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From a crossed module of associative K-algebras to a strict
2-algebra

Emre OZEL* and Ummahan EGE ARSLAN**

1. Introduction

To describe (pointed, weak) homotopy 2-types of CW -complexes, J. H. C. Whitehead defined crossed
modules in [12, 13]. The concept of crossed modules of commutative algebras was introduced to the
literature in [5, 6, 8, 10] studies. In [3, 11], the crossed module definition is given for only associative
algebras that are not commutative. In [2], some algebraic results for crossed modules of algebras are
given.

In [3], the notion of Cat1-algebra, which is equivalent to the crossed module concept, is defined. In [9],
it has been shown that (commutative) Cat1-algebra is equivalent to the internal category in the category
of commutativeK-algebras. In [4], a detailed explanation of this equivalence for associative algebra has
been given. In [?], the concept of categorical R-algebra is given, and the crossed module is associated
with this concept.

Respectively, both Akça and Ege Arslan in [1] used the internal category concept, and Özel in [7], by
looking at it from a global 2-categorical perspective, constructed a strict, commutative 2-algebra from a
crossed module of commutative algebras.

In this study, our aim is to obtain a strict 2-algebra from a crossed module of associative K-algebras,
one of the problems in [7]. In particular, we will follow a different path from the construction of the
commutative algebra in [7], using the definition of associative action. Then we will show the inverse
construction and give the equivalence between the category of crossed modules of associativeK-algebras
and the category of strict 2-algebras.

2. Preliminaries

In this section, the preliminary definitions required for 2-categorification will be given, and K will be
used for the construction, always being a commutative and unitary ring.

Definition 2.1 (Strict 2-algebra). A strict 2-algebra is a strict 2-category with a single object whose 2-,
and 1-morphisms sets are associative K-algebras. For a more comprehensive definition, see [7]. Let A
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** Prof. Dr.Ummahan Ege Arslan, Eskişehir Osmangazi University, Faculty of Science, Department of Mathematics and Com-
puter, uege@ogu.edu.tr, http://orcid.org/0000-0002-2995-0718.
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be a strict 2-algebra; this structure is expressed by the following diagram.

A =

(
A2

s1 //

t1
//A1

s0 //

t0
//

i1

]] A0 = {•}

i0

``

)
.

Note that a strict 2-algebra A is actually a strict 2-algebroid with a single object.

Definition 2.2 (Morphism of strict 2-algebras). Let A and A′, be strict 2-algebras. A strict 2-algebra
K-homomorphism F = (F2, F1, F0) : A −→ A′ is strict 2-functor given by K-algebra homomorphisms
F0 : A0 = {•} −→ A′

0 = {•′}, F1 : A1 −→ A′
1, and F2 : A2 −→ A′

2 making the following diagram

A

F=(F2,F1,F0)

��
A′

=



A2

s1 //

t1
//

F2

��

A1

s0 //

t0
//

i1

``

F1

��

A0 = {•}

i0

cc

F0

��
A′

2

s′1 //

t′1

//A′
1

s′0 //

t′0

//

i′1

aa A′
0 = {•′}

i′0

dd


commutative.

The category whose objects are strict 2-algebras and whose morphisms are 2-algebra homomorphisms
between strict 2-algebras is called the category of strict 2-algebras and is denoted by 2-ALG.

Definition 2.3 (Action of associativeK-algebras). Let M and N be associative K-algebras.

∗1 : N ×M // M

(n,m) � // n ∗1 m,

and ∗2 : M ×N // M

(m,n) � // m ∗2 n,

maps are left and right actions, respectively, of N on M if and only if

1. n ∗1 (m1 +m2) = n ∗1 m1 + n ∗1 m2,

2. (n1 + n2) ∗1 m = n1 ∗1 m+ n2 ∗1 m,

3. n ∗1 (m1m2) = (n ∗1 m1)m2,

4. (n1n2) ∗1 m = n1 ∗1 (n2 ∗1 m),

5. (m1 +m2) ∗2 n = m1 ∗2 n+m2 ∗2 n,

6. m ∗2 (n1 + n2) = m ∗2 n1 +m ∗2 n2,

7. (m1m2) ∗2 n = m1(m2 ∗2 n),

8. m ∗2 (n1n2) = (m ∗2 n1) ∗2 n2,

9. k ∗ (n ∗1 m) = (k ∗ n) ∗1 m = n ∗1 (k ∗m),
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10. k ∗ (m ∗2 n) = m ∗2 (k ∗ n) = (k ∗m) ∗2 n,

for all k ∈ K, n, n1, n2 ∈ N and m,m1,m2 ∈ M .

