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Abstract 

This research introduces a novel prototype insulation product designed for 

waterproofing building facades, utilizing a combination of hemp, waste cellulose, 

and expanded clay. The study aims to offer an alternative to conventional cement-

based panels by incorporating plant fibers and waste cellulose.  

Hemp was utilized in two forms: fiber and pieces, in varying quantities. 

Cellulose was employed in both waste and non-waste forms. To reduce their 

hydrophilicity, both hemp and cellulose fibers underwent pretreatment processes, 

including boiling, alkali exposure, and paraffin coating. The microstructures of 

the different fibers were analyzed using SEM. Various tests were conducted to 

assess strength, density, porosity, and water absorption. The experiments 

revealed that samples containing hemp and non-waste cellulose exhibited notable 

dispersion in water absorption tests. The samples with the best performance in 

terms of strength, water absorption, and porosity were those containing ground 

expanded clay. 

  

Keywords: Construction Material, Insulation Panel, Natural Fiber, Waste 

Fiber 
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1 Introduction 

Increasing environmental awareness around the world has greatly influenced 

materials engineering and design. The growing interest in the use of natural 

materials addresses ecological issues such as recyclability and environmental 

safety. Today, synthetic fibers such as glass, carbon and aramid are widely used 

in polymer-based composites due to their high hardness and strength properties 

[1]. However, these fibers are associated with biodegradability, initial processing 

costs, recyclability, energy consumption, machine wear, health hazards, etc. has 

serious drawbacks [2], [3]. 

Plastic waste from construction in 2016 was 175 thousand tons, constituting 

4.8% of the total [4]. Acoustic absorption panels made from natural fibers are less 

harmful to human health and more environmentally friendly than those made 

from traditional synthetic fibers. Although natural fibers have a number of 

advantages, some of their shortcomings, such as low interfacial adhesion, poor 

moisture resistance, and low microbial resistance, need to be mitigated for use in 

effective insulation applications [5].  

Nowadays, industries are looking for more durable yet lightweight structural 

elements. Fiber-cement is a material made from cement, fibers, additives and 

water, characterized by being light and durable, and used for coating, insulation 

and waterproofing purposes in construction, especially in lightweight systems 

[6]. When the literature was examined, it was determined that there was not 

enough research on the study of fiber cement, and that it was mostly focused on 

the study of concrete and cement. For this reason, there is a need for alternative 

studies on fiber cement material by reinforcing it with silica sand, expanded clay 

and natural fibers. In recent years, a number of experimental studies on hemp, 

straw, cotton fibers, flax, and wood fibers for thermal insulation have aroused 

increasing interest from the scientific community and industry. They are 

characterized by high environmental performance and good hydrothermal 

behavior in walls [7]. 

Hemp has good insulating properties, excellent mechanical strength and 

Young's modulus [8]. Hemp grows in as little as 4 months. In terms of oxygen 

and paper raw material production, 1 decare of hemp is equivalent to 1.4 decares 

of forest. There is no need to use pesticides when growing hemp. While hemp 

can be converted into paper 8 times, wood can be converted 3 times. It attracts 

great attention due to its basic features such as good thermal insulation, low cost, 

good mechanical properties and fast growth cycle. Unprocessed natural fiber-

based materials cannot be used in green building applications without considering 

chemical or physical modification [9]. The innermost part of the hemp stems is 

surrounded by woody fibers known as hurds or shives. The outer layer 
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surrounding the hurds consists of fibers (Figure 1). While synthetic fibers have 

been studied for almost fifty years, knowledge of natural fibers is still limited and 

needs to be expanded. The most common binder in hemp-concrete is hydrated 

lime (Ca(OH)2) [10]. In one study, hemp fibers were processed by sol-gel 

technique to reduce their hydrophilicity. However, they observed that there was 

no significant difference between the untreated reference samples in vapor 

permeability tests [11]. It was observed that as hemp density decreased, its 

thermal conductivity capacity increased [12]. 

 

 
Figure 1. (a) Hemp stem cross-section and  

(b) SEM image of hemp cross-section 

 

The strength of natural fibers is significantly lower than glass fibers. But 

Young's modules are similar values. In addition, the price of natural fiber is 

approximately 70% lower than glass fiber. Therefore, natural fibers are 

alternative reinforcing materials for composites because they are readily 

available, renewable, and cost-effective. Hemp, flax, jute and kenaf fibers are 

called. They have similar morphologies; cellulose, hemicelluloses and lignin are 

the main components of fibers [13]. Natural fibers have poor interconnections 

with the matrix due to their high moisture content. Therefore, the development of 

surface modifications of the fibers uses alkali concentrations such as NaOH or 

potassium hydroxide (KOH). This process melts substances such as wax and oil 

and softens the fiber [14]. Chemical treatments on the fiber can reduce the 

hydrophilic tendency of the fiber and thus improve compatibility with the matrix 

[15]. According to another study, the results showed that kenaf fiber which treats 

with NaOH solution of 6% significantly offered the outstanding performance of 

the tensile behavior [16]. The alkali treatment removes fiber components, 

including hemicellulose, lignin, pectin, oil, and wax, revealing cellulose. Thus, it 

provides enhanced interfacial bonding by increasing the surface roughness. The 

alkali treatment further transformed the crystalline cellulose into amorphous 

b 
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material. A decrease in moisture uptake has been observed in natural fibers 

treated with alkali [2]. Fire resistance has also increased as a result of the 

production of hemp-based materials made hydrophobic with stearic acid. The 

increased flame retardancy of the samples coated with stearic acid prevented heat 

transfer to the inner cellulosic fibers by rapidly forming an inorganic protective 

ceramizing layer on the surface of the hemp fibers during the burning process. 

Thus, it produced a layer of charcoal and created a physical barrier that could 

block further combustion [9]. 

Currently, urea-formaldehyde (UF), phenol-formaldehyde (PF) or melamine-

urea-formaldehyde (MUF) adhesives are often involved in the manufacture of 

chipboard. These types of adhesives have significant disadvantages that pollute 

the environment and poses a potential carcinogenic risk to workers who 

manufacture using these adhesives [17]. In some studies, natural adhesives and 

starch adhesives containing protein and starch have also been used. However, 

these are often expensive and lead to high production costs [18]. In a study, they 

observed that the thermal conductivity increased with the increase in the use of 

both rice straw and mineral wool [19]. 

The primary innovation and objective of this research is to evaluate the 

feasibility of producing waterproofing panels for exterior facades utilizing natural 

or waste materials. Currently, there are limited alternative building materials that 

can serve as both waterproofing panels and exterior cladding. Although various 

thermal insulation materials with different compositions and forms exist, 

waterproofing is predominantly achieved using cement-based fiber-cement 

products. This reliance on cement-intensive products drives up cement 

production. Hence, another significant aim of this study is to reduce the cement 

content while increasing the incorporation of natural or waste fibers. This 

approach not only aims to enhance the sustainability of the building materials but 

also seeks to leverage the beneficial properties of alternative fibers to achieve 

effective waterproofing solutions. 

This article consists of three parts; in the first part, the materials and methods 

of the experiments will be examined. In the second part, the data obtained from 

the experiments will be represented. In the third and last section, conclusions will 

be drawn in the light of the data obtained and alternative possible studies will be 

shed light. 
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2 Materials and Methods 

2.1 Materials  

Samples were produced with binary combinations of hemp, waste cellulose, 

cellulose, expanded clay and granulated expanded clay (GEC) in binary 

combinations and cement. Waste cellulose was made into pulp by shredding 

cardboard boxes, which are the waste of the markets, and dried in the oven. Waste 

cellulose was pulped by shredding cardboard boxes from the waste of the markets 

and dried in an oven. The expanded clay was ground for 1 hour to below 90 

microns.  

The fibers subjected pre-treatments, including boiling, sodium hydroxide 

exposure, and paraffin coating (Figure 3). The fibers were boiled in water for 15 

minutes. After boiling, all the fibers absorbed the following certain amounts of 

water. These absorbed amounts were subtracted from the mixing water. 100g of 

paraffin was used to coat 25g of fibers. After the paraffin was melted, it was 

mixed to cover the surfaces of the fibers. In a study, as a pre-treatment, palm 

fibers were immersed in 5-8% sodium hydroxide (NaOH) solution by weight at 

room temperature for 2 hours. While the water absorption values in untreated 

fibers are 8.53%, this value is 4.99% in alkali-treated (5% NaOH) fibers. It has 

been observed that processed fibers absorb less water. It is understood that the 

optimum value is 5% NaOH concentration [3]. Pretreatment with NaOH also 

increased the flexural strength values [20][21]. In another study, defatted fibers 

were treated with NaOH solution at varying concentrations (2-10%) for 1 hour, 

then washed several times with distilled water to leach the absorbed alkali and 

dried. This chemical treatment removed non-cellulosic components and thus 

improved the quality of the fibers [22] [23]. In Figure 7, hemp images were 

examined by SEM analysis, and it was seen that smoother images were obtained 

after treatment.  In present study, fibers were kept in 5% NaOH concentration for 

3.5 hours. In the preliminary phase of this study samples produced with fibers 

subjected to three different pre-treatments were tested for water absorption. 

Among these, the alkali-treated and boiled samples disintegrated during the test. 

Only the paraffin-coated samples remained solid throughout the water absorption 

test. Therefore, for the remainder of the study, only paraffin treatment was 

applied to the fibers to ensure their stability during water exposure. 
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Figure 2. Micrographs of hemp surface a) untreated and  

b) after NaOH treatment 

 

Figure 4 presents the images of samples from the preliminary phase, 

illustrating their initial condition. Figure 5 shows the samples fragmented 

samples when submerged in water or during the production stage, highlighting 

the stability challenges encountered with certain treatments. 

 

 
Figure 3. Visual showing the pre-treatments applied to the fibers used in the 

experimental study 
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Table 1.Chemical compositions and physical properties of hemp [24] 

Chemical compound Fibers (%) 

Cellulose 70.2-74.4 

Hemicellulose 17.9-22.4 

Lignin 3.7-5.7 

Pectin 0.9 

Fat and wax 0.8 

Physical Properties  

Diameter (μm) 8–600 

Water absorption (%) 272 

 

Table 2. Mixture ratios of samples containing pretreated fiber and expanded 

clay (percentage by weight) 

Specimens Cement 
Waste 

cellulose 
Hemp  Cellulose 

Expanded 

clay 

Granulated 

expanded clay W/B 

WH 

80 

10 10 - - - 

0.45 

WC 10 - 10 - - 

WE 10 - - 10 - 

WG 10 - - - 10 

HC - 10 10 - - 

HE - 10 - 10 - 

HG - 10 - - 10 

CE - - 10 10 - 

CG - - 10 - 10 

EG - - - 10 10 

W 20 - - - - 

H - 20 - - - 

C - - 20 - - 

E - - - 20 - 

G - - - - 20 
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Figure 4. Samples obtained from preliminary experiments. a and b: Specimen 

containing hemp shive, c: Specimen containing waste cellulose) 

 

 
Figure 5. Images of samples disintegrated in preliminary experiments 

 

2.2 Preparation of Mortar Samples 

Specimens to be tested for strength were placed in 40×40×160 mm steel molds 

(Figure 6). Samples were produced as plates for water absorption and porosity 

tests in order to develop products compatible with exterior coating applications 

produced for waterproofing in the industry. The mixtures in fresh state were 

poured into 100x100x10 mm molds and pressed by applying a concrete pressure 

testing machine until a load of 50 kN was reached. The pressed plates were kept 

in the mold for 24 hours, then removed from the mold and water cured (20±5 °C) 

until the test day (28 days).  
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Figure 6. Samples placed in steel molds 

 

 
Figure 7. a) Plate-shaped specimens produced to be kept in water and  

b) specimens produced to determine strength values 

 

2.3 Method 

Among the samples obtained in the first stage, the samples that did not 

disintegrate during the water absorption test were reproduced and Archimedes 

and strength tests were carried out. 

