methods and the
difference between these values and the actual values, i.e. the error values, are of
critical importance. This section discusses the equations representing the errors
and finally presents the computational results of these errors for performance
evaluation of the algorithms.

3.1.1. Mean absolute error (MAE)

Mean absolute error (MAE) is frequently used in regression and time series
problems because it is easy to interpret. MAE is a measure of the difference
between two continuous variables, i.e. the average of the absolute values of the
differences between actual and predicted values, and measures the magnitude of
deviations between predictions and actual values. (Chai & Draxler, 2014). (Chai,
T., & Draxler, R. R. (2014). The Mean Absolute Error formula is given by the
formula in Equation (1)

n
MAE = %Zi:1|xg — x| (1)
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where x: real root, x;: approximate root obtained at step i, n: total number

of iterations.

3.1.2. Mean Absolute Approximation Error (MAAE)

Mean Absolute Approximation Error (MAAE) is a type of error used to
determine how accurate these approximations are when the true value of a given
quantity is unknown but can be approximated. It is usually calculated as the
average of the absolute values of the difference between the values obtained at
each step in an iteration process and the values calculated at the previous step.
This error measure is commonly used to assess how accurate an estimate is,
especially in numerical analysis, optimization, and engineering. Mean Absolute
Error of Approximation is often used in computational processes or modeling
operations. For example, at each step of an iterative algorithm, the average value
of the difference between the values obtained and the values calculated in the
previous step can be calculated to evaluate how accurate and stable this algorithm
works. Furthermore, this error measure can be used in various scientific research
and experiments to assess how insignificant the difference between
measurements is. In this way, it provides information about the accuracy and
reliability of the data and increases the credibility of the results. The mean
absolute error of approximation is given in Equation (2) where

X;: approximate root obtained in step i,
k: number of iterations with minimum error

Lk
MAAE == E
klai—g

While calculating the Mean Absolute Approximate Error throughout this
study, since the root x;,; in the denominator of Equation (2) is zero in some

Xi+1—Xi

2

Xit+1

cases, this term will be ignored in order to avoid undefinedness and the Mean
Absolute Approximate Error will be calculated with the formula given in
Equation (3).

1
MAAE = 3 olxi41 — %, 3)
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3.2. Analysis and Comparison

Since it is necessary to consider both error values and error reduction rate
when evaluating algorithm effectiveness, especially for complex problems and
large data sets, simulations are performed for the test functions selected here. The
test set is compared by finding the optimal roots of the selected test functions for
each algorithm, and this comparison is evaluated with the performance metrics
Mean Absolute Error (MAE) and Mean Absolute Approximation Error (MAAE).
Since it is expected to achieve a level of precision using a minimum of iterations
and computational resources, the algorithms' estimates are evaluated with the
following performance metrics.

The rate of convergence to the minimum value, optimum points and global
minimum values of the nonlinear test functions used in the testing phase are given
in the table below and absolute errors are calculated.

In the table below, i is the number of iterations, f,g and h are the test
functions, xf,x5 vex, are the real roots of f,gandh respectively,
optxy, optxy and optxy, indicate the optimum points of the functions f, g and h
respectively, and optyy, opty, ve optyy, indicate the optimum values of the
functions f, g and h respectively. In the table, various statistics such as best
solution, optimum solution, absolute error, average absolute error, average
absolute approximation error, average absolute error depending on the number of
iterations and average absolute approximation error depending on the number of
iterations are presented for the Golden Ratio algorithm (GR) and Fibonacci
Search Algorithm (FIB).
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Table 1. Absolute errors of test functions

Test Functions Statistics GR FIB
i 20 4
X f 1 1
f optx; 0.99995 | 0.9752
Real roots optys 0.0002 | 0.1992
x, = —3 Absolute error 0 0.0248
1
X, =—1 Average absolute error 0.0487 | 0.0875
x3 =1 Average absolute error depending on the
Xy =2 number of iterations 0.0487 | 0.3156
Average absolute approximation error 0.0102 | 0.2238
Average absolute approximation error
depending on the number of iterations 0.9163 1.0585
i 17 9
Xg 1.2091 1.2092
g optxg 1.2092 1.2092
Real roots
x, = 1.2091 optys 0.0001 | 0.0001
Absolute error 0 0
Average absolute error 0.0606 | 0.0620
Average absolute error depending on the 0.0712 | 0.1375
number of iterations
Average absolute approximation error 0.02 0.2355
Average absolute approximation error 1.0777 | 0.4806
depending on the number of iterations
i 20 11
x -1.5 -1.5
h h
optxy -1.5 -1.5
Real roots optyn 0 0
x,=0 Absolute error 0 0
x; =-15 Average absolute error 0.0794 | 0.0598
Average absolute error depending on the 0.0794 | 0.1087
number of iterations
Average absolute approximation error 0.0750 | 0.1
Average absolute approximation error 0.9163 | 0.3933