Remark 2.4 (Associative action). If N has an action on M as follows, it is called an associative action

n1 ∗1 (m ∗2 n2) = (n1 ∗1 m) ∗2 n2,

for each n ∈ N and m ∈ M .

Definition 2.5 (Crossed module of associativeK-algebras). LetM andN be associativeK-algebras. A
crossed module of associativeK-algebras A =

(
M

∂−→ N
)
is aK-algebra homomorphism ∂ : M −→ N

together with an (both left and right) N -action on M such that;

XMOD1 ∂(n1 ∗1 m2) = n1∂1(m2) and ∂(m1 ∗2 n2) = ∂(m1)n2,

XMOD2 ∂(m1) ∗1 m2 = m1m2 and m1 ∗2 ∂(m2) = m1m2,

for each n ∈ N and m ∈ M .

Definition 2.6 (Morphism of crossed module of associative K-algebras). Let A =
(
M

∂−→ N
)
and

A′ =
(
M ′ ∂′

−→ N ′) be two crossed modules of associative K-algebras. An f = (f1, f0) morphism of
crossed modules from A1 to A′

1 is illustrated by the following commutative diagram and this diagram
preserves the associative K-algebras action of N on M :

A

f=(f1,f0)

��
A′

=


M

∂ //

f1

��

N

f0

��
M ′

∂′
// N ′


The category whose objects are crossed modules of associative K-algebras and whose morphisms are
crossed module homomorphisms between crossed modules of associative K-algebras is called the cate-
gory of crossed modules of associativeK-algebras and is denoted by XMOD.

3. Categorification

In this section we will obtain a strict 2-algebra from a crossed module of associative K-algebras. Then
we will obtain a strict 2-algebra morphism from a crossed module morphism.

The strict 2-algebra A(A) obtained from a crossed module of associativeK-algebras A =
(
M

∂−→ N
)
is

constructed in the following steps:

The set of objects (0-cells): The objects set A0 of A(A) consists of a single object.

The set of 1-morphisms (1-cells): The 1-morphism setA1 ofA(A) is the bottom associativeK-algebra
N of the crossed module A. Therefore, the composition ♯0 of 1-morphisms A1 is the multiplication of
N .
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The set of 2-morphisms (2-cells): The set of 2-morphisms ofA(A) isMoN , which is the semi-direct
product algebra of associativeK-algebrasM and N that form the crossed module A. The 2-categorical
visualization of any 2-morphism (m,n) ∈ M oN is as follows:

•

n

""

n+∂(m)

<< •.(m,n)

��

The 1-source and 1-target of the 2-morphism (m,n) are s1((m,n)) = n and t1((m,n)) = n + ∂(m),
respectively.

The vertical composition ♯1 of 1-compatible 2-morphisms of 1-source and 1-target is expressed by the
following diagrams.

•

n

((

n+∂(m)

66 •(m,n)

��

•

n+∂(m)

((

n+∂(m′)+∂(m)

66 •(m′,n+∂(m))

��

= •

n

&&

n+∂(m′+m)

88 •;(m′,n+∂(m))♯1(m,n)=(m′+m,n)

��

The 1-source and 1-target of (m′, n + ∂(m))♯1(m,n) = (m′ + m,n) are n and n + ∂(m′) + ∂(m),
respectively.

SinceM oN is an associativeK-algebra, there is an interchange law between the vertical composition
and addition.

The horizontal composition ♯0 of 2-morphisms of A(A) is the multiplication of the semi-direct product
algebraMoN . The horizontal composition of the 2-morphisms (m1, n1) and (m2, n2)whose 0-sources
and 0-targets are compatible is

(m1, n1)♯0(m2, n2) = (n1 ∗1 m2 +m1 ∗2 n2 +m1m2, n1n2),

expressed in the diagram below.