 

2.3.1 Strength Tests 

Strength tests were carried out based on TSE 196-1 [25] standards (Cement 

test methods Determination of strength). 7, 14 and 28-day tests were performed 

on samples kept in the laboratory environment for 28 days. 

 

2.3.2 Water Absorption Test 

Water absorption tests were conducted following the TS EN 772-4 [26] 

standard. The samples were manufactured with dimensions of 15 x 15 x 10 mm 

and shaped as plates. Each sample was subjected to a pressure of 50 kN.  

To evaluate water absorption, the samples were immersed in a water bath at a 

constant temperature of 20 °C in a laboratory setting for 48 hours. The water 

content percentage was then calculated using the specified equation. 

a b 
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Wc(%) = (Wvc −Wdc) ∗ 100/Wdc (2) 

 

where Wwc is the weight of the water-saturated sample and Wdc is the weight of 

the dry sample. 

 

2.3.4 Density Test 

The bulk density Dc is an important indicator of the performance of mortars. 

For each sample group, the calculation was carried out on a mortar prism sample 

as follows: 

 

𝐷𝑐 =
𝑀𝑐

𝑉𝑐
 

(3) 

 

where Mc is the mass (kg) and Vc is the volume (m3) of the test sample. 

 

2.3.5 Porosity Test 

The porosity determination test was in accordance with TS EN 772-4 [26]. The 

porosity values of the samples were obtained by using the following equation: 

 

P =
(Wsat −Wdry)

(Wsat −Wwater)
× 100 

(4) 

 

where P is porosity (%), Wsat is the saturated surface dry weight of samples (g), 

Wdry is the oven-dried weight of the samples (g), and Wwater is the weight of 

samples under water (g). 

 

3 Results 

Among the mixtures in Table 2 presented earlier in the materials and methods 

section, all specimens were disintegrated at the end of water curing except for 

series W, G, WE, WG and WH, which were treated with paraffin until the day of 

the experiment. Therefore, only the tests performed on these specimens are 

presented in this part of the study. 

 

3.1 Flexural and Compressive Test Results 

The results of the compressive and flexural tests performed on the samples are 

presented in Figure 8. The G samples exhibited significantly higher flexural and 

compressive strength values compared to the other samples. Additionally, the 

WG samples also demonstrated superior results. This enhancement in strength 

performance is attributed to the incorporation of GEC in the samples. Thus, the 
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inclusion of GEC substantially improved the mechanical properties of the 

materials. The milled expanded clay can be considered to provide a homogeneous 

distribution at the micro level in the panel structure, filling the voids and thus 

helping the matrix to gain a firmer structure. This may have had a positive effect 

on the structural integrity and mechanical performance of the panels. 

Furthermore, the granulated expanded clay can improve stress distribution in the 

internal structure of the material, preventing the formation of cracks and thus 

contributing to improved mechanical performance. 

The use of organic additives such as hemp and waste cellulose is important in 

the search for sustainable material solutions; however, in this study, it was 

observed to have a more pronounced effect on the mechanical properties of 

granulated expanded clay. These findings could provide a basis for future studies 

to optimize the use of milled expanded clay and investigate its synergistic effects 

with other additives. 

 

 
Figure 8. Flexural and compressive strength values of the samples 

 

3.2 Water Absorption Test Results 

The best water absorption values were obtained from W and G samples 

(Figure 9). Waste cellulose was used in sample W, and GEC was used in sample 

G. It is understood that GEC has a positive effect here, as in the strength values. 

The highest water absorption value was obtained from WG sample due to the 

hemp contained in it. Ground expanded clay can reduce the rate of water 

absorption by making it difficult for water to penetrate into the material. The 

microstructure of this clay can form a closed-cell structure that prevents the 
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passage of water molecules. Waste cellulose has also been observed to be 

effective in improving water absorption performance. Cellulose fibres can 

interlock within the material to form a network structure that prevents the passage 

of water. Instead of retaining water molecules, these fibres act as an indirect 

barrier, preventing water from penetrating the internal structure.  In the study, the 

treatment with paraffin during the incorporation of waste cellulose into the 

mixtures may have made a significant contribution to the improvement in the 

water absorption performance of this material. Paraffin treatment changes the 

surface properties of waste cellulose fibres, making it difficult for water to 

penetrate between the fibres. This process gives the cellulose fibres a 

hydrophobic character, reducing the absorption of water into the material. Since 

paraffin is a substance that repels water molecules due to its molecular structure, 

the resistance of the fibres against water increases as a result of this process. The 

lower water absorption values of mixtures containing paraffin-treated waste 

cellulose indicate the effectiveness of this hydrophobic layer. This indicates that 

cement-based mixtures containing paraffin-treated waste cellulose can be 

preferred for applications exposed to water, especially for exterior cladding, 

foundation insulation and other construction materials requiring moisture control. 

Furthermore, this method also supports sustainable construction practices by 

contributing to the utilization of waste materials and the development of 

environmentally friendly building materials. 

 

 
Figure 9. Water absorption values of the samples 
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3.3 Density Test Results 

The highest density value was obtained from the G sample, and the lowest was 

obtained from the WH sample (Figure 10). The density value of the G sample 

was obtained as 1.91 g/cm3. Considering that the average density of concrete 

panels is 1.30 g/cm3, it is slightly higher than this value. The fact that it weighs a 

little more can be seen as a disadvantage. However, if used with a small amount 

of waste cellulose, the density can be reduced slightly. 

 

3.4 Porosity Test Results 

The G sample gave the best porosity values, as in the strength and water 

absorption tests. The surfaces with the highest porosity yielded samples 

containing hemp and unground clay (Figure 11). Porosity values also showed 

similar rates with water absorption. In other words, it is understood that as 

porosity decreases, water absorption values also decrease (Figure 12). The 

presence of a strong correlation between water absorption and porosity values in 

your experimental results, determined by a high regression coefficient of 0.93, 

shows that these two properties are closely related to each other. This high 

correlation coefficient indicates that the water absorption capacity increases 

proportionally with increasing porosity. That is, the higher the porosity of the 

material, the higher the water absorption capacity. 

 

 
Figure 11. Porosity values of the samples 
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Figure 12. Regression plot showing the linear relationship between  

porosity and water absorption 

 

4 Conclusion 

In conclusion, the investigation presented in this study has explored the 

potential of integrating natural and waste fibers, particularly hemp and cellulose, 

with expanded clay to fabricate waterproofing panels for exterior building 

facades. The research findings underscore the efficacy of this novel composite 

material in providing sustainable, durable, and effective waterproofing solutions. 

Here are the key outcomes of the study: 

• Considering that the water absorption values of cementitious panels are 

below approximately 25%, the water absorption values of G samples are 

considered to be 8%, which can be seen as a very good value. However, 

since their density is high, their density can be reduced by using small 

amounts of waste cellulose. Thus, it may be possible to produce water-

resistant panels by utilizing waste cellulose and using less cement. 

• A strong correlation, with a regression coefficient of 0.96, was observed 

between water absorption and porosity, highlighting the importance of 

minimizing porosity to reduce water ingress in waterproofing applications. 

• The inclusion of GEC significantly improved the physical and mechanical 

properties of the composite panels, suggesting its critical role in the overall 

performance of the waterproofing system. In this case GEC should be used 

without fiber.  

• It is evident from the research findings that the fibers, in their current form 

and application within the composite, do not significantly enhance the 

desired properties of the waterproofing panels. However, it is crucial to 

acknowledge the potential variability in their performance when subjected 
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to specific environmental factors, such as ultraviolet (UV) radiation and 

freeze-thaw cycles. These aspects necessitate in-depth exploration in future 

research to comprehensively understand the fibers' behavior and determine 

their conclusive effect on the durability and performance of the composite 

material. 

• The study aligns with the principles of sustainable construction by 

showcasing the potential of utilizing waste and natural fibers to reduce 

cement usage, thereby contributing to environmental conservation and 

promoting the development of eco-friendly building materials. 

• Economic analysis is also recommended to assess the cost-effectiveness of 

these innovative materials, determining their viability for 

commercialization and widespread use in the construction industry. 

• These findings provide a solid foundation for further exploration into the 

use of sustainable materials in construction, offering a promising avenue 

for the development of environmentally friendly and efficient 

waterproofing solutions. 
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Abstract 

In this study, we investigated the manufacturing characteristics and wear 

characteristics of porcelain-ceramics-ceramics composites made by powder 

metallurgy and added aluminium titanate and mullite, and investigated artificial 

neural network modelling based on the obtained experimental data. Aluminium 

titanate and mullite ceramic powders prepared from Al2O3, SiO2, and TiO2 

powders by reactive sintering were added to the porcelain powder in different 

amounts (0 and 20 wt%). Blends prepared by mechanical alloying in an alumina 

ball mill were prepared by forming in a dry press and then sintering under normal 

atmospheric conditions. Subsequently, a characterization study of the sintered 

samples was carried out, and the obtained wear test results were converted into 

data suitable for modelling by artificial neural networks. In the further course of 

the research, the experimental wear results were analysed and modelled using 

artificial neural networks. Wear load, wear time, sintering temperature, and 

sintering time data were used as input variables for the artificial neural network. 

The wear value was taken as the output variables of the artificial neural network. 

Using ANFIS (Adaptive Neuro Fuzzy Inference Systems) learning technique, an 

artificial neural network was established to predict the wear properties of 

porcelain-ceramic composites reinforced with mullite and aluminium titanate. As 

a result, the training and testing results were compared with the real values to 

control the performance of the network. After the ANFIS estimation, 

confirmation tests were performed to confirm the experimental results. The 

highest R2 values were calculated as 0.9785 in aluminium titanate and mullite 

doped porcelain. 

 

Keywords: Ceramic, Porcelain, Wear, Artificial Neural Networks, ANFIS. 
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INTRODUCTION 

Porcelain is a hard, durable and compressed clay material. Porcelain is formed 

by firing at high temperatures and has a thin, glass-like surface. Porcelain is 

usually white in colour, but can also be found in different colours and patterns. 