depending on the number of iterations
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For the function f, FIB reached the lowest absolute error value (0.0248) with
the lowest number of iterations (4 iterations), while the GR method reached the
lowest average absolute error (0.00005) at higher iterations (20 iterations). Again,
when the average absolute errors depending on the number of iterations for the
function f are compared, it is seen that the GR method produces more accurate
results (0.0487<0.0875). When the average absolute approximation errors are
considered, it is seen that the GR method gives the most successful result
(0.0102<0.2238). It is also seen that the GR method gives more successful results
in the average absolute approximation error depending on the number of
iterations (0.9163<1.0585). In summary, it is seen that the GR method is more
accurate and more successful than the FIB method in all error calculations.

For the function g, GR and FIB methods have very close average absolute
error (GR) 0.0606<0.0620 (FIB), while FIB has the least number of iterations (9
iterations). Regarding the mean absolute approximation errors, GR method
achieved the most accurate result (0.02<0.2355). While the average absolute error
based on the number of iterations reached the most successful result with GR, the
average absolute approximation error based on the number of iterations reached
the most precise value with the FIB method 0.4806. For the function g, the FIB
method is more successful than the GR method with the fewest iterations and the
average absolute approximation error based on the number of iterations. This
shows that the performance of the algorithms may vary for different function
types.

In the tests on the function %, the FIB method has the lowest mean absolute
error (0.0598) but the highest mean absolute approximation error (0.1) with 11
iterations. GR is again a successful method in the calculation of the average
absolute error according to the number of iterations (0.0794), while the FIB
method gives the best result in the calculation of the average absolute
approximation error according to the number of iterations (0.3933).

4. CONCLUSION AND EVALUATION

The results given in Table 1 show that the performance of different
optimization algorithms on various test functions may vary and that the choice of
the optimal root-finding method should be carefully considered depending on the
specific problem situation.

According to these results, both methods have advantages and disadvantages
in certain situations. Below are some observations based on the test functions and
the results obtained:
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Golden Ratio Search (GR). The GR method is notable for the lowest
absolute errors (0.00) for the functions f, g and h. It shows that the GR method
can be effective for these types of functions. Considering the average absolute
errors, it was observed that they were 0.0487, 0.0606 and 0.0794 for the functions
1, g and A, respectively. Considering the mean absolute approximation errors, the
results are 0.0102, 0.02 and 0.0750 for the functions f, g and 4, respectively.
Accordingly, the GR method gives mostly successful results in the calculation of
the mean absolute error. In the mean absolute approximation error calculation, it
performs the best in all three functions.

Fibonacci Search (FIB). The FIB method shows that it can provide faster
results compared to the GR method with minimum iterations for all functions.
The FIB method generally gives better results in the calculation of the average
absolute approximation error depending on the number of iterations. This shows
that Fibonacci search can be advantageous for specific problems.

In general, the performance of each method varies depending on the properties
of the function under test. This shows that the properties of the function should
be carefully analyzed when choosing an optimal root-finding method. In addition,
other factors such as the number of iterations and the precision of approximating
the root of each method should also be taken into account. The differences
between the methods are due to the approximation strategies and mathematical
structures of the algorithms, so it is important to choose the method that best suits
the nature of a particular problem.
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Chapter 4

A Savings Model under
Nonlocal Boundary Conditions'

Olgun CABRIi?, Hanlar RESIDOGLU?

1. Introduction

In recent years, the solutions to many physical phenomena have been modeled
by non-classical parabolic or hyperbolic initial-boundary value problems
involving integral terms. These integrals may appear either within the structure
of the partial differential equation itself or in its boundary conditions [7].

Nonlocal boundary conditions establish relationships between the values of a
solution or its derivatives at distinct boundary points or interior locations within
the domain. Boundary conditions expressed in integral form can be regarded as a
special case of such nonlocal conditions [13].

Problems of this nature arise in various applied fields, including chemical
diffusion, heat conduction, thermoelasticity, population dynamics, vibration
analysis, nuclear reactor processes, and several biological systems [7].

A large number of physical problems in which classical boundary conditions
are replaced by integral ones are associated with wave or diffusion-type equations
(see [2,3,8,9,10]).

Numerous numerical studies have been conducted on problems involving
integral boundary conditions [3,4,5,7,11,14].