•

n2

��

n2+∂(m2)

?? •

n1

��

n1+∂(m1)

?? •(m2,n2)

��

(m1,n1)

��

= •

n1♯0n2

%%

(n1+∂(m1))♯0(n2+∂(m2))

99 •,
(m1, n1)♯0(m2, n2)

= (n1 ∗1 m2 + m1 ∗2 n2

+m1m2, n1n2)

��

The 1-source and 1-target of the horizontal composition ♯0 are

s1((m1, n1)♯0(m2, n2)) = s1((n1 ∗1 m2 +m1 ∗2 n2 +m1m2, n1n2))

= n1n2

= n1♯0n2,
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and
t1((m1, n1)♯0(m2, n2)) = t1((n1 ∗1 m2 +m1 ∗2 n2 +m1m2, n1n2))

= n1n2 + ∂(n1 ∗1 m2 +m1 ∗2 n2 +m1m2)

= n1n2 + ∂(n1 ∗1 m2) + ∂(m1 ∗2 n2) + ∂(m1m2)

= n1n2 + n1∂(m2) + ∂(m1)n2 + ∂(m1)∂(m2)

= n1(n2 + ∂(m2)) + ∂(m1)(n2 + ∂(m2))

= (n1 + ∂(m1))♯0(n2 + ∂(m2)),

respectively.

Since A is a crossed module over associative K-algebras and N has an associative action on M , the
horizontal composition ♯0 of 2-morphisms is associative. Let’s explain this situation in detail.

(m1, n1)♯0
(
(m2, n2)♯0(m3, n3)

)
= (m1, n1)♯0(n2 ∗1 m3 +m2 ∗2 n3 +m2m3, n2n3)

= (n1 ∗1 (n2 ∗1 m3 +m2 ∗2 n3 +m2m3) +m1 ∗2 (n2n3)

+m1(n2 ∗1 m3 +m2 ∗2 n3 +m2m3), n1(n2n3))

= (n1 ∗1 (n2 ∗1 m3) + n1 ∗1 (m2 ∗2 n3) + n1 ∗1 (m2m3)

+(m1 ∗2 n2) ∗2 n3 +m1(n2 ∗1 m3) +m1(m2 ∗2 n3)

+m1(m2m3), n1(n2n3))

= (n1 ∗1 (n2 ∗1 m3) + (n1 ∗1 m2) ∗2 n3 + (m1 ∗2 n2) ∗2 n3

+(m1m2) ∗2 n3 + (n1 ∗1 m2)m3 + (m1 ∗2 n2)m3

+(m1m2)m3, (n1n2)n3)

= ((n1n2) ∗1 m3 + (n1 ∗1 m2 +m1 ∗2 n2 +m1m2) ∗2 n3

+(n1 ∗1 m2 +m1 ∗2 n2 +m1m2)m3, (n1n2)n3)

= (n1 ∗1 m2 +m1 ∗2 n2 +m1m2, n1n2)♯0(m3, n3)

=
(
(m1, n1)♯0(m2, n2)

)
♯0(m3, n3)

There is also an interchange law between the horizontal composition ♯0 of 2-morphisms and + binary
operation onM oN .

Additionally, there is an interchange law between the vertical ♯1 and the horizontal ♯0 compositions of
2-morphisms of A(A) as follows:

[(m′
1, n1 + ∂(m1)♯1(m1, n1)]♯0[(m

′
2, n2 + ∂(m2)♯1(m2, n2)]

= (m′
1 +m1, n1)♯0(m

′
2 +m2, n2)

= (n1 ∗1 (m′
2 +m2) + (m′

1 +m1) ∗2 n2 + (m′
1 +m1)(m

′
2 +m2), n1n2)

= (n1 ∗1 m′
2 + n1 ∗1 m2 +m′

1 ∗2 n2 +m1 ∗2 n2 +m′
1m

′
2 +m′

1m2

+m1m
′
2 +m1m2, n1n2)

= (n1 ∗1 m′
2 + ∂(m1) ∗1 m′

2 +m′
1 ∗2 n2 +m′

1 ∗2 ∂(m2) +m′
1m

′
2

+n1 ∗1 m2 +m1 ∗2 n2 +m1m2, n1n2)

= ((n1 + ∂(m1) ∗1 m′
2 +m′

1 ∗2 (n2 + ∂(m2)) +m′
1m

′
2 + n1 ∗1 m2

+m1 ∗2 n2 +m1m2, n1n2)

= ((n1 + ∂(m1) ∗1 m′
2 +m′

1 ∗2 (n2 + ∂(m2)) +m′
1m

′
2, (n1 + ∂(m1)(n2 + ∂(m2))

♯1(n1 ∗1 m2 +m1 ∗2 n2 +m1m2, n1n2)

= [(m′
1, n1 + ∂(m1)♯0(m

′
2, n2 + ∂(m2)]♯1[(m1, n1)♯0(m2, n2)].
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This interchange law is expressed with the categorical diagram as follows:

•

n2

��
n2+∂(m2) //

n2+∂(m′
2+m2)