Porcelain is a durable and hard material. It is also water-resistant and hygienic, 

so it is often used in products such as dinnerware, pottery and bathroom 

accessories. Porcelain is also resistant to high temperatures, so it can also be used 

in places with high temperatures, such as ovens and stoves. Porcelain can be 

classified into two main types: soft porcelain and hard porcelain. Soft porcelain 

is less compressible and less durable. However, hard porcelain is more 

compressible and more durable. Porcelain is used in many different areas. In the 

kitchen, it is used as dinnerware, plates, crockery and other dining utensils. It is 

also used in bathrooms, sinks and toilets. Porcelain also has decorative uses such 

as various ornaments, figurines, vases and sculptures. Porcelain is a hard, non-

porous, fine-grained, mostly translucent vitrified white ceramic with a quartz, 

kaolin, and feldspar structure that is fired at high temperatures (Boyraz and 

Akkuş, 2019,2021; Marquez et.al., 2008, 2009).  

Aluminium titanate (Al2O3.TiO2) has fabulous warm stun resistance, moo 

warm conductivity, moo coefficient of warm extension, and chemical resistance 

in liquid metal. Used in applications in the ceramic, glass, automotive, and heat 

treatment industries (Saclı et.al.,2015; Kucuk et.al., 2018; Ozsoy et.al., 2015; 

Çıtak et.al., 2014; Önen etal., 2014). Aluminium titanate ceramic refractories are 

one of the prominent material options, especially in severe thermal shock 

applications. Today, Aluminium titanate ceramics are used especially as thermal 

insulation filler and diesel particle filter. It is also used in industry, in nozzle 

manufacturing, foundry and non-ferrous casting industry (Jiang et al. 2011). 

Because of its low toughness and relatively low strength compared to other 

ceramics, mullite has never been considered as a material with high strength at 

low temperatures. However, for high temperature applications, it has long been 

recognized as a material with excellent creep and thermal shock resistance. In 

addition, it maintains its strength value at room temperature up to 1560 °C. 

Because of this feature and the fact that it does not have oxidation problems at 

high temperatures, mullite is one of the best ceramic materials that can be used 

both as a single phase and matrix material at high temperatures compared to other 

ceramics. It was understood that mullite has a very high creep strength, and in the 

test performed at 900 MPa and 1500 °C, single crystal mullite showed no 

deformation. The compressive strength of mullite is twice that of alumina at 1400 

°C and the same as silicon carbide at 1500 °C. It has 10 times more creep strength 

at 1450 °C than pure mullite alumina (Hillig,1993). Hillig suggested that the 
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change in hardness depending on temperature could provide information about 

the high temperature strength of a material. If the hardness does not change with 

temperature, the mechanical properties of that material are not affected by 

temperature. Mullite is the material whose hardness decreases the least with 

temperature, and it has the same hardness as silicon carbide, which is one of the 

ceramics with the highest hardness over 1000 °C. The reason why the hardness 

of mullite does not change much with temperature is attributed to the lack of slip 

systems and thus the dislocations remaining immobile under test conditions 

(Hillig, 1993; Aksaf, 1983). Mullite is a uniquely stable inter crystalline phase of 

the binary system Al2O3-SiO2. Mullite (3Al2O3.2SiO2) is a good and cheap 

refractory ceramic. Mullite ceramics have several desirable features, including 

outstanding thermal and chemical stability, great high temperature strength and 

flow resistance, and extremely good thermomechanical properties, making them 

an excellent choice for structural design materials. The coefficient of thermal 

expansion is relatively small, which ensures good thermal shock resistance (Lee 

and Iqbal, 2001; Chargui et. al., 2018; Serra et. al., 2016). Ceramic substances 

have excessive hardness, low friction, exceptional corrosion resistance and the 

capacity to paintings beneathneath intense situations together with excessive 

temperatures. Ceramic put on is anisotropic and associated with the crystal shape 

like metals (Buckley and Miyoshi, 1984; Kong et. al., 1998; Baudín et. al., 2014).  

Artificial Neural Networks (ANN) can help reduce the cost of 

experimentation if done with care and sufficient expertise. Artificial neural 

networks can be characterized as highly parallelized distributed processors with 

a characteristic tendency to collect experimental information and make it 

accessible and usable (Lin Ye et.al., 2005; Koker et.al., 2007).  The Artificial 

Neural Network technique is suitable when a large database is accessible, when 

it is difficult to find a definitive answer to a problem by scientific methods, and 

when the information set is insufficient, noisy and complex (Jiang et.al., 2007). 

Artificial neural networks technique has the opportunity to be applied in many 

fields, from education to health, from social sciences to science. Similarly, 

engineering and materials science applications are also increasing rapidly. 

Thickness, porosity, hardness, strength, wear, stress, etc. of materials. It can 

predict features such as with reasonable precision (Hassan et.al., 2009; Huang 

et.al., 2002; Basheer et.al.,2008; Mandal et.al., 2009). 

Adaptive Neuro-Fuzzy Inference System (ANFIS) is a machine learning 

model that incorporates a combination of neural networks and fuzzy logic. 

ANFIS uses the ability of neural networks to automatically extract and optimize 

fuzzy rules (Zadeh, 1965; Jang, 1995). This model is used to learn the 

relationships between input data and output, and is particularly well suited for 
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modelling complex non-linear relationships. ANFIS represents the input 

variables in fuzzy sets and then uses a set of rules and inference mechanisms to 

determine the output by activating and combining these sets. ANFIS optimizes 

these parameters based on the training data, typically using gradient descent or 

other optimization methods. Application areas of AFIS include prediction, 

classification, verification, and system identification (Karaboğa and Kaya, 2019). 

This model can be a powerful tool for modelling and controlling non-complex 

systems, but it may not be suitable for large and high-dimensional data sets. 

In this study, the wear behaviour of aluminium titanate and mullite added 

porcelain ceramics produced by traditional powder metallurgy method was 

examined. Experimental data obtained as a result of wear tests were analysed 

using a machine learning method. Adaptive Neural Fuzzy Inference System 

(ANFIS) was used to predict the wear behaviour of porcelain ceramics using 

MATLAB's neural network tool panel. The results were evaluated using 

statistical measures such as R2, RMSE, MAE, and MAPE. The models were 

analysed in terms of their training time, accuracy, and overall fit to the data, 

showcasing their performance and capabilities. 

 

MATERIALS AND METHODS 

Researchers sometimes face challenges in setting up and conducting physical 

measurements in experimental studies, leading to incomplete data collection. In 

such cases, simulated data can help bridge the gap. Machine learning algorithms 

play a key role in predicting outcomes on untested data based on patterns learned 

from experimental data. The Adaptive Neural Fuzzy Inference System approach 

has proven successful in generating simulation results by incorporating key 

aspects of machine learning theories. Experimental models face challenges 

related to setup times, expenses, and material-device management, impacting 

workflow. Simulation environments can improve accuracy using statistical or 

mathematical models to support the system. Artificial Neural Network algorithms 

excel in modelling system patterns by training on data or past models. 

 

Materials production 

This study looked at the wear characteristics of porcelain ceramics with 

mullite and aluminium titanate added, made using the powder metallurgy process. 

The experimental wear data were then analysed and artificial neural networks 

were used to model the results. Using a mechanical alloying process, the mixtures 

were made uniformly moist in an acetone atmosphere in alumina ball mills. 

Samples were created by pressing and drying the prepared mixes before they were 

fired. Reaction sintering was used to create aluminium titanate and Mullite 
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ceramic powders from Al2O3, SiO2, and TiO2 powders at 1550 oC and 1400 oC 

for two hours, respectively. The powders of mullite and aluminium titanate were 

prepared for usage by crushing, grinding, and sifting. Different weight 

percentages (0 and 20 wt%) of AT and M were combined with porcelain (P). 

Powder metallurgy was used to prepare the porcelain ceramics AT and M 

strengthened with reinforcement. The combination powders were compressed 

using uniaxial pressing at 200 MPa to create preforms measuring 56 x 12 x 10 

mm. The green compacts were sintered in a high temperature furnace 

(ProthermTM Furnace) at 1100–1200 oC for 1–5 hours while being heated at a rate 

of 5 oC min–1. Ceramics were put through wear tests using an abrasion tester of 

the Plint brand. Wear discs are made of steel. Every sample underwent wear 

testing with force levels of 70, 90, and 120 N for wear durations of 5, 10, 15, and 

20 minutes. The specimen was first measured using a 0.0001 g precision scale, 

and the quantity of wear was ascertained by measuring once more after the 

designated wear time (Boyraz and Akkuş, 2019,2021). Following that, the 

sintered samples were characterized, and the wear experiment findings were 

transformed into data that could be used with the Adaptive Neural Fuzzy 

Inference System (ANFIS) for modelling. 

 

Fuzzy Logic, Neural Networks and ANFIS 

Adaptive Neuro Fuzzy Inference Systems is a structure that combines the 

learning capacity of neural networks and the uncertainty management capabilities 

of fuzzy logic. This system optimizes fuzzy rules by learning from training data 

and thus provides high accuracy in modelling nonlinear systems. ANFIS is 

widely used, especially in prediction, classification and control systems Jang, 

1993; Lin and Lee, 1996; Takagi and Sugeno, 1985). Adaptive Neuro Fuzzy 

Inference Systems uses ANN and fuzzy logic systems by separating them with 

certain roles. While ANN is used for learning from data and parameter 

optimization, fuzzy logic systems are used to work with uncertain and fuzzy 

information. This structure combines the powerful learning capabilities of ANN 

with the human-like decision-making processes of fuzzy logic. However, both 

methods have some limitations on their own. While ANN requires large data sets 

and may have difficulty learning complex structures, fuzzy logic requires user 

intervention in manually determining and adjusting the rules. ANFIS combines 

the strengths of these two methods, creating a model that is adaptive and able to 

deal with uncertainty (Zadeh, 2021; Karaboga and Kaya, 2022).  

Fuzzy Logic is a mathematical framework proposed by Zadeh in 1965 that can 

process information containing uncertainty and fuzziness by expanding the 

binary (0 and 1) structure of classical logic. Its basic structure works similar to 
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human thought and decision-making processes, allowing modeling imprecise 

data and linguistic expressions. This structure is built on fuzzy set theory and 

determines the degree to which elements are in a certain set through membership 

functions. Fuzzy rules and inference mechanisms are the basic components of 

fuzzy logic, and these rules are expressed in the form of "If-Then". The main 

purpose of the model is to transform ambiguous and incomplete information into 

meaningful and usable results. Fuzzy logic is widely used in control systems, 

decision support systems, and various engineering applications, because its 

capacity to deal with uncertainty and its flexible structure offer great advantages 

in the management of complex systems (Zadeh,2021; Mendel and John, 2020). 

Artificial intelligence (AI) is a branch of technology that enables machines to 

develop capabilities similar to human intelligence. The theoretical basis of 

Artificial intelligence is based on algorithms that mimic the functioning of the 

human brain. These machines are capable of carrying out tasks like learning, 

reasoning, solving problems, perceiving, and comprehending language that call 

for human intellect. Artificial intelligence has sub-branches such as machine 

learning and deep learning. Machine learning uses algorithms that have the ability 

to learn from data, allowing models to be trained to perform specific tasks. Deep 

learning, on the other hand, extracts and learns features from complex data 

structures using multi-layer artificial neural networks. The difference between 

Artificial intelligence and other machine learning methods is that it has a more 

general scope and offers a wider range of applications by using different 

techniques (such as machine learning, natural language processing, computer 

vision). Artificial intelligence architecture generally consists of data collection, 

data pre-processing, model training, and model evaluation phases. This 

architecture enables the development of customized solutions in various 

industries (healthcare, finance, automotive, etc.) (Russell and Norvig, 2020; 

Chollet, 2018).  