In this study, a family savings model used in the field of economics is
examined. The model is described by a diffusion equation subject to integral
boundary conditions. This study aims to reduce the diffusion model with integral
boundary conditions to a Sturm—Liouville form and to derive the eigenvalues and
eigenfunctions for an explicit expression of the solution.
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2. Family Saving Model
The family saving model, originally introduced in [6], describes the income
level of a family at a given point in time as follows:

dx =®(x,t)dt +T'(x, t)dX, G=0 (1)

In this equation, ®(x, t)denotes a specific function representing the difference
between a family’s income and expenditures, and thus the rate of saving. The
term I'(x,t) represents the random fluctuation of income. If this equation is
generalized to describe the saving behavior of all families in society, disregarding
the dynamics of individual households, the function p(x, t), which represents the
density distribution of family savings, satisfies the following diffusion-type
partial differential equation:

L ((c +®)p) +-

- 5 (bp) +g.

2 agz

In the literature, such equations are generally referred to as Kolmogorov-type
equations. We consider this equation with initial condition

(0 =9¥() 0=x=<I )

and with boundary conditions
l
JypE ) de = M), t 20, 3)

f(,l $p(x,0)d§ = Q(1), t = 0. @)

Here, My(t) denotes the number of families within the interval, while Qg (t)
represents the total amount of savings [6].

3. Problem
Let us consider the following non-homogeneous problem defined in the region
D ={(§,t):0 <& < 1,0 <t < T} subject to two nonlocal boundary conditions:

d 92
=S+ g, )
p(&,0) =¥(), (6)
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[, p(&,t)dE = M(D), (7)

[} &p(&,0)d = Q0. ®)

The functions g(&, ), M(7), Q(7) and y(&) are assumed to be defined on the
region D and to be continuously differentiable. For a solution, the following
compatibility conditions must be satisfied:

1 1
fo £Y(E)E = M(0), jo Y(E)dE = Q(0).

Implementing the substitution,

p(€,1) = (§,1) + (12Q(1) — 6M ())& + 4M (1) — 6Q (7).

The given boundary-value problem is transformed into

2= a?3246(0), ©)
p(§,0) =P(&), (10)
[y P t)dE =0, (11)
[y €p(x, t)dg =0, (12)
Where

G 1) =9¢ 1)~ (12Q'(1) — 6M' ()¢ + 4M'(7) — 6Q'(D)
@(§) = P(§) — (12Q(0) — 6M(0))§ + 4M(0) — 6Q(0).

Due to linearity of problem (11-12), the solution can be represented as the
superposition of the solutions corresponding to two separate boundary value
problems. The first problem is given by

L-a?ll (13)
p(§,0) =9(&), (14)
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[, p(&,0)dé =0, (15)

[y ép(§D)dE =0, (16)

the second problem is described by

g_f;:azgggw(g,f), (17)
p(§,0) =0, (18)
[y P& T)dE =0, (19)
[y &p(&,1)d§ = 0. (20)

If py(&, 1)is the solution of the boundary value problem (13)—(16) and
p» (&, 7)is the solution of the boundary value problem (17)—(20), then the solution
of the boundary value problem (9)—(12) is given by the sum

P& 1) = p1(§,7) + p2($, ).

Let us transform the nonlocal boundary conditions (15)—(16) into their
equivalent local forms. By (17), we get

1 1
f po(6,D)dE = a? f pee (6,0 dE,
0 0
d 1 1
> ([ o6 0ax) = [ et

1
= 0=a? [ o (6,
0

Using integration by parts, one obtains

pe(1,7) — pe(0,7) = 0.
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If we apply a similar procedure to the other boundary condition, we obtain:

1 1
| gpete d =a? | gorp(6 008
0 0
d 1 1
> ([ ontenas) = @ [ et e
1
= 0= [ pgp(6, 00
0
Thus, by integration by parts we get

ps(1,7) —p(1,7) + p(0,7) = 0.

Hence, the boundary value problem (13)—(16) is transformed into the
equivalent local problem:

T=arlh 1)
p(,0) =p($), (22)
pe(1,7) — pe(0,7) = 0, (23)
pe(1,7) —p(1,7) + p(0,7) = 0. (24)

Using Fourier method,

p(&,1) =Y(§)Z(7)

we obtain following Sturm Liouville problem

Y'(&) + AY(§) = 0, (25)
Y'(1) — Y'(0) = 0, (26)
Y'(1) — Y(1) 4+ Y(0) = 0, 27)
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and differential equation
Z'(t) + a?Z(z) = 0. (28)

It is well known from [12] that the boundary conditions (26)-(27) are regular.
So the eigenfunctions of the problem form a Riesz basis.