II•

n1

��
n1+∂(m1) //

n1+∂(m′
1+m1)

II•

(m2,n2)

��

(m′
2,n2+∂(m2))

��

(m1,n1)

��

(m′
1,n1+∂(m1))

��

= •

n1♯0n2

��

(n1+∂(m′
1+m1))♯0(n2+∂(m′

2+m2))

BB•.
[(m′

1, n1 + ∂(m1)♯1(m1, n1)]

♯0[(m
′
2, n2 + ∂(m2)♯1(m2, n2)]

= [(m′
1, n1 + ∂(m1)♯0(m

′
2, n2 + ∂(m2)]

♯1[(m1, n1)♯0(m2, n2)]

��

Note that this interchange law is satisfied because of the XMOD2 axiom in Definition 2.5.

Also, this structure is 2-globular and 2-reflexive; see [7] for details.

The strict 2-algebra A(A) constructed from crossed module A of associativeK-algebras is expressed by
the categorical diagram as follows.

A(A) =

(
M oN

s1 //

t1
//N

s0 //

t0
//

i1

__ A0 = {•}

i0

__

)
.

Let A and A′ be crossed modules. Let f(f1, f0) : A −→ A′ be a crossed module morphism given
in Definition 2.6. Therefore, the strict 2-algebra homomorphism constructed from the crossed module
morphism is

A(A)

F(f)=(F2,F1,F0)

��
A′(A′)

=



M oN
s1 //

t1
//

F2

��

N
s0 //

t0
//

i1

bb

F1

��

{•}

i0

``

F0

��
M ′ oN ′

s′1 //

t′1

//N ′
s′0 //

t′0

//

i′1

bb {•′}

i′0

``


.

This means that,

F2((m,n)) = (f1(m), f0(n))

F1(n) = f0(n), F1(n+ ∂1(m)) = f0(n+ ∂1(m)) = f0(n) + ∂′
1f1(m),

F0(•) = •′,

for all n ∈ N andm ∈ M . It is easy to see that F2, F1 and F0 areK-algebra homomorphisms (See, [7]
for more detailed explanation.).

Therefore, the following functor can be defined with all the constructions in this study.
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XMOD
A∗=(A(−),F1(−)) // 2-ALG.

4. Conclusion

In this study, we obtained a strict 2-algebra from a crossed module associative K-algebras. The reverse
of this construction can also be considered. Similar studies can also be conducted for crossed modules of
different algebraic objects.
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Bimultipliers of Crossed Modules of R-Algebroid

Gizem KAHRIMAN

1. Introduction

In the realm of group theory, the interplay between groups and their actions on one another is a subject of
profound importance. Central to this discourse is the notion that the action of a group on another group
is intricately determined by the automorphism group. This relationship is encapsulated in the form of a
homomorphism, mapping the acting group to the automorphism group of the target group. Moreover, any
extension of groups also finds its roots in such homomorphisms, further underscoring their significance
in understanding the dynamics between groups.

Extending beyond the confines of group theory, similar principles resonate in the domain of algebra,
where the action of an algebra on another is closely intertwined with the concept of multiplication alge-
bras. The seminal work of Maclane [1] lays the foundation for this concept, elucidating its pivotal role
in algebraic structures. Building upon this framework, Ege and Arvasi [2] introduce actor crossed mod-
ules of commutative algebras, leveraging multiplication algebras to generalize aspects from commutative
algebras to crossed modules [13], [14].

Within the realm of R-algebroids, a branch of algebraic structures, significant attention has been directed
towards their study, notably by Mitchell [3], [4], [5] and Amgott [6]. Mitchell’s categorical definition of
R-algebroids and Mosa’s introduction of crossed modules of R-algeb-
roids serve as pivotal contributions to this field. Notably, the equivalence between crossed modules of R-
algebroids and special double algebroids with connections, established by Mosa [7], further enriches our
understanding of these structures. Subsequent investigations by Akca and Avcioglu [8], [9], [10], [11],
[12] delve deeper into crossed modules of R-algebroids, unraveling intricate connections and properties.
By means of algebra action, the 2-crossed module structure is defined [15] and the equivalence of 2-
crossed modules to simplicial algebras is shown [16]. There are also studies [17], [18], [19], [20], [21]
on 2-crossed modules.