The key factor of neuro fuzzy logic is that it combines the learning ability and 

associated structures of ANNs with the ease of making human-like decisions and 

providing expert knowledge. In this way, while fuzzy logic systems are given the 

learning and calculation power of ANNs, fuzzy control and expert knowledge 

providing capabilities are added to ANNs. The neuro-fuzzy control system 

determines the values of the variables that will form its structure by using ANN 

and fuzzy logic techniques. There are two types of tuning in fuzzy logic 

controllers: structural and variable tuning. Structural tuning includes fuzzy logic 

rule structures such as the number of variables to be calculated, the number of 

rules, and the partitioning of domains of input and output variables. Once the 

appropriate rule structure is obtained, controller variables need to be set. At this 
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stage, the appropriate centers, slopes, widths and weights of the rules of the 

membership functions are calculated (Yüksek, 2007). 

 

Neural Fuzzy Logic Networks 

Neural Fuzzy Network Structures basically consist of two structures. In the 

first structure (Figure 1), fuzzy inference; The outputs created according to 

linguistic expressions are given as input vectors to the multilayer neural network. 

In this structure, the neural network is trained and the desired outputs are 

provided. In the second neural fuzzy logic structure (Figure 2), the outputs of the 

multilayer neural network drive the fuzzy inference mechanism. 

Although the rules created from expert knowledge in the fuzzy logic approach 

can be labelled with linguistic expressions, generally design; It takes a long time 

because it is done by trial and error method. These rules can be created using 

neural networks. In the neural fuzzy logic approach, neural networks are used to 

adapt the membership functions of the decision-making mechanism of fuzzy 

logic systems. 

 

 

Figure 1: First structure of neural fuzzy logic system 

 

 
Figure 2: Second structure of neural fuzzy logic system 
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ANFIS (Adaptive Network Based Fuzzy Inference System) 

ANFIS architecture consists of the representation of Sugeno type fuzzy logic 

systems as a network model with neural learning capability. This network 

structure consists of nodes placed in different layers, each of which undertakes 

the task of performing a defined function (Tsoukalas and Uhrig, 1996).  

Let us assume that the fuzzy inference system has one output (z) and two 

inputs (x and y). A first-order Sugeno fuzzy model with two fuzzy if-then rules 

typically has the following rule form: 

 

Rule-1 If x is A1 and y is B1, then 
1111 ryqxpf ++=  

Rule-2 If x is A2 and y is B2, then 
2222 ryqxpf ++=  

It is shown as Figure 3 shows the reasoning mechanism for this Sugeno fuzzy 

model. The graphic of the equivalent ANFIS architecture representing this 

structure is shown in Figure 4. For this ANFIS architecture in question, nodes in 

the same layer have the same node functions as shown below. (Here it is stated 

as the output of node i in Layer I.) 

LAYER I: Each node i in this layer is an adaptive node whose output is defined 

as in Equation 1, 

,2,1),(, == ixAO iji   
or 

(1) 

,4,3),(2, == − ixBO iji   
for  

where x (or y) refers to the entry of the node and Ai (or Bi-2) refers to the 

fuzzy set of the node in question. 

 

Figure 3: First Order Sugeno Fuzzy Model with Two Inputs and Two Rules 
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Figure 4. Equivalent ANFIS Structure 

In other words, the outputs of this layer create the membership values of the 

conditional or premise parts of the rules. Here there may be a membership 

function for Ai and Bi. For example, Ai can be expressed with the generalized 

bell curve function specified in Equation 2. 
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The set {ai, bi, ci} here is the parameter set. The parameters of this layer are 

referred to as condition or input parameters. 

LAYER II: Each node in the second layer is a fixed node labeled with that 

produces the product of the incoming signals as output. For example; 

.2,1),()(,2 === iyxxwO BiAiii   
(3) 

Each node's output determines how well each rule is implemented. Knot 

functions can also be derived from other T-norm operations that carry out the 

fuzzy (and) operation rather than multiplication in Equation 3. 

LAYER III: Each node in the third layer is a fixed node, labelled N. In layer 

i. knot, i. Calculates the ratio of the execution degree of the rule to the sum of the 

execution degrees of all rules. 
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The outputs of the nodes in this layer are called normalized realization 

degrees, in accordance with their calculations. 

LAYER IV: Each node i belonging to this layer is an adaptive node whose 

node function is as follows. 

 

)(,4 iiyiiiii rqxpwfwO ++==  (5) 

Here is the output of layer 3 and is the parameter set consisting of the 

parameters of the nodes in this layer. The parameters of this layer will be 

expressed as result or output parameters. 

LAYER V: In this last layer, there is a single, fixed node, labelled, which 

collects all incoming signals to calculate the total output. 
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(6) 

Thus, an adaptive network structure that fully functions as the Sugeno fuzzy 

model is built (Jang 1993). ANFIS processing algorithms begin with loading 

input and output data and initializing ANFIS parameters. During the training 

phase, membership functions and initial rules are determined. During the training 

cycle, in the forward pass phase for each training example, the input values are 

applied to the membership functions, the firing strengths of the rules are 

calculated and normalized. Output values are calculated and the error between 

the actual output and the predicted output is found. In the backpass phase, errors 

are propagated by backpropagation and the parameters are updated. Once training 

is complete, the model is evaluated using test data and its accuracy is measured. 

The results are reported and the final parameters of the model are recorded. These 

processing algorithms enable modelling of complex systems using the learning 

and adaptation capabilities of ANFIS. 

 

DESIGN OF THE MODEL AND EXPERIMENTAL RESULTS 

Data Set Preparation and Experimental System and Data Collection 

In this study, time- and load-dependent wear results were performed on 

porcelain test materials using ANFIS, and the results of these tests, which were 

not available for similar studies, were modelled. All the data in this study were 

collected from this article (Tahsin Boyraz and Ahmet Akkuş, Investigation of 

wear and tear parcels of mullite and aluminium titanate added demitasse pottery, 

Journal of Ceramic Processing Research, 2021, 22(2), 226- 231). 108 data created 

from sintering time, sintering temperature, wear time and wear load variables 
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were used in this modelling. These data were then made suitable for machine 

learning and organized.  

Machine learning algorithms discover and learn patterns in data and build 

mathematical models to predict future data. ML models are directly dependent 

on the quality of the input data (the defining power of the data set on the model) 

and its ability to represent the problem in order to produce accurate results. As 

the data changes over time, more precisely, as the data set for the problem that 

the ML model provides a solution to develops, studies should be carried out to 

continuously detect, correct and reduce the problems to increase the accuracy and 

performance of the model. In short, the model may need to be retrained with the 

latest data. It has a profound impact on the success of data optimization analysis 

in machine learning models. Machine learning modelling has four main processes 

for analysing complex data: problem identification, data curation, neural network 

modelling, and data analysis. In the first process, problem definitions and 

expected outcomes are formulated to guide subsequent tasks. The purpose of the 

alternative process is to prepare high quality data for data analysis to obtain 

satisfactory results. In the third process, neural network models are iteratively 

trained after initialization.  

As a result, the goal of complex data analysis similar to data mining and 

decision support can be achieved based on the generalized results (Yu et.al., 

2006). The parameters that make up the dataset used to train the ANFIS model in 

this study are shown in Figure 5. 

 
Figure 5: Structure of the created ANFIS model 
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Setting the ANFIS Model 

With the proposed model, the values given as input and output parameters to 

the system will be tried to be estimated.  The ANFIS model will be designed to 

produce this decision output at acceptable values. The data set to be used in the 

training of the ANFIS learning model is divided into three parts as “Training Set 

70%”, Test Set 15%” and “Confirmation Set 15%”. This separation process was 

carried out in such a way that the records in the data set were "RANDOM" at the 

determined rates. While the "Training and Validation" sets were used to train the 

model, the "Test" set was not presented to the model at any stage of the training. 

It was used to test the validity and success of the developed model after the 

training process was completed. 

While developing ML models, data set normalization or standardization is a 

method used especially in statistical data processing areas of computer science 

such as data mining. The purpose of the method is to deal with the data in a single 

order in cases where the difference between the data is too great. Another use is 

to compare data in different scaling systems with each other. The aim here is to 

carry the data in different systems to a common system and make them 

comparable by using mathematical functions. Editing the dataset is one of the 

most important steps. In this study, these methods were not applied on the 

structure of the data set and all data were used even though they were originally 

measured. 

The steps of training the ANFIS model to determine its parameters are as 

shown in Figure 6. ANFIS applies two techniques to update parameters. ANFIS 

uses the gradient descent method to fine-tune the antecedent parameters that 

define the membership functions, and the least squares method for consecutive 

parameters that define the coefficients of each output equation. This approach is 

called hybrid learning method because it combines gradient descent and least 

squares method, and this method was also used in this study.  

The structure of ANFIS contains 5 layers (fuzzy, rule, normalization, 

defuzzification, output collection node). It uses a fuzzy iteration system during 

the ANFIS training and evaluation process. The ANFIS framework creates the 

first fuzzy inference system (FIS) based on the training data. The FIS generated 

in this way is trained to minimize errors in the output values. Training is done 

with the strengthening function. The most important parameters to define when 

creating a FIS are the number of rules to define for each ANFIS input parameter 

and the membership function of those input parameters. In fuzzy set theory, the 

membership function assigns the degree of precision (TRUE or FALSE, partial 

precision instead of 0 or 1) to a precise value between 0 and 1. This helps to 

design systems where reality has uncertainty or ill-defined problems. world 
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problems A membership function is a function that returns a degree of 

membership of how a given value maps to an input space called the universe of 

discourse. Each membership function contains a curve representing each point in 

the specified input section. Depending on the shape of the curve, each 

membership function is given a special name, i.e. triangular, bell, trapezoidal and 

Gaussian membership function. There are eight different types of commonly used 

membership functions (Yüksek et.al., 2015). The functions related to the ANFIS 

model are implemented through the MATLAB program, and there are six widely 

used membership functions (Table 1) (Talpur et.al., 2017). 

 

Figure 6: Basic ML and ANFIS Calculation Flow Chart 

 

Table 1: MATLAB Defined Membership Functions 

Membership Type Description 

'gbellmf' Generalized bell-shaped membership function 

'trimf' Triangular membership function 

'trapmf' Trapezoidal membership function 

'gaussmf' Gaussian membership function 

'dsigmf' Difference between two sigmoidal membership functions 

'pimf' Pi-shaped membership function 

 

In order for the ANFIS model to best represent the pattern structure of the data 

set on which it is trained, the membership functions of the input parameters 

should be chosen to reflect the effects of the input data on the model. For this 
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reason, by taking the combinations of eight different membership functions to 

produce the desired results for four inputs, the ANFIS model was trained over 

approximately 625 different selections and the structure that produced the best 

output for the model was determined. By using membership functions applied to 

the inputs of the model with different combinations, the model is trained and 

statistical value measurement units (Mean Absolute Error (MAE), Root Mean 

Squared Error (RMSE), Mean Absolute Error (MAE), R Squared (R2)) are used 

to test the outputs of the model. The combination of membership functions with 

the best representative power was determined among the values produced (Table 

2a-d). Here, the properties are referenced to the values produced by the data set, 

which was created from the records selected as random from 15% of the whole 

data set, initially as the "Test Data Set". Because these set values were not used 

at any stage of the model during the development and training of the model. 