4. Analysis of Eigenvalues and Eigenfunctions

Let us investigate the eigenvalues and eigenfunctions of the Sturm—Liouville
equations (25)— (27). Let A = p?.

e When A = p? < 0, the problem possesses only the trivial solution..

e For A =0 the problem has a double eigenvalue, and the corresponding
solution is of the form

Yo(§) = Ao + Boé.
The eigenfunctions corresponding to this eigenvalue are
¥1(6) =1, Yp2(x) = 5.

e For A = p? > 0, In this case, the solution takes the form

Y() =a, cosﬁf +a, sinﬁf.

By applying boundary condition (26) to the obtained solution, we get

—sin./paq + (cos\/ﬁ— Da, = 0.

Next, by applying boundary condition (27), we obtain

1- cos\/ﬁ — ﬁsin ﬁ)al + (\/|_1 cos\/ﬁ —sin \/ﬁ)az =0.

Hence, the characteristic equation takes the form

A =2—2605ﬁ—\/ﬁsin\/ﬁ=0.
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If we sety/it = 7 in the characteristic equation, it can be rewritten as
A=2—2cosr —rsinr =0. 29)

Applying the half-angle identities for sine and cosine to equation (29), the
characteristic equation becomes as

=>A—22'r r21 2_2r =0
= rsmzcos2 ( sin 2) =0,

:A—sinz(rcost—sint)—o
) 2 2/

One of the roots of this equation satisfies the condition sin (r/2)) = 0, and
it is easily seen that these roots are given by

Tom = 2mtm,m = 1,2... (30)

The remaining roots are obtained from the equation:

L ry
rcosy —sing = :tan(i)——
These roots satisfy 75,41 € [21Tm + %, (2m+ 1)7‘[]. Let us derive an

asymptotic formula. Let 1y, = (2m + 1)m — €. Following [1], we apply the
Lagrange inversion formula.

Thus we have

2cos(e)+esin(e)+ 2
(&) (&) =C2m+Drn =k,

sin(€)
€
- 2cos(&) +esin(e) + 2 =k,
8( sin(¢€) )

-3

. (Zm;- Dr e ((Zm;- 1)7r>_1 e ((Zm;- 1)7r>
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Where

o= 5{()

Once the coefficients c; are evaluated, the roots are found asymptotically as

j-1

2cos(e) +esin(e) + 2
sin(€) )

, h(e)zs(

£=0

h(S)’}

32
Toms1 = Cm+ D —4(2m + D)™t — £l (@m+ 1)m)3
832
15

5 1
((Zm + 1)1r) +0 (W)
Thus, the eigenfunctions corresponding to these eigenvalues are obtained as
Yom = cos(2mm)é,
. 1
Yom+1 = sin (Fymy1 (E - S())-

The norms of these eigenfunctions are given by

||Y0,1(f)”2 =1, Yo.z(f)”Z = 1/\/§
1 1 sinca Ly
1V2m (II? = J; cos(2mmé)? d& = E+W =3

1 sinrymyen

Y, 2 == :
Women (O =5 ===

The solution to problem (28) is expressed as
Z(1) = Cneazrf%lr.
As a result, the solution of problem (13)—(16) is obtained as

p1(6,7) = Ay + ArE + X2, Ay cos(2mmé) e~ 4T m*T 4
oo . 1 2. 2
Zm=1 Bm (Sln <T'2n+1 (E —_ f))) e a“rm T‘
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In this expression, the coefficients take the form

1
Ay = dé,
o fo W(E)dE
1 1
4, =3 f ED(OE ~ - Ao
0

1
Ay = 2f PY(&) cos(2mrm)édé,m = 1,2...

1
Boym = mf Y(&) <sm <T2m+1 (2 f))) dé ,m=1.2..

For the solution of the nonhomogeneous boundary value problem (17)—(20),
if the function G (x, t)is expanded in terms of the eigenfunctions, we get

G50 =) Cu(on(®) + DO Vons1 (©)

Hence the solution of (21-24) is obtained by

had t
) = C, —a?(2nm?)(t-1) g ]Ym
p2(E,) ZU (e | Yo (©)
t
+ [ f Dn(ﬂe—“zrﬂt—”dr] Vo1 (§),
0
Where

Ca(D) = 2 f G(E, DYy (E)dE,
0

Du(e) = f G (&, 1) Yyne1 ().

__
Va2 12 Jg
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5. Example
Let us consider the following PDE modeling the density of family savings in
the region D = {(£,t):0<¢<1,0< 1< T}

ap %p
Frin aza—fz*'f(f.f).
p(£,0) = @(&),

1

[ ot 0 = m,
0

1
L@®w&=%.

In this problem, the total number of families and the total savings are assumed
to be constant. The solution of this problem is given by

p(& 1) =ul 1)+ (12Q0 — 6My)E + 4My — 6Q,.