In this paper, we embark on a journey to explore the multifaceted landscape of R-algebroids, with a
specific focus on their actions and associated properties. Our endeavor begins with the introduction of
the set denoted Bim(M), comprising multipliers of an R-algebroid M. Through a rigorous exposition,
we establish that this set itself forms an R-algebroid, aptly termed the multiplication R-algebroid, by
defining suitable operations. Leveraging this newfound structure, we define an R-algebroid morphism
from an arbitrary algebra to Bim(M), thereby elucidating the mechanism through which actions manifest.
Finally, we undertake a comprehensive examination of the properties entailed by this action, shedding
light on its intricacies and implications. The concept of bimultipliers of R-Algebroids and their interaction
with other R-Algebroids is elucidated in [22]. Lavendhomme and Lucas explore the interplay between
bimultiplication algebra and the crossed module structure in their research. In our investigation, we will
define bimultipliers of an R-Algebroid crossed module (M,A, η), denoting the set of bimultipliers as
Bim(M,A, η). Subsequently, we will establish the R-Algebroid nature of this set.

Throughout our discourse, we maintain R as a fixed commutative ring, anchoring our investigations
within a well-defined mathematical framework. As we delve deeper into the intricacies of R-algebroids
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and their actions, we aim to uncover novel insights and forge connections that resonate across various
mathematical domains.

Throughout this paper R will be a fixed commutative ring.

1.1. Preliminaries

Most of the following data can be found in [3, 4, 5].

Definition 1.1. An R-category is defined as a category in which each homset possesses an R-module
structure, and the composition is R-bilinear. Consequently, a category earns the designation of an R-
category only when it satisfies these conditions.

Specifically, a small R-category, termed as an R-algebroid, delineates a more specialized class within this
framework. This classification is attributed to a category where homsets exhibit an R-module structure,
composition is R-bilinear, and additionally, the category is small in size.

Definition 1.2. An R-linear functor, denoted as an R-functor, denotes a functorial mapping between two
R-categories, preserving the R-module structures inherent in their homsets. This functor encapsulates
the essence of R-linearity within the categorical framework.

Moreover, within the realm of R-algebroids, an R-functor between two such structures assumes the appel-
lation of an R-algebroid morphism. This morphism elucidates the preservation of the algebraic structure,
including R-linearity and compositionality, between the respective R-algebroids.

Definition 1.3. LetA be a pre-R-algebroid, and consider the family I = {I(x; y) ⊆ A(x; y) : x, y ∈ A0}
of R-submodules. If ab, ba′ ∈ I for all b ∈ I , a, a′ ∈ A with ta = sb, tb = sa′, then I is denoted as a
two-sided ideal of A.

Definition 1.4. Let A andN be two pre-R-algebroids sharing the same object set A0. Consider a family
of maps defined for all x, y, z ∈ A0 as follows:

N(x, y)×A(y, z) −→ N(x, z)

(n, a) 7→ na

is called a right action of A on N if the conditions

1. na1+a2 = na1 + na2 4. (n′n) = n′na

2. (n1 + n2)
a = na

1 + na
2 5. r � na = (r � n)a = nr�a

3. (na)a
′
= naa′

and the conditionn1tn = n, whenever 1tn exists, are satisfied for all r ∈ R, a, a′, a1, a2 ∈ A, n, n′, n1, n2 ∈
N with compatible sources and targets.

In a similar vein, a left action ofA onN is established, albeit with a distinction in the side of application.
Additionally, if A exhibits both a right and a left action onN , and if the actions conform to the condition
(an)a′ = a(na′) for all n ∈ N , a, a′ ∈ Awith ta = sn and tn = sa′, where t denotes the target map and
s denotes the source map, then A is termed to possess an associative action on N , or to act associatively
on N .
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Corollary 1.5. Given two pre-R-algebroids A and N with the same object set

i. if A has a left action on N then 0A(x,sn)n = 0A(x,tn) and −an = a(−n) = −an,

ii. if A has a right action on N then n0A(tn,y) = 0A(sn,y) and n−a′ = (−n)a′ = −na′

for all n ∈ N, a, a′ ∈ A, x, y ∈ A0 with ta = sn, tn = sa′.

Definition 1.6. LetM is an R-Algebroid, for allm,m′,m′′ ∈ M , with t(m) = s(m′) and t(m′′) = s(m)

AnnMM =
{
m ∈ M : mm′ = 0,m′′m = 0,m′,m′′ ∈ M

}
is called Annihilator ofM R-Algebroid.