Model selection was made based on the R Squared (R2) values produced by the 

models produced using different membership functions. Here, the R Squared (R2) 

values of the outputs produced by the ANFIS model were ranked using the Test 

Data Set, Validation Data Set, Whole Data Set and Training Data Set ordering, 

and the most appropriate model and was selected. 

In the ANFIS model training process, the model that produces the best values 

according to the statistical specification criteria was selected by the results 

obtained by the different membership functions of the inputs. Table 2a shows the 

results of the ANFIS model with statistical values for Porcelain (P). According 

to these results, when the graphic and produced numerical values of the R2 value, 

which is the basic indicator, are examined, it is seen that the model succeeds in 

representing the real system. While establishing ANFIS, the training dataset was 

divided into 3 parts (Training, Testing and Validation). On the values produced 

in Table 2a, a high R2 value of 0.9705 was achieved based on the approach of 

comparing the success of the model with the TEST data set and the result 

produced. In the graph given in the table, the distribution agreement between the 

actual and model data is clearly seen. 

Similarly, results were produced for other models. 0.9453 for Porcelain-

Mullite (PM) (Table 2b.), 0.9447 (Table 2c.) for Porcelain-Aluminium Titanate 

(PAT) and 0.9785 for Porcelain-Mullite-Aluminium Titanate (PMAT) (Table 

2d.) R2 values were found. The success of the model can also be seen from the 

calculated values of other statistical indicators. As shown in the figures in the 

tables, the distributions of R2 values and the correlations of the actual calculated 

values support the ultimate success of the model (González-Sopeña et.al., 2021). 
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Table 2a: Statistical Scores (P) by Selected Membership Functions 

Inputs X1 X2 X3 X4 

MF 'trimf' 'gbellmf' 'trimf' 'trimf' 

 Data Set Training Test Validation 

MAPE 0.0703 0.06497 0.0759 0.0860 

MAE 0.8707 0.84456 0.8388 1.0075 

RMSE 1.1356 1.11266 1.0834 1.2697 

R2 0.9752 0.9784 0.9705 0.9702 

Training Dataset Measured and ANFIS-Generated Values 

Real ANFIS   

3.264417 3.000 

 

11.75883 10.140 

15.14171 14.790 

6.841045 6.380 

14.57092 12.400 

18.64209 18.100 

29.04603 30.390 

13.12156 13.000 

15.42366 17.360 

3.981349 4.210 

5.914719 5.720 

4.675447 4.940 

3.299920 3.610 

9.933099 8.400 

Comparison of Values of All Data 
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Table 2b: Statistical Scores (PM) by Selected Membership Functions 

Inputs X1 X2 X3 X4 

MF 'dsigmf' 'gaussmf' 'gbellmf' 'trimf' 

 Data Set Training Test Validation 

MAPE 0.1574 0.1333 0.1619 0.2492 

MAE 0.3400 0.3005 0.3889 0.4489 

RMSE 0.3795 0.3359 0.4186 0.4874 

R2 0.9536 0.9630 0.9453 0.9370 

Training Dataset Measured and ANFIS-Generated Values 

Real ANFIS   

2.0929788 1.720 

 

3.3089761 2.790 

2.5702163 2.120 

1.0572701 1.470 

4.8333818 5.330 

3.7257418 4.070 

2.293412 2.000 

2.4655978 2.170 

4.5885255 4.450 

3.4358983 2.940 

2.7074095 2.230 

0.6833022 0.950 

2.2756151 2.190 

1.5550737 1.430 

6.151119 6.650 

1.494202 2.080 

3.562693 3.030 

6.800673 7.410 

Comparison of Values of All Data 
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Table 2c: Statistical Scores (PAT) by Selected Membership Functions 

Inputs X1 X2 X3 X4 

MF 'dsigmf' 'gaussmf' 'gbellmf' 'dsigmf' 

 Data Set Training Test Validation 

MAPE 0.11395 0.11312 0.1224 0.1088 

MAE 0.16425 0.15546 0.2075 0.1561 

RMSE 0.20764 0.199127 0.2543 0.1881 

R2 0.96868 0.96960 0.9447 0.9777 

Training Dataset Measured and ANFIS-Generated Values 

Real ANFIS   

0.3368577 0.480 

 

0.6276109 0.620 

2.5425052 2.480 

2.8795776 3.180 

0.5882388 0.840 

2.381754 2.200 

3.1722474 2.980 

2.0572626 2.470 

2.6577771 2.520 

3.2450863 3.190 

2.3476824 1.920 

1.1946176 1.190 

1.7980226 1.440 

3.2915908 2.960 

2.9746244 3.440 

2.475128 2.390 

4.672416 4.950 

0.618598 0.660 

Comparison of Values of All Data 
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Table 2d: Statistical Scores (PMAT) by Selected Membership Functions 

Inputs X1 X2 X3 X4 

MF 'dsigmf' 'gaussmf' 'gbellmf' 'dsigmf' 

 Data Set Training Test Validation 

MAPE 0.09153 0.0917 0.10057 0.08146 

MAE 0.90889 0.79827 1.3104 0.94982 

RMSE 1.08700 0.95425 1.4470 1.16330 

R2 0.98770 0.98952 0.9785 0.98976 

Training Dataset Measured and ANFIS-Generated Values 

Real ANFIS   

7.0036975 7.960 

 

8.0066045 6.690 

15.485828 13.770 

19.322181 17.840 

7.3051136 6.850 

11.544652 9.970 

32.984008 34.850 

9.2988878 10.480 

6.937188 8.190 

3.679104 3.590 

11.162394 9.890 

32.287274 34.550 

9.3630212 8.380 

14.927838 12.980 

29.269954 29.750 

9.726228 8.700 

16.58213 14 

30.49387 29.35 

Comparison of Values of All Data 
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CONCLUSIONS 

In this study, the wear properties of aluminium titanate and mullite doped 

porcelain ceramics. The obtained experimental wear test results were modelled 

with artificial neural networks. The results of the study are summarized below. 

- As a result of wear tests, the amount of wear increased with increasing load 

and time.  

- daptive Neuro Fuzzy Inference Systems, the training dataset was divided 

into 4 parts (Training, Testing, Validation and All data set).  

- The highest R2 values were calculated as 0.9785 in aluminium titanate and 

mullite doped porcelain. 

- The MAPE, MAE and RMSE values obtained for the ANFIS model are 

0.10057, 1.3104 and 1.4470 respectively for aluminium titanate and 

mullite doped porcelain.  

- MAPE, MAE, RMSE and R2 values of the obtained for All Data set are 

0.09153, 0,90889, 1.08700 and 0.98770 for aluminium titanate and mullite 

doped porcelain.  

- The smallest R2 value was calculated in mullite added porcelain samples. 

While the R2 value for the test set here is 0.9453, this value is calculated as 

0.9536 for the all data set. 
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Abstract 

The fact that experimental studies are expensive and take a lot of time has 

made shorter and less costly modelling methods important. The purpose of this 

study was to investigate the effect of heat changes in oral environment producing 

thermal stresses in dental restorations by a mathematical method and to compare 

with bond strength values obtained from experimental studies. Thermal stress 

was calculated mathematically for seven different ceramic-on-ceramic and six 

different ceramic-on-metal systems. Mathematically, thermal stress calculations 

were made according to the Boley equation. Elastic modulus (E), Poisson ratio 

(ν), coefficient of thermal expansion (α) and bond strength values of the materials 

used in mathematical modelling were taken from manufacturers' websites and 

literature reports. The average experimental bond strength in the ceramic-ceramic 

structure is 32.03±6.70 MPa and this value was calculated as 2.16±1.85 MPa in 

mathematical analysis. Similarly, the average value between ceramic- metal 

while it is 48.90±9.87 MPa, it was mathematically calculated as 4.05±2.54 MPa. 

As a result, there is a temperature-related stress in dental restorations, but it has 

been calculated that this is not to the extent of damaging the restoration. 

Keywords: Thermal stress, Mathematical Modelling, Ceramics, Metal, 

Bond strength. 
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INTRODUCTION 

Dental materials are a part of systems designed to produce dental prostheses 

that are used due to aesthetic concerns or to replace missing or damaged tooth 

structures. There are many metal, ceramic, glass-ceramic, polymer, composites 

such as materials used in dental restorations. Many materials such as composite 

resin and calcium-silicate cements, yttria-stabilized zirconia, geopolymer-

derived leucite, lithium disilicate, spinell, alumina, feldispatic ceramic, 

hydroxyapatite, CrNiMo, CrCoMo, Ti, Ti6Al4V, gold and palladium alloys etc. 

are used in dental restorations (Rezaie,2020; Dimitrova,2023). 

Many properties of the materials such as physical, chemical, mechanical, 

thermal and biological are important for long-term use of artificial teeth in the 

oral environment. Some of these properties are colour, density, thermal stress, 

strength, hardness, polymerization, biocompatibility (Yadav and Kumar, 2019; 

Warreth and Elkareimi, 2020). Elastic modulus and Poisson's ratio are among the 

mechanical properties and parameters that measure the elastic or plastic strain 

behaviour of dental materials. On the other hand, thermal expansion coefficient 

is also one of the thermal properties of materials. Elastic modulus (E, MPa), 

Poisson ratio (ν), Temperature (T) and Coefficient of Thermal Expansion (CTE, 

α, x10-6. K-1.) are very important parameters in thermal stress studies and 

calculations (Boley and Weiner, 2013). 

Artificial dental materials are exposed to many factors that affect their use in 

vivo. Heat transfer and thermal shocks in teeth occur both in daily life and in 

dental surgery. The thermal environment of teeth in daily life varies over a wide 

temperature range. The highest temperature during hot beverage consumption 

was measured between the lower incisors and the maximum value was reached 

at 76.3oC. Thermal changes during feeding in the oral cavity vary between -5 and 

76.3 oC. Under these conditions, differences in thermal and physical properties 

between dental restorative materials facilitate the development of thermal stress, 

especially in the oral cavity. This difference, together with the stresses resulting 

from chewing and temperature change, affects the bond strength, especially at the 

metal-ceramic and ceramic-ceramic interface (Haskan et.al., 2007; Coskun et.al., 

2015; Vojdani et.al., 2012). 

Nowadays, prediction and classification studies with artificial intelligence are 

increasing rapidly. Prediction with machine learning requires a large number of 

experimental data in the same group. Therefore, a mathematical modelling was 

used in this study. Real experimental data was used here too but it is incomparably 

less than modelling with artificial intelligence. 

The aim of this study is to mathematically calculate the thermal stresses that 

will occur at the interfaces in metal-ceramic and ceramic-ceramic restorations in 
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different temperature environments, without taking into account mechanical and 

physical effects, only due to the temperature difference. Afterwards, the bond 

strength values obtained from the literature will be compared with the values 

obtained by mathematical analysis. 