Here, since the function u(¢,7) tends to zero as time progresses, it follows that

as T —> o

p(§, 1) = (12Qp — 6Mp)¢ + 4My — 6Q

That is, as time progresses, the distribution evolves into a linear profile. Here,
if the average saving Qy/M, > 1/2, the slope becomes positive, indicating that
the saving shifts toward families with higher savings. Conversely, if the average
saving Qy/M, < 1/2, the slope becomes negative, and the distribution shifts
toward families with lower savings. When the average saving equals Qq/M, =
1/2, the slope is zero, and the distribution becomes uniform, representing an
equal level of savings throughout.
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Chapter 5

Kamada-Kawai Algorithm: A Comprehensive Analysis
from Global Graph Layout to Modern Challenges

Umit SARP!, Bilal DEMIR?

Abstract

Graph drawing plays a critical role in transforming complex relational data
into understandable visual representations. Among force-directed algorithms, the
Kamada-Kawai (KK) algorithm, introduced in 1989, stands out by preserving the
global structure and symmetry, using graph-theoretic shortest path distances to
determine ideal distances between nodes. This article explains the mathematical
foundations and energy minimization principle of the Kamada-Kawai algorithm.
Its primary application areas, such as Social Network Analysis (SNA),
Bioinformatics, and Software Engineering, are examined in detail. A Social
Network Analysis case study is presented on a randomized "small-world" graph
using the networkx library. Furthermore, the algorithm's performance on special
topological structures like Polygonal Cycle Graphs and Dendrimer Graphs is
analyzed with Python code examples. Finally, the algorithm's fundamental
limitations, such as its high computational cost, its challenges, and modern
approaches to these problems, like Multilevel algorithms, are discussed
comprehensively.

Keywords: Kamada-Kawai, Graph Drawing, Force-Directed Algorithms.
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1. Introduction

Relational data is one of the cornerstones of modern science. In many fields,
from social networks to biological systems, and from software architecture to
logistics networks, entities and the relationships between them are most naturally
modeled as graphs [1-3]. When these graphs contain thousands of nodes, raw data
tables make the complex structures they contain incomprehensible to human
perception. At this point, graph drawing, or data visualization, plays a critical role
by transforming these abstract structures into intuitive and understandable
geometric representations.

The purpose of this study is to comprehensively examine the Kamada-Kawai
algorithm [4], a fundamental and powerful data visualization algorithm that
researchers and analysts working with graph data can frequently utilize.

The question of what constitutes a "good" graph drawing has been defined by
"aesthetic criteria" in the field of graph drawing. Among these, the most widely
accepted criteria are: minimizing the number of edge crossings, visually
reflecting the inherent symmetries of the graph, and distributing nodes evenly in
the drawing area. The Kamada-Kawai algorithm excels particularly in "reflecting
graph-theoretic distance" and "preserving symmetry."

2. Fundamentals of the Kamada-Kawai Algorithm

The algorithm, introduced by Tomihisa Kamada and Satoru Kawai in 1989
[4], diverges from other force-directed methods with a fundamental philosophy.
While most methods apply attractive forces only between adjacent nodes (local
interactions), the KK algorithm aims to preserve the global structure of the graph.

The basic principle of the algorithm is: In a graph drawing, the geometric
(Euclidean) distance between any two nodes (Z, j) should be proportional to the

graph-theoretic shortest path distance (d ; ) between them.

2.1. Mathematical Model: The Energy Function
To model this principle, the KK algorithm defines an energy function that
aims to minimize the total potential energy (or stress) of the system:

1
E=25ky(’ D; _pj ‘_lij)z

i<j
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The components in this formula are:

e p; and p,: The position vectors of nodes i and j in 2D or 3D space.
. lij (Ideal Distance): The "ideal" spring length between the nodes.

l; =Lxd; (where d; is the shortest path distance between i and ).

e k; (Spring Stiffness): Determines the stiffness of the spring. k; =K /d UZ )

This model makes the springs between nodes that are "close" on the graph
(short shortest path) much stiffer. This means the algorithm is forced to position
local structures correctly first, but it does so while considering the global
positions of all other nodes.

2.2. Algorithm Steps
¢ Pre-computation (Most Expensive Step): The shortest path distances (dl.j

) between \textit{all} pairs of nodes (i, ;) in the graph are calculated
(Usually with Floyd-Warshall or multiple BFS).
* Calculation of Ideal Distances: The /; and k values are calculated for all

pairs.
o Initialization: Nodes are assigned to random positions ( p,).

o Iterative Refinement: Until the system energy E falls below a certain
threshold, the node causing the most "imbalance" in the system is found, and
its position is moved to a new position that locally minimizes the energy
using the Newton-Raphson method.

3. Application Areas
Kamada-Kawai's ability to preserve global structure and symmetry has made
it a valuable tool in many disciplines.