Definition 1.7. [7] For R-algebroids A and M sharing the same object sets and with A exhibiting an
associative action on M , an R-algebroid morphism η : M → A is termed a crossed module of R-
algebroids if it satisfies the following conditions:

CM1. η(am) = aη(m)

η(ma′) = η(m)a′

CM2. mη(m′) = mm′ =η(m) m′

2. Bimultipliers of an R-algebroid

In this section, we commence our exploration by defining the bimultipliers of an R-algebroid M . Sub-
sequently, we embark on a rigorous proof, establishing that the set of bimultipliers of M indeed forms
an R-algebroid, which we aptly term the multiplication R-algebroid. This designation arises from the
inherent structure and operations defined on this set, which align with the fundamental principles of R-
algebroids.

Definition 2.1. Let M is an R-Algebroid and f, g : M → M be an R-Linear mappings with identity on
object set satisfying the following equations form,m′ ∈ M with t(m) = s(m′),

f(mm′) = mf(m′)

g(mm′) = g(m)m′

f(m)m′ = mg(m′)

The pair (f, g) is called bimultipliers of M. Set of all bimultipliers of M are denoted by Bim(M).

Theorem 2.2. LetBim(M) be a set of bimultipliers of M.Bim(M) is an R-Algebroid with single object
and with the following operations,

(f, g) + (f ′, g′) = (f + f ′, g + g′)

(f, g) ◦ (f ′, g′) = (f ′ ◦ f, g ◦ g′)
r · (f, g) = (r · f, r · g)
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Proof.
r · ((f, g) + (f ′, g′)) = r · (f + f ′, g + g′)

= (r · f + r · f ′, r · g + r · g′)
= r · (f, g) + r · (f ′, g′)

(r1 + r2) · (f, g) = ((r1 + r2) · f, (r1 + r2) · g)
= (r1 · f + r2 · f, r1 · g + r2 · g)
= (r1 · f, r1 · g) + (r2 · f, r2 · g)
= r1 · (f, g) + r2 · (f, g)

(r1r2) · (f, g) = (r1r2 · f, r1r2 · g)
= r1(r2 · f, r2 · g)
= r1 · (r2 · (f, g))

r · (f, g) ◦ (f ′, g′) = (r · f, r · g) ◦ (f ′, g′)

= ((r · f ′) ◦ f, (r · g) ◦ g′)
= (r · (f ′ ◦ f), r · (g ◦ g′))
= r · (f ′ ◦ f, g ◦ g′)
= r · ((f, g) ◦ (f ′, g′))

(f, g) ◦ r · (f ′, g′) = (f, g) ◦ (r · f ′, r · g′)
= ((r · f ′) ◦ f, g ◦ (r · g′))
= (r · (f ′ ◦ f), r · (g ◦ g′))
= r · (f ′ ◦ f, g ◦ g′)
= r · ((f, g) ◦ (f ′ ◦ g′))

In the realm of group theory, the characterization of an action is facilitated by the automorphism group.
Specifically, for any group A, its action on itself is delineated by a homomorphism A → Aut(A). How-
ever, in certain algebraic contexts, the mere structure of automorphisms proves insufficient to define an
action. Unlike groups, the set of automorphisms of an algebra typically does not form an algebra itself.

In the study conducted by Arvasi and Ege [2], attention is directed towards the case of commutative alge-
bras, where the limitations of the automorphism structure are explored. Furthermore, MacLane [1] delves
into the realm of associative algebras, introducing the notion of the bimultiplication algebra Bim(M)

associated with an associative algebra M . This concept serves as an alternative to the automorphism
group, effectively fulfilling the role of providing an action within the associative algebraic framework.

Definition 2.3. [22] Let A and M be R-Algebroids with same object we define the set

M
a

t×s M = {(m,m′) ∈ M ×M : t(m) = s(a), t(a) = s(m′)}

for an a ∈ A.

Theorem 2.4. [22] Let A and M be R-Algebroids with same object set and Ann(M) = 0 or M2 = M.
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For the maps
fa : M → M

m 7→ fa(m) = ma

and
ga : M → M

m′ 7→ ga(m
′) =a m′

for an a ∈ A with (m,m′) ∈ M
a

t×s M , let (fa, ga) ∈ Bim(M). Then the R-Algebroid morphism

ϕ : A → Bim(M)

a 7→ ϕ(a) = ϕa = (fa, ga)

gives an R-Algebroid action of A on M.