 

MATERIALS AND METHODS 

In dental restorations, metal-on-ceramic and ceramic-on-ceramic artificial 

tooth applications prepared externally through various stages are then placed in 

the mouth appropriately. In this study, mathematical calculation and modelling 

of the thermal expansions caused by the temperature difference during eating of 

artificial teeth produced for this purpose and mounted in the mouth will be made. 

Elastic modulus (E, MPa), Poisson ratio (ν) and coefficient of thermal expansion 

(CTE, α, x10-6. K-1.) values of the materials used in mathematical modelling 

were taken from manufacturers' websites and literature. Some values that are not 

available have also been calculated theoretically (Table 1 and 2) (Haskan, 2007; 

Coskun, 2015; Vojdani, 2012; Lunt, 2015; Bona, 2008; Ertürk, 2015; Hsueh, 

2008; Longhini, 2016; Wood, 2008; Wiedenmann, 2021; Trindade, 2018; Wang, 

2019; Yoshimura, 2012; Ganesh, 2013; Tribst, 2021; Archangelo, 2019; Dai, 

2018; Ma, 2013; Borba, 2011; Borba, 2015; Guazzato, 2002; Khmaj, 2014; 

Albakry, 2003; Chantranikul, 2015; Suansuwan, 2001; Benetti, 2010; DeHoff, 

1998; Abtahi, 2022; Madeira, 2019; Rynıewıcz, 2020; Zhang, 2013). 

The thermal stress (σ, MPa) calculations were made according to the Boley 

equations. In the Boley equation, the elastic modulus of the material 'E', thermal 

expansion coefficient 'α', temperature change 'T' and Poisson's ratio 'ν' are the 

effective parameters (Boley and Weiner, 2013). For the mathematical 

investigation of thermal stresses, in Fig. 1 the stress-strain state of a free tooth 

structure is shown in the form of a plate. In calculating these stresses that will 

affect the bond strength, a total thickness of 1 mm was chosen, including 0.5 mm 

substructure and 0.5 mm veneering material. n the calculations, the temperature 

was taken as minimum -5 and maximum 76.3 oC (Haskan, 2007; Coskun, 2015; 

Vojdani, 2012; Lin, 2010; Jacobs, 1973; Feuerstein, 2008). 

The entire thickness of the restoration was assumed to be 1 mm and this 

thickness is expressed as 2h in the formula. The structure of the material is 

completely independent of the surface traction and the stresses depend only on 

the thickness, the temperature varies through the thickness only, that is, T= T(z). 

Under these conditions, the thermal stress components that occur in the middle 

of the structure due to the temperature change along the physical thickness will 

be calculated by the formulas given below. 
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Table 1: Manufacturers and chemical compositions of ceramic and metal 

materials used in calculations 

Brand name Chemical compositions, % 

Vita VM7 
SiO2 (66-70), Al2O3(13-17), K2O (9-10), Na2O (3-4), CaO (2-3), 

ZrO2(0-1), Y2O3(0,07-0,23)        

Vita VM9 
SiO2 (60-64), Al2O3(13-15), K2O (7-11), Na2O (4-6), B2O3(3-5), 

BaO (1-3), CaO (1-2), ZrO2 (0-1) 

Vita VM13 SiO2 (59-63), Al2O3(13-16), K2O (9-11), Na2O (4-6) 

Vita VM15 
SiO2 (41,3), Al2O3(14,5), K2O (14), Na2O (3), SnO2(11,9), 

ZrO2(5,8), CaO (4,4), P2O5(4,1) 

Vita Titankeramik 

SiO2 (60-62), Al2O3(7-8), K2O (7-7,6), Na2O (5-5,7), CaO (1,0-

1,3), B2O3(6-7), BaO (0,1-0,3), SnO2(2,1-2,7), MgO (6,0-4,4), 

TiO2(5,0-5,4) 

Vita In-Ceram Alumina 75% Al2O3, 25% infiltration glass 

Vita In-Ceram Spinel 78% MgAl2O4, 22% infiltration glass 

Vita In-Ceram Zirconia 56% Al2O3, 24% Ce-ZrO2, 20% infiltration glass 

Vita In-Ceram AL 100% Al2O3 

Vita In-Ceram YZ  92%ZrO2, 5%Y2O3, HfO2< 3%, Al2O3 and SiO2< 1% 

Vita Vitablocs SiO2 (56-64), Al2O3(20-23), Na2O( 6-9), K2O(6-8), other  

Vita PM 9 SiO2 (62-67), Al2O3 (16-19), K2O (6-8), Na2O (5-8), B2O3 (1-3) 

Bego, Bio PontoStar XL, Au Au86.0Pt11.5Zn1.6FeInRh 

Bego, BegoPal 300, Pd Pd75.4In6.3Ag6.2Au6.0Ga6.0Ru 

Bego, Wirobond SG, CrCo Co63.8Cr24.8W5.3Mo5.1Si1.0 [%]) 

Bego, Wiron 99, NiCr 
Ni 65.0, Cr 22.5, Mo 9.5, Nb 1.0, Si 1.0, Fe0.5, Ce 0.5, C max. 

0.02 

Dentaurum Rematitan Ti2 Ti%99,3, other < 1% 

Dentaurum Rematitan Ti5 Ti6Al4V- 89% Ti, 6% Al, 4% V, other 1%  

 

In calculating these stresses that will affect the bond strength, a total thickness 

of 1 mm was chosen, including 0.5 mm substrate and 0.5 mm coating material. In 

calculating these stresses that will affect the bond strength, a total thickness of 1 

mm was chosen, including 0.5 mm substructure and 0.5 mm veneering material. n 

the calculations, the temperature was taken as minimum -5 and maximum 76.3 oC.  

This special study on thermal stresses were built on thermal stresses resulting 

from temperature changes in the physical and mechanical characteristic thickness 

of metal-ceramic and ceramic-ceramic restorations. 

0),( ====== zyyxxzzzyyxx zf                                                   (1) 
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Figure 1. The scheme of the plate 

The balance conditions are indistinguishably fulfilled for push components of 

this frame. For strain components criteria for fulfilling the balance may be 

communicated as takes after: 
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where α is thermal expansion coefficient of the plate material. The solution of 

the eq. 2 can be given as follows: 
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Where are defined as the elastic modulus 'E', the coefficient of thermal 

expansion 'α', the temperature change 'T' and the Poisson ratio '' of the plate 

material. The form of nonzero stress components can be given by solving eq.2 as 

follows. Integral constants, C1 and C2 in eq.3 can only be present provided that 

the stresses are zero on the edges of the plate (Boley and Weiner, 2013).  

where the constants C1 and C2 are to be determined from the boundary 

conditions of zero tractions on the edges of the plate. For any temperature T(z) it 

is possible to choose constants C1 and C2 such that the resultant force and moment 

(per unit of length) produced by σxx and σyy are zero on the edges of the plate.  
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The solution is then found to be:  
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According to Saint-Venant's principle this solution is a quite accurate 

approximation for traction-free edges at distance from these edges larger than 

about one plate thickness. Since the requirement that the plate faces z=±h is free 

of traction is clearly satisfied by eq.1, the above solution is, within the 

approximation corresponding to Saint-Venant’s principle, the desired (end 

unique) solution of the stated thermos elastic boundary-value problem (Boley and 

Weiner, 2013).   

The constants C1 and C2 can be calculated with the 6th and 7th equations given 

below. Calculations are made by substituting these constants in equation 3. 
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Table 2. Elastic modulus (E, GPa), Poisson ratio (ν) and coefficient of 

thermal expansion (α, CTE, x10-6. K-1) of ceramic and metal materials used 

in thermal stress studies and calculations. 

Materials E CTE ν 

Ceramic-Ceramic 

VM7 Veneering  66 ± 6,2 7,1 ± 0,1 0,21 ± 0,02 

In-Ceram Alumina Substructure  270 ± 10,0 7,4 ± 0,2 0,25 ± 0,02 

In-Ceram Spinel Substructure  282 ± 3,0 7,7 ± 0,2 0,27 ± 0,02 

In-Ceram Zirconia Substructure  240 ± 10,0 7,7 ± 0,1 0,26 ± 0,02 

In-Ceram AL Substructure  375 ± 25,0 7,7 ± 0,3 0,22 ± 0,01 

VM9 Veneering  66 ± 1,2 9,1 ± 0,1 0,21 ± 0,01 

In-Ceram YZ Substructure  207 ± 4,0 10,5 ± 0,5 0,30 ± 0,01 

Blocs Substructure  45 ± 2,0 9,4 ± 0,1 0,30 ± 0,01 

PM9 Substructure  64 ± 2,5 9,3 ± 0,2 0,21 ± 0,02 

Ceramic-Metal 

VM13 Veneering  69 ± 2,0 13,4 ± 0,2 0,21 ± 0,01 

Bio PontoStar XL, Au, Substructure  100 ± 10,0 14,3 ± 0,2 0,41 ± 0,02 

BegoPal 300, Pd Substructure  135 ± 5,0 13,9 ± 0,2 0,40 ± 0,01 

VM15 Veneering  71 ± 2,0 15,6 ± 0,1 0,20 ± 0,01 

Wirobond SG, CrCo Substructure  200 ± 10,0 14,4 ± 0,2 0,29 ± 0,01 

Wiron 99, NiCr Substructure  170 ± 20,0 13,9 ± 0,1 0,29 ± 0,01 

Titankeramik Veneering  91 ± 2,0 8,6 ± 0,3 0,20 ± 0,01 

Rematitan Ti2, Ti Substructure  120 ± 10,0 9,6 ± 0,2 0,36 ± 0,01 

Rematitan T5,Ti6Al4V Substructure  120 ± 10,0 10,0 ± 0,2 0,34 ± 0,01 
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By utilizing the conditions gotten, warm stresses shaped at the association of 

metal-ceramic and ceramic-ceramic, which is broadly utilized in dental 

medicines, were explored on the condition that the temperature variety is 

homogeneous. For this application values from Table 2 were utilized. 

 

RESULTS AND DISCUSSION 

Temperature-dependent thermal stresses were calculated mathematically with 

the help of the Boley equation (Table 3 and Fig.2). According to the results 

obtained, thermal stresses increase with increasing temperature. 

 

Table 3. Thermal stresses (MPa) calculated by mathematical method at the 

ceramic-ceramic and ceramic-metal interface. 

Veneering material Substructure material -5 oC 37,5 oC 76,3 oC 

Vita VM7 Vita In-Ceram Alumina 0,211 1,580 3,214 

Vita VM7 Vita In-Ceram Spinel 0,444 3,329 6,774 

Vita VM7 Vita In-Ceram Zirconia 0,389 2,920 5,940 

Vita VM7 Vita In-Ceram Al 0,519 3,894 7,923 

Vita VM9 Vita In-Ceram YZ 0,536 4,017 8,172 

Vita VM9 VitaBlocs 0,061 0,454 0,925 

Vita VM9 Vita PM9 0,042 0,312 0,635 

Vita VM13 Bego, Bio PontoStar XL, Au, 0,348 2,612 5,315 

Vita VM13 Bego, BegoPal 300, Pd 0,245 1,837 3,738 

Vita VM15 Bego, Wirobond SG, CrCo 0,707 5,302 10,788 

Vita VM15 Bego, Wiron 99, NiCr 0,879 6,591 13,411 

Vita Titankeramik Dentaurum, Rematitan Ti2, Ti 0,201 1,511 3,074 

Vita Titankeramik Dentaurum, Rematitan T5,Ti6Al4V 0,279 2,094 4,261 

 

As a result of the calculations, it was observed that the stresses occurring at 

the ceramic-metal interface were generally higher. In ceramic-ceramic 

restorations, the highest value was calculated as 8.172 MPa at the VitaVM9 and 

Vita In-Ceram YZ interface and at 76.3 oC. However, this value was calculated 

as 13.411 at 76.3 oC for Vita VM15 -  NiCr alloy (Bego, Wiron 99) at the ceramic-

metal interface.  