3.1. Social Network Analysis (SNA)
In social networks [5], nodes represent individuals, and edges represent
relationships (friendship, collaboration, communication). The KK algorithm is
invaluable here because:
o Community Detection: It visually groups together clusters (cliques) that are
in dense communication with each other.
¢ Centrality and Bridges: It places "influential" individuals at the center of
the network (those with a low average shortest path) in the center of the
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drawing. "Bridge" (broker) individuals who connect different clusters are
positioned strategically between these clusters.

3.2. Bioinformatics and Systems Biology

Biological systems, such as protein-protein interaction (PPI) networks or gene
regulation networks, are often complex and modular. For these structures, often
studied in chemical graph theory [6], KK helps biologists discover functional
relationships by visually clustering groups of proteins with similar functional
tasks (modules or complexes).

3.3. Software Engineering and Database Modeling

In large-scale software projects, inter-class dependencies, function call
graphs, or database schemas (Entity-Relationship diagrams) can be modeled as
graphs. KK facilitates the understanding of software architecture by grouping
tightly coupled modules (high cohesion) and clearly separating loose connections
(low coupling) between different modules.

4. Case Study: Social Network Analysis (SNA)

To demonstrate the power of Kamada-Kawai, let's create a randomized
"small-world" graph that models a hypothetical email communication network in
an organization of 50 people in Figure 1. Such graphs reflect the high clustering
(people often form friend groups) and short average path lengths (everyone is
reachable in a few steps) characteristic of social networks.
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50-Person Social Network Case Study with Kamada-Kawai

Figure 1: Small-World

4.1. Step 1: Generating Randomized Data (Graph)
Let's use the networkx library in Python to create a watts_strogatz_graph with

50 nodes (employees), where each node has an average of 4 neighbors (close
colleagues) and a 0.1 probability of forming new random connections
(acquaintances from other departments).
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PyCode:

import networkx as nx

import matplotlib.pyplot as plt

# 1. Case Study Graph: 50 employees, 4 close contacts on average, 10% random links
N=50

K=4

P=0.1

G_sna = nx.watts_strogatz_graph(n=N, k=K, p=P, seed=42)

print(f'Graph Created: {len(G_sna.nodes)} Nodes, {len(G_sna.edges)} Edges")
# 2. Calculate Layout: Kamada-Kawai

print("Calculating Kamada-Kawai layout...")

pos_sna = nx.kamada kawai layout(G_sna)

print("Layout complete.")

4.2. Step 2: Visualization and Analysis
Let's assume we are drawing this pos_sna layout. This code has been updated
to be clearly visible on an A4 printout.

PyCode:
# 3. Draw the Graph
plt.figure(figsize=(10, 10), dpi=200)
node size updated =200
nx.draw_networkx(G_sna, pos_sna,
node size=node size updated,
node color="skyblue',
edge color='gray’,
with_labels=False,
font_size=12) # Font size increased in case labels are used
# Title
plt.title("50-Person Social Network Case Study with Kamada-Kawai", fontsize=16)
plt.axis('off")
plt.show()

4.3. Case Analysis (Interpretation of Results)

What does the Kamada-Kawai layout show us?

e Local Clusters: Local groups created with the k=4 parameter (e.g., people
in the same department) are visually clustered closely together. KK clearly
separates these clusters.

e Central Actors: Nodes that are central to the overall communication of the
network (those with the lowest average shortest path) are pulled towards the
center of the entire drawing. These are the "key" or "most connected"
employees in the organization.
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¢ Bridges (Brokers): Random connections formed with the p=0.1 probability
create "bridges" connecting different clusters. In the KK layout, these nodes
are positioned between two or more clusters, connecting them. This is much
more understandable than the "hairball" effect that algorithms focusing only
on local forces, like Fruchterman-Reingold [7], would produce.

5. Performance on Special Graph Topologies

The KK algorithm's goal of preserving global structure makes it an ideal
visualization tool, especially for symmetric or complex structures. In this section,
the performance of the KK algorithm is demonstrated with Python code using the
custom functions you provided for Polygonal Cycle Graphs [8,9] and Dendrimer
Graphs [6,10] in Figure 2.

The code block below creates these two special graph structures and, for
comparison, Tree/Lattice structures, calculates the Kamada-Kawai layout for
each, and visualizes the results in a 2x2 panel with high-resolution and larger
vertices.