Definition 2.5. [22] Let A be an R-Algebroid. For an R-Algebroid morphism

ϕ : A → Bim(A)

a 7→ ϕ(a) = (fa, ga)

the pair (fa, ga)(a′, a′′) = (fa(a
′), ga(a

′′)) = (a′a, aa′′) is called inner bimultipliers of A for (a′, a′′) ∈
A

a

t×s A. Set of all bimultipliers of A are denoted by I(A) and I(A) = Im(ϕ) .

Theorem 2.6. [22] Let M be an R-Algebroid. The kernel of homomorphism

ϕ : M → Bim(M)

m 7→ ϕ(m) = (fm, gm)

is Annihilator of M.

Theorem 2.7. [22] Let I(M) be image of ϕ : M → Bim(M) algebroid homomorphism. I(M) is ideal
of Bim(M) .

Definition 2.8. [22] Let I(M) be ideal of Bim(M) algebroid,

O(M) = Bim(M)/I(M)

division algebroid is called the outer multiplication of M algebroid and denoted by O(M).

Theorem 2.9. [22] Let M be an R-Algebroid such that Ann(M) = 0 or M2 = M and

η : M → Bim(M)

m 7→ η(m) = (fm, gm)

be an R-Algebroid morphism with the pair (fm, gm)(m′,m′′) = (fm(m′), gm(m′′)) = (m′m,mm′′) for
(m′,m′′) ∈ M

m

t×s M . Then (M,Bim(M), η) is a crossed module.

Proof. Bim(M) acts on M by

Bim(M)×M → M

((f ′, g′),m′) 7→ (f ′, g′) ·m′ = g′(m′)
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and
M ×Bim(M) → M

(m′′, (f ′, g′)) 7→ m′′ · (f ′, g′) = f ′(m′′)

for (m′,m′′) ∈ M
m

t×s M and
f ′
m : M → M

m′ 7→ f ′
m(m′) = m′m

and
g′m : M → M

m′′ 7→ g′m(m′′) = mm′′

such that
η : M → Bim(M)

m 7→ η(m) = (f ′
m, g′m).

CM1.
η((f ′, g′) ·m)(m′,m′′) = η(g′(m))(m′,m′′)

= (f ′
g′(m), g

′
g′(m))(m

′,m′′)

= (m′g′(m), g′(m)m′′)

= (f ′(m′)m, g′(mm′′))

= (f ′
m(f ′(m′)), g′(g′m(m′′)))

= (f ′
mf ′, g′g′m)(m′,m′′)

= (f ′, g′) ◦ (f ′
m, g′m)(m′,m′′)

then
η((f ′, g′) ·m) = (f ′, g′) ◦ (f ′

m, g′m)

= (f ′, g′) ◦ η(m)

η(m · (f ′, g′))(m′,m′′) = η(f ′(m))(m′,m′′)

= (f ′
f ′(m), g

′
f ′(m))(m

′,m′′)

= (m′f ′(m), f ′(m)m′′)

= (f ′(m′m),mg′(m′′))

= (f ′(f ′
m(m′)), g′m(g′(m′′)))

= (f ′f ′
m, g′mg′)(m′,m′′)

= (f ′
m, g′m) ◦ (f ′, g′)(m′,m′′)

then
η(m · (f ′, g′)) = (f ′

m, g′m) ◦ (f ′, g′)

= η(m) ◦ (f ′, g′)

CM2.
η(m′) ·m = (f ′

m′ , g′m′)

= g′m′(m)

= m′m

m′ · η(m) = m′ · (f ′
m, g′m)

= f ′
m(m′)

= m′m

Thus (M,Bim(M), η) is a crossed module.
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3. Bimultipliers of Crossed Module of R-algebroid

In this section, the bimultipliers of R-algebroid Crossed Modules will be defined, and it will be shown
that the set of bimultipliers is R-algebroid. For (M,A, η) crossed module of R-algebroid

M

(β1,α1)

����

(f1,g1)

�� ��

η // A

(β0,α0)

����

(f0,g0)

�� ��

s //
t

// A0

Id

��

Id

��
M η

// A
s //
t

// A0

(i) (f0, g0) ∈ Bim(A) for all a, a′ ∈ A, with t(a) = s(a′),

f0(aa
′) = af0(a

′)

g0(aa
′) = g0(a)a

′

f0(a)a
′ = ag0(a

′)

and (f1, g1) ∈ Bim(M) for allm,m′ ∈ M with t(m) = s(m′),

f1(mm′) = mf1(m
′)

g1(mm′) = g1(m)m′

f1(m)m′ = mg1(m
′)