These differences arise from the effective parameters in the calculations: 

elastic modulus (E), the coefficient of thermal expansion (α), the Poisson ratio (ν) 

of the materials. 
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Figure 2:  Some mathematically calculated thermal stress results. 

 

Table 4. Average bond strength (MPa) values of some ceramic - ceramic 

and metal - ceramic systems used in dental restorations. 

Veneering material Substructure material bond strength 

Ceramic In-Ceram Alumina 25,60 ± 10,90 

Ceramic In-Ceram Spinel 37,35 ± 10,75 

Ceramic In-Ceram Zirconia 24,60 ± 9,6 

Ceramic In-Ceram Al2O3 38,80 ± 6,3 

Ceramic In-Ceram YZ 33,81 ± 7,96 

Ceramic Au Alloys 49,50 ± 14,80 

Ceramic Pd Alloys 52,46 ± 15,26 

Ceramic CrCoMo Alloys 39,50 ± 6,50 

Ceramic NiCrMo Alloys 37,53 ± 14,99 

Ceramic Titanium (Ti) 42,00 ± 18,00 

Ceramic Ti6Al4V 72,39 ± 20,12 

 

Benetti, Kern, Kim, Valandro et al. tested the ceramic-alumina bond strengths 

in the ceramic-ceramic system in different studies they conducted. The average 

bond strength value of these studies was calculated as 25.60 ± 10.90 MPa. In a 

study investigating a new retention system for In-Ceram and In-Ceram Spinell 

ceramics, Wood et al. found the ceramic-in-ceram spinell bond strength to be 

37,35 ± 10,75 MPa on average. They investigated the effect of surface 

conditioning on the bond strength of resin cement to high alumina and zirconia 

reinforced ceramics and found the bond strength to be 26,8+-7,4 MPa. When 
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similar studies are evaluated, the average bond strength of ceramic-in ceram 

zirconia restorations is 24.60+-9.60 MPa (Benetti, 2010; Kern, 1995; Kim, 2005; 

Valandro, 2006; Wood, 1997).  

In an in vitro study evaluating the tensile bond strength and adhesive bonding 

systems of dense sintered alumina ceramic, Hummel et al. found the bond 

strength to be 38,80 ± 6,3 MPa. The average bond strength obtained from studies 

investigating the effects of thermal expansion coefficient, thermal incompatibility 

and surface conditioning on the bond strength of ceramic-coated yttrium-

stabilized zirconia is 33,81 ± 7,96 MPa (Valandro, 2006; Wood, 1997; Hummel, 

2004; Juntavee, 2018; Komine,  2012; Fischer, 2009; Saito, 2010).  

Khmaj et al. investigated of the comparison of metal-ceramic bonding 

strengths of gold alloys with metal pressing and traditional porcelain layering 

techniques. Vásquez et al. studied the interface characterization and evaluation 

of the adhesion of glass ceramics to gold alloy after thermal and mechanical 

loading. As a result of the evaluation of these studies with similar studies, the 

average ceramic-gold bond strength was found to be 49,50 ± 14,80 MPa 

[44,62,63]. Lopes et al.  studied the correlatıon Between palladium-ceramıc bond 

strength and coeffıcıent of lınear thermal expansıon. Khmaj et al. investigated of 

the comparison of metal-ceramic bonding strengths of palladium alloys with 

metal pressing and traditional porcelain layering techniques.  As a result of the 

evaluation of these studies with similar studies, the average ceramic-palladium 

bond strength was found to be 52,46 ± 15,26 MPa (Khmaj, 2014; Saito, 2010; 

Vásquez, 2009; Lopes, 2009).  

In the bond strength studies of Ni-Cr based alloys with ceramics reached 

values; Neto et al. 22.54-35.11 MPa, Lopes et al. 38.61-43.12 MPa and 

Czepułkowska et al. 40.48-52.52 MPa. The average ceramic-NiCr alloys bond 

strength was found to be 37,53 ± 14,99 MPa. In porcelain studies on CoCr alloys; 

Neto et al. investigated the bond strength of three dental porcelains to CoCr 

Alloys. Czepułkowska et al. studied the role of mechanical, chemical and 

physical bonds in CoCr-ceramic bond strength. Kaleli and Saraç comparised of 

porcelain bond strength of different metal frameworks. The average ceramic- 

CoCr alloys bond strength was found to be 39,50 ± 6,50 MPa (Lopes, 2009; Neto, 

2006; Czepułkowska, 2018; Kaleli, 2017).   

In some studies, on Ti-dental porcelain bond strength, an average value of 

42,00 ± 18,00 MPa was reached [53,68-71]. Toptan et al. investigated the 

influence of the processing route of porcelain/Ti–6Al–4V interfaces on shear 

bond strength. Sendão et al. studied the the effect of thermal cycling on the shear 

bond strength of porcelain/Ti–6Al–4V interfaces. The average bond strength 

value obtained as a result of these studies is 72,39 ± 20,12 MPa (Zhang, 2013; 
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Atsü, 2000; Lubas, 2020; Zinelis, 2010; Bondioli, 2004; Toptan, 2013; Sendão, 

2015).  

 

Table 5. General average bond strength (MPa) and calculated average 

thermal stress (MPa) values in ceramic - ceramic and metal - ceramic 

systems used in dental restorations. 
Veneering material Substructure material Bond Strength Thermal Stress 

Ceramic Ceramic 32,03 ± 6,70 2,16±1,85 

Ceramic Metal 48,90 ± 9,87 4,05±2,54 

 

The main purpose of this study is to calculate the thermal stresses that will 

occur with temperature changes in the ceramic-ceramic and ceramic-metal 

connection area in dental restorations with a mathematical method and to 

compare and the obtained values with the experimental bond strengths. In Table 

4, average bond strength values of some ceramic - ceramic and metal - ceramic 

systems used in dental restorations are given separately. The general average 

bond strength and calculated average thermal stress values of ceramic-ceramic 

and metal-ceramic systems used in dental restorations are given in Table 5. 

While the general average experimental bond strength in the ceramic-ceramic 

structure is 32.03 ± 6.70 MPa, this value was calculated as 2.16 ± 1.85 MPa in 

mathematical calculation. Similarly, the general average value between ceramic- 

metal While it is 48.90 ± 9.87 MPa, it was mathematically calculated as 4.05 ± 

2.54 MPa. There is a temperature-related stress in dental restorations, but it has 

been observed that this is not to the extent of damaging the restoration. 

 

CONCLUSION 

Based on the findings of this mathematical analysis study, the following 

conclusions were drawn:  

- Elastic modulus, thermal expansion coefficient and Poisson ratio properties 

of ceramic and metal materials were effective in temperature-dependent 

thermal stresses. 

- Thermal stress and bond strength values, both mathematically calculated and 

obtained from experimental data, were higher in ceramic-metal restorations. 

- Experimentally obtained bond strength values are much higher than 

mathematically calculated thermal stresses. 

- According to the results obtained from mathematical analysis and 

experimental bond strength comparison, it has been shown that the effect of 

thermal stresses alone cannot break the ceramic-ceramic and metal-ceramic 

bond strength. 

57



 

REFERENCES 

Abtahi, S., Alikhasi, M., Siadat, H. (2022). Biomechanical behavior of 

endocrown restorations with different cavity design and CAD-CAM 

materials under a static and vertical load: A finite element analysis. Journal 

of Prosthetic Dentistry,127(4), 600.e1-600.e8.   

Albakry, M., Guazzato, M., Swain, M.V. (2003). Biaxial flexural strength, elastic 

moduli, and x-ray diffraction characterization of three pressable all-

ceramic materials. Journal of Prosthetic Dentistry, 89(4),374-380.  

Archangelo, K.C., Guilardi, L.F., Campanelli, D., Valandro, L.F., Borges, A.L.S. 

(2019).  Fatigue failure load and finite element analysis of multilayer 

ceramic restorations. Dental Materials, 35(1),64-73.  

Atsü, S., Berksun, S. (2000). Bond strength of three porcelains to two forms of 

titanium using two firing atmospheres. Journal of Prosthetic Dentistry, 

84(5),567-574.   

Benetti, P., Della Bona, A., Kelly, J.R. (2010). Evaluation of thermal 

compatibility between core and veneer dental ceramics using shear bond 

strength test and contact angle measurement. Dental Materials, 26(8),743-

50.  

Boley, B.A., Weiner, J.H. (2013). Theory of Thermal Stresses. New 

ed.(corrected). New York, Mineola. 

Bona, A. D., Mecholsky, J.J. Barrett, A.A. Griggs, J.A. (2008). Characterization 

of glass-infiltrated alumina-based ceramics. Dental Materials, 

24(11),1568-74.  

Bondioli, I.R., Bottino, M.A. (2004). Evaluation of shear bond strength at the 

interface of two porcelains and pure titanium injected into the casting mold 

at three different temperatures. Journal of Prosthetic Dentistry, 91(6),541-

547.   

Borba, M., de Araújo, M.D., de Lima, E., Yoshimura, H.N., Cesar, P.F., Griggs, 

J.A., Della Bona, A. (2011). Flexural strength and failure modes of layered 

ceramic structures. Dental Materials, 27(12),1259-1266.  

Borba, M., Duan, Y., Griggs, J.A., Cesar, P.F., Della Bona, Á. (2015). Effect of 

ceramic infrastructure on the failure behavior and stress distribution of 

fixed partial dentures. Dental Materials, 31(4),413-22.  

Coskun, M.E., Boyraz, T., Tugut, F., Akin, H. (2015). Investigation of Thermal 

Stress in Different Metal Based Dental Restorations by Mathematical 

Analysis. Cumhuriyet Dental Journal,18(4),311-317. 

Czepułkowska, W., Wołowiec-Korecka, E., Klimek, L. (2018). The role of 

mechanical, chemical and physical bonds in metal-ceramic bond strength. 

Archives of Materials Science and Engineering, 92(1),5-14.  

58



 

Chantranikul, N., Salimee, P. (2015). Biaxial flexural strength of bilayered 

zirconia using various veneering ceramics. Journal of Advanced 

Prosthodontics, 7(5),358-67.  

Dai, K., Shaw, L. (2004). Thermal and mechanical finite element modeling of 

laser forming from metal and ceramic powders. Acta Materialia, 52, 69-

80. 

DeHoff, P.H., Anusavice, K.J. (1998). Viscoelastic stress analysis of thermally 

compatible and incompatible metal-ceramic systems. Dental 

Materials,14(4),237-45.  