PyCode:
import networkx as nx
import matplotlib.pyplot as plt
import math
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
# --- Helper Function 1: Polygonal Cycle Graph ---
# (With reference to Sarp et al. [8,9])
def polygonal cycle graph(m, n):
"""Generates the polygonal cycle graph for the nth m-gonal number.
def P_m(k):
returnk * (m-2)*k-m+4)//2
V = list(range(1, P m(n) + 1))
G = nx.Graph()
G.add nodes from(V)
ifn==1:
return G

nmmn

foriin V:
# Add edge for nodes not equal to P_m(j)
ifi>1and i <P_m(n) and not any(P_m(j) == i for j in range(2, n + 1)):
G.add edge(i,i+ 1)
# Add edge between P_m(i) and P_m(i+1)
for i in range(1, n):
G.add_edge(P_m(i), P m(i + 1))
# Add edge between (P_m(i-1) + 1) and (P_m(i) + 1)
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#P m(0)=0forn>1
for i in range(1, n):
start node=P m(i-1)+1
end node =P m(i) + 1
if end node <=P_m(n): # Stay within the graph boundaries
G.add_edge(start_node, end node)
return G
# --- Helper Function 2: Dendrimer Graph (Gamma Graph) ---
# (With reference to Trinajstic [6] and Bulut & Akar [10])
def create_gamma_graph(n, k, p, h):
G = nx.Graph()
# 1. Create the central C_n core
core_nodes = [f'C_{i}' for i in range(n)]
G.add nodes_from(core nodes)
for i in range(n):
G.add_edge(core nodes[i], core_nodes[(i + 1) % n])
# Determine core attachment points
ifn>=6:
attachment_points_indices = [0, math.floor(n/3), math.floor(2*n/3)]
elifn==>5:
attachment points_indices = [0, 1, 3]
elifn=4:
attachment points_indices = [0, 1, 2]
else: # n=3
attachment points_indices = [0, 1, 2]
core_attachment nodes = [core_nodes[i] for i in attachment points_indices]
current_generation_branches = []
# 2. Add initial arms (Generation 0 branches)
for i, core_node in enumerate(core_attachment nodes):
current_node = core_node
for j in range(k):
spacer_ node =f'S {i} {j} g0'
G.add node(spacer node)
G.add_edge(current_node, spacer_node)
current_node = spacer_node
current_generation_branches.append(current node)
# 3. Iteratively add subsequent generations (h >= 1)
for gen in range(1, h + 1):
next generation branches =[]
branch counter =0
for parent_node in current_generation branches:
for branch_idx in range(p):
current_node = parent_node
for j in range(k):
new_spacer node =f'S {gen}{branch counter} {branch idx} {j}'
G.add node(new_spacer _node)
G.add_edge(current node, new_spacer_node)
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current_node = new_spacer_node
next_generation_branches.append(current node)
branch counter += 1
current_generation branches = next generation_branches
return G

# --- 1. Step: Create Graphs ---
print("Generating graphs for special topologies...")
# Graph 1: Polygonal Cycle (m=3, n=6) -> 3-gon (triangle), 6th level
G_pc = polygonal cycle graph(m=3, n=6)
# Graph 2: Dendrimer (Gamma_{6,2,3,1}) -> n=6, k=2, p=3, h=1
G_dend = create gamma_graph(n=6, k=2, p=3, h=1)
# Graph 3: Balanced Tree (3 branches, 3 levels)
G_tree = nx.balanced tree(r=3, h=3)
# Graph 4: Grid/Lattice Graph (8x8)
G_grid = nx.grid 2d graph(m=8, n=8)
# --- 2. Step: Calculate Kamada-Kawai Layouts ---
print("Calculating Kamada-Kawai layouts...")
pos_pc = nx.kamada kawai layout(G_pc)
pos_dend = nx.kamada kawai_layout(G_dend)
pos_tree = nx.kamada kawai layout(G_tree)
pos_grid = nx.kamada kawai layout(G_grid)
print("All layouts calculated.")

# --- 3. Step: Draw 4 Graphs in 2x2 Subplots ---

# High resolution dpi=250 (suitable for A4)

fig, axs = plt.subplots(2, 2, figsize=(12, 12), dpi=250)
node size large =100

# Subplot title
subplot _title fontsize = 14
main_title fontsize = 18

# Graph 1: Polygonal Cycle

axs[0, 0].set_title("Polygonal Cycle Graph (m=3, n=6)', fontsize=subplot _title fontsize)
nx.draw_networkx(G_pc, pos_pc, ax=axs[0, 0], node size=node size large,

node color="purple', with_labels=False)

axs[0, 0].axis('off")

# Graph 2: Dendrimer

axs[0, 1].set_title(r'Dendrimer $\Gamma_{6,2,3,1}$ (n=6, k=2, p=3, h=1)',
fontsize=subplot title fontsize)

nx.draw_networkx(G_dend, pos_dend, ax=axs[0, 1], node size=node size large,
node color='orange', with_labels=False)

axs[0, 1].axis('off")

# Graph 3: Tree
axs[1, 0].set_title('Balanced Tree (=3, h=3)', fontsize=subplot _title fontsize)
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nx.draw_networkx(G _tree, pos_tree, ax=axs[1, 0], node size=node size large,
node_color='green', with labels=False)
axs[1, 0].axis('off")

# Graph 4: Grid/Lattice

axs[1, 1].set title('Grid/Lattice Graph (8x8)', fontsize=subplot title fontsize)
nx.draw_networkx(G_grid, pos_grid, ax=axs[1, 1], node_size=node_size large,
node color="red', with_labels=False)

axs[1, 1].axis('off")

plt.suptitle("Performance of Kamada-Kawai Algorithm on Special Graph Topologies",
fontsize=main_title fontsize)

plt.tight_layout(rect=[0, 0.03, 1, 0.95])

plt.show()

Performance of Kamada-Kawai Algorithm on Special Graph Topologies

Polygonal Cycle Graph (m=3, n=6) Dendrimer lg,2,3,1 (n=6, k=2, p=3, h=1)
N/
N/
AN
AN e
SN L.
N/ \
/ ™
/
e —
AN
/N
Balanced Tree (r=3, h=3) Grid/Lattice Graph (8x8)

Figure 2: Performance on Special Graph
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5.1. Interpretation of Code Results

When the code above is executed, the characteristic behavior of the Kamada-
Kawai algorithm on these different structures is observed:

Polygonal Cycle Graph: KK recognizes the nested triangle (m=3) layers
(n=6) of the graph produced by the polygonal cycle graph function [8,9] and
visualizes them while preserving the symmetry of these layers.

Dendrimer Graph (I"): KK places the 6-gon core (n=6) of the dendrimer
produced by create_gamma_graph [6,10] at the center and symmetrically spreads
the generations (h=1) connected via spacers (k=2) to the periphery, perfectly
displaying the molecule's hierarchical structure.

Balanced Tree: Despite having no root information, KK finds the "center" of
the graph (usually nodes near the root) and opens the branches outwards
symmetrically.

Grid/Lattice: KK recognizes the highly regular structure of the grid graph
and reconstructs it into an almost perfect square grid by reflecting the shortest
path distances (Manhattan distance) to Euclidean distances.

6. Limitations, Challenges, and Modern Approaches
Despite Kamada-Kawai's aesthetic success, it has serious practical challenges.

6.1. Limitations and Challenges

Computational Complexity (The Biggest Limitation): The first step of the
algorithm is to compute the All-Pairs Shortest Path (APSP) matrix. In dense
graphs, this takes O(|V ) (Floyd-Warshall) or in sparse graphs O(|V || E|)
(BFS from each node) time [11, 12]. This makes the algorithm practically
unusable for graphs larger than a few thousand nodes (e.g., V > 2000).

Local Minima: The energy minimization process (Newton-Raphson) can get
stuck in a "good enough" local minimum instead of the "ideal" global minimum
energy state. This can happen, especially when starting from a poor initial
position.

6.2. Modern Approaches and Improvements

To overcome these limitations, modern graph drawing tools [11, 12] and
researchers [13, 14] have developed various strategies:

Multilevel Approaches: One of the most effective solutions [13]. Instead of
drawing the large graph directly, the algorithm "coarsens" the graph—creating a
smaller, representative graph by merging nodes. KK is run quickly on this much
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smaller graph. Then, the layout is "uncoarsened," and the nodes of the original
graph are settled into place with local adjustments.

Sampling: To avoid the O(|V ') cost, the entire APSP matrix is not

calculated. Instead, a random subset of nodes (landmark nodes) is selected, and
distances are approximated based only on these nodes [14].

Hybrid Approaches: Used to prevent KK from getting stuck in local minima.
The graph is first roughly laid out with a faster algorithm that preserves less
global structure, such as Fruchterman-Reingold (FR). This "good enough" layout
is then used as a starting point for the KK algorithm, which performs the final
"polishing."

GPU and Parallel Computing: The APSP calculation and the force
calculations in energy minimization are inherently parallelizable operations.
Modern approaches aim to achieve significant speedups by moving these
computations to GPUs.

7. Conclusion

The Kamada-Kawai algorithm has been one of the cornerstones of graph
drawing literature since its presentation in 1989. Its energy model, based on
graph-theoretic distances, produces aesthetically superior drawings that
emphasize global structure and symmetry, especially in fields like Social
Network Analysis and Bioinformatics.

However, its high computational cost, severely limits the algorithm's direct
applicability in the "big data" era. Therefore, in modern applications, Kamada-
Kawai lives on as a "refinement" step, often within Multilevel techniques or
hybrid approaches combined with algorithms like Fruchterman-Reingold.
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