Dimitrova, I., Tosheva, D.T. (2023). Comparative analysis of shear bond strength 

and quality of interface at novel bioactive material or Biodentine. Journal 

of Ceramic Processing Research, 24(2), 353-358. 

Feuerstein, O., Zeichner, K., Imbari, C., Ormianer, Z., Samet, N., Weiss, E.I. 

(2008). Temperature changes in dental implants following exposure to hot 

substances in an ex vivo model. Clinical Oral Implants 

Research,19(6),629-33. 

Fischer, J., Stawarzcyk, B., Trottmann, A., Hämmerle, C.H. (2009). Impact of 

thermal misfit on shear strength of veneering ceramic/zirconia composites. 

Dental Materials, 25(4),419-23.  

Ganesh, I. (2013). A review on magnesium aluminate (MgAl2O4) spinel: 

synthesis, processing and applications, International Materials Reviews, 

58(2), 63-112. 

Guazzato, M., Albakry, M., Swain, M.V., Ironside, J. (2002). Mechanical 

properties of In-Ceram Alumina and In-Ceram Zirconia. The International 

Journal of Prosthodontics,  15(4),339-46.  

Haskan, H., Boyraz, T., Kilicarslan, M.A. (2007). Investigation of thermal 

stresses in dental restoration by mathematical method. Journal of European 

Ceramic Society, 27,899-902. 

Hsueh, C.H., Thompson, G.A., Jadaan, O.M., Wereszczak, A.A., Becher, P.F. 

(2008). Analyses of layer-thickness effects in bilayered dental ceramics 

subjected to thermal stresses and ring-on-ring tests. Dental Materials, 

24(1),9-17.  

Hummel, M., Kern, M. (2004). Durability of the resin bond strength to the 

alumina ceramic Procera. Dental Materials, 20(5),498-508.   

Jacobs, H.R., Thompson, R.E., Brown, W.S. (1973). Heat transfer in teeth. J Dent 

Res, 52, 248-52. 

Juntavee, N., Dangsuwan, C. (2018). Role of coefficient of thermal expansion on 

bond strength of ceramic veneered yttrium-stabilized zirconia. Journal of 

Clinical and Experimental Dentistry, 10(3), e279-e286.   

59



 

Kaleli, N, Saraç, D. (2017). Comparison of porcelain bond strength of different 

metal frameworks prepared by using conventional and recently introduced 

fabrication methods. Journal of Prosthetic Dentistry,118(1),76-82.   

Kanat-Ertürk, B., Çömlekoğlu, E.M., Dündar-Çömlekoğlu, M., Özcan, M., 

Güngör, M.A. (2015). Effect of Veneering Methods on Zirconia 

Framework-Veneer Ceramic Adhesion and Fracture Resistance of Single 

Crowns. Journal of Prosthodontics, 24(8),620-8.  

Kern, M., Thompson, V.P. (1995). Bonding to glass infiltrated alumina ceramic: 

adhesive methods and their durability. Journal of Prosthetic Dentistry, 

73(3),240-9.  

Khmaj, M.R., Khmaj, A.B., Brantley, W.A., Johnston, W.M., Dasgupta, T. 

(2014). Comparison of the metal-to-ceramic bond strengths of four noble 

alloys with press-on-metal and conventional porcelain layering techniques. 

Journal of Prosthetic Dentistry, 112(5),1194-200. 

Kim, B.K., Bae, H.E., Shim, J.S., Lee, K.W. The influence of ceramic surface 

treatments on the tensile bond strength of composite resin to all-ceramic 

coping materials. Journal of Prosthetic Dentistry, 94(4),357-62.  

Komine, F, Strub, J.R., Matsumura, H. (2012). Bonding between layering 

materials and zirconia frameworks. Jpn Dent Sci Rev, 48(2),153-161. 

Lin, M., Xu, F., Lu, T.J., Bai, B.F. (2010). A review of heat transfer in human 

tooth-experimental characterization and mathematical modeling. Dental 

Materials, 26(6), 501-13.  

Longhini, D., Rocha, C.O., Medeiros, I.S., Fonseca, R.G., Adabo, G.L. (2016). 

Effect of Glaze Cooling Rate on Mechanical Properties of Conventional 

and Pressed Porcelain on Zirconia. Brazilian Dental Journal, 27(5),524-

531.   

Lopes, S.C., Pagnano, V.O., Rollo, J.M., Leal, M.B., Bezzon, O.L. (2009). 

Correlation between metal-ceramic bond strength and coefficient of linear 

thermal expansion difference. Journal of Applied Oral Science,17(2),122-

8.   

Lubas, M. (2020). Au interface effect on Ti-dental porcelain bond strength 

investigated by spectroscopic methods and mechanical tests. Journal of 

Molecular Structure, 1208,127870. 

Lunt, A.J.G., Kabra, S., Kelleher, J., Zhang, S.Y., Neo, T.K., Korsunsky, A.M. 

(2015). Tensile secondary creep rate analysis of a dental veneering 

porcelain. Thin Solid Films, 596,269-76. 

Ma, L., Guess, P.C., Zhang, Y. (2013). Load-bearing properties of minimal-

invasive monolithic lithium disilicate and zirconia occlusal onlays: finite 

element and theoretical analyses. Dental Materials, 29(7),742-51.  

60



 

Madeira, S., Mesquita-Guimarães, J., Ribeiro, P., Fredel, M., Souza, J.C.M., 

Soares, D., Silva, F.S., Henriques, B. (2019). Y-TZP/porcelain graded 

dental restorations design for improved damping behavior - A study on 

damping capacity and dynamic Young's modulus. Journal of the 

Mechanical Behavior of Biomedical Materials, 96,219-226.  

Neto, A.J.F., Panzeri, H., Neves, F.D., Prado, R.A., Mendonça, G. (2006). Bond 

strength of three dental porcelains to Ni-Cr and Co-Cr-Ti alloys. Brazilian 

Dental Journal,17(1),24-8.   

Rezaie, H. R., et al., (2020). A Review on Dental Materials. Springer Nature. 

Rynıewıcz, W., Rynıewıcz, A.M., Bojko, L., Mazur, K. (2020). The Simulation 

Assessment of The Veneering Layers of Prosthetic Crowns İn 

Concentrated Contact, Tribologia, 293(5), 39-50.  

Saito, A., Komine, F., Blatz, M.B., Matsumura, H. (2010). A comparison of bond 

strength of layered veneering porcelains to zirconia and metal. Journal of 

Prosthetic Dentistry,104(4),247-57.   

Sendão, I.A., Alves, A.C., Galo, R., Toptan, F., Silva, F.S., Ariza, E. (2015). The 

effect of thermal cycling on the shear bond strength of porcelain/Ti-6Al-

4V interfaces. Journal of the Mechanical Behavior of Biomedical 

Materials, 44,156-63. 

Suansuwan, N., Swain, M.V. (2001). Determination of elastic properties of metal 

alloys and dental porcelains. Journal of Oral Rehabilitation, 28(2),133-9.   

Tribst, J.P.M., Lo Giudice, R., Dos Santos, A.F.C., Borges, A.L.S., Silva-

Concílio, L.R., Amaral, M., Lo Giudice, G. (2021). Lithium Disilicate 

Ceramic Endocrown Biomechanical Response According to Different 

Pulp Chamber Extension Angles and Filling Materials. Materials (Basel), 

14(5),1307.  

Trindade, F.Z., Valandro, L.F., de Jager, N., Bottino, M.A., Kleverlaan, C.J. 

(2018). Elastic Properties of Lithium Disilicate Versus Feldspathic Inlays: 

Effect on the Bonding by 3D Finite Element Analysis. Journal of 

Prosthodontics, 27(8),741-747.  

Toptan, F., Alves, A.C., Henriques, B., Souza, J.C., Coelho. R., Silva, F.S., 

Rocha, L.A., Ariza, E. (2013). Influence of the processing route of 

porcelain/Ti-6Al-4V interfaces on shear bond strength. Journal of the 

Mechanical Behavior of Biomedical Materials, 20,327-37.   

Valandro, L.F., Ozcan, M., Bottino, M.C., Bottino, M.A., Scotti, R., Bona, A.D. 

(2006). Bond strength of a resin cement to high-alumina and zirconia-

reinforced ceramics: the effect of surface conditioning. The Journal of 

Adhesive Dentistry, 8(3),175-81.   

Vojdani, M., Shaghaghian, S., Khaledi, A., Adibi, S. (2012). The effect of thermal 

61



 

and mechanical cycling on bond strength of a ceramic to nickel-chromium 

(Ni-Cr) and cobalt-chromium (Co-Cr) alloys.  Indian Journal of Dental 

Research, 23,509-513. 

Vásquez, V.Z., Ozcan, M., Kimpara, E.T. (2009). Evaluation of interface 

characterization and adhesion of glass ceramics to commercially pure 

titanium and gold alloy after thermal- and mechanical-loading. Dental 

Materials, 25(2),221-31.  

Wang, H., Lim, J.Y. (2019). Metal-ceramic bond strength of a cobalt chromium 

alloy for dental prosthetic restorations with a porous structure using metal 

3D printing. Computers in Biology and Medicine | Journal, 112,103364. 

Warreth, A., Elkareimi, Y. (2020). All-ceramic restorations: A review of the 

literature. The Saudi Dental Journal, 32(8),365-372. 

Weber, K.R., Benetti, P., Della Bona, Á., Corazza, P.H., Medeiros, J.A., Lodi, E., 

Borba, M. (2018). How does the piston material affect the in vitro 

mechanical behavior of dental ceramics? Journal of Prosthetic Dentistry, 

120(5),747-754.  

Wiedenmann, F., Klören, M., Edelhoff, D., Stawarczyk, B. (2021). Bond strength 

of CAD-CAM and conventional veneering materials to different 

frameworks. Journal of Prosthetic Dentistry, 125(4),664-673.  

Wood, D.J., Bubb, N.L., Millar, B.J., Dunne, S.M. (1997). Preliminary 

investigation of a novel retentive system for hydrofluoric acid etch-

resistant dental ceramics. Journal of Prosthetic Dentistry, 78(3), 275-80.  

Wood, D.J., Shiraishi, T., Shinozaki, N., van Noort, R. (2008). Spectral 

reflectance and color of dentin ceramics for all-ceramic restorations. 

Dental Materials, 24(12),1661-9.  

Yadav, R., Kumar, M. (2019). Dental restorative composite materials: A review. 

Journal of Oral Biosciences, 61(2),78-83. 

Yoshimura, H.N., Gonzaga, C.C., Cesar, P.F., Miranda, W.G Jr. (2012). 

Relationship between elastic and mechanical properties of dental ceramics 

and their index of brittleness. Ceramic International, 38(6),4715-22. 

Zhang, Z., Tan, F., Ba, Y., Zhang, Y. (2013). Effects of different bond agents on 

commercially pure Ti-porcelain bond strength. Mater Letters, 109,214-

216. 

Zinelis, S., Barmpagadaki, X., Vergos, V., Chakmakchi, M., Eliades, G. (2010). 

Bond strength and interfacial characterization of eight low fusing 

porcelains to cp Ti. Dental Materials, 26(3),264-73.  

 

 

62


	Nazım Çağatay DEMİRALpdf
	tahsiz boyraz
	tahsiz boyraz.docx2