(ii) For allm ∈ M and a ∈ A, for all t(m) = s(a′) with t(a) = s(m),

f1(
am) = af1(m)

f1(m
a′) = mf0(a′)

g1(
am) = g0(a)m

g1(m
a′) = g1(m)a

′

f1(m)a
′

= mg0(a′)

ag1(m) = f0(a)m

if the conditions are satisfied f = ((f1, g1), (f0, g0), Id) bimultipliers of crossed module of the algeroid
is called and denoted by Bim(M,A, η). The set Bim(M,A, η) forms an R-algebroid structure with the
operations defined by

(i) ((f1, g1), (f0, g0), Id) + ((α1, β1), (α0, β0), Id) = ((f1 + α1, g1 + β1), (f0 + α0, g0 + β0), Id)

(ii) ((f1, g1), (f0, g0), Id) ◦ ((α1, β1), (α0, β0), Id) = ((α1 ◦ f1, g1 ◦ β1), (α0 ◦ f0, g0 ◦ β0), Id)
(iii) r · ((f1, g1), (f0, g0), Id) = ((r · f1, r · g1), (r · f0, r · g0), Id).

As follows,
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r · [((f1, g1), (f0, g0), Id) + ((α1, β1), (α0, β0), Id)] =

= r · [((f1, g1) + (α1, β1)), ((f0, g0) + (α0, β0)), Id]

= r · ((f1 + α1, g1 + β1), (f0 + α0, g0 + β0), Id)

= (r · (f1 + α1, g1 + β1), r · (f0 + α0, g0 + β0), (Id))

= ((r · f1 + r · α1, r · g1 + r · β1), (r · f0 + r · α0, r · g0 + r · β0), Id)
= (((r · f1, r · g1) + (r · α1, r · β1)), ((r · f0, r · g0) + (r · α0, r · β0)), Id)
= ((r · (f1, g1) + r · (α1, β1)), (r · (f0, g0) + r · (α0, β0)), Id)

= ((r · (f1, g1), r · (f0, g0), Id) + (r · (α1, β1), r · (α0, β0), Id))

= (r · ((f1, g1), (f0, g0), Id) + r · ((α1, β1), (α0, β0), Id))

(r1 + r2) · [(f1, g1), (f0, g0), Id] = [(r1 + r2) · (f1, g1), (r1 + r2) · (f0, g0), Id]
= [(r1 · (f1, g1) + r2 · (f1, g1)), (r1 · (f0, g0) + r2 · (f0, g0)), Id]
= [((r1 · f1, r1 · g1) + (r2 · f1, r2 · g1)), ((r1 · f0, r1 · g0)
+(r2 · f0, r2 · g0)), Id]
= [(r1 · f1, r1 · g1), (r1 · f0, r1 · g0), Id]
+[(r2 · f1, r2 · g1), (r2 · f0, r2 · g0), Id]
= [r1 · (f1, g1), r1 · (f0, g0), Id] + [r2 · (f1, g1), r2 · (f0, g0), Id]
= r1 · ((f1, g1), (f0, g0), f) + r2 · ((f1, g1), (f0, g0), Id)

(r1r2) · [(f1, g1), (f0, g0), Id] = [(r1r2) · (f1, g1), (r1r2) · (f0, g0), Id]
= [r1 · (r2 · (f1, g1)), r1 · (r2 · (f0, g0)), Id]
= [r1 · (r2 · f1, r2 · g1), r1 · (r2 · f0, r2 · g0), Id)]
= r1 · [(r2 · f1, r2 · g1), (r2 · f0, r2 · g0), Id]
= r1 · [r2 · (f1, g1), r2 · (f0, g0), Id]
= r1 · [r2 · ((f1, g1), (f0, g0), Id)]

r · [((f1, g1), (f0, g0), Id) ◦ ((α1, β1), (α0, β0), Id)] =

= r · [((f1, g1) ◦ (α1, β1)), ((f0, g0) ◦ (α0, β0)), Id]

= r · [(α1 ◦ f1, g1 ◦ β1), (α0 ◦ f0, g0 ◦ β0), Id]
= [r · (α1 ◦ f1, g1 ◦ β1), r · (α0 ◦ f0, g0 ◦ β0), Id]
= [r · (α1 ◦ f1), r · (g1 ◦ β1)], [r · (α0 ◦ f0), r · (g0 ◦ β0)], Id
= ([r · (α1) ◦ f1, g1 ◦ r · (β1)], [r · (α0) ◦ f0, g0 ◦ r · (β0)])
= ([((r · f1, r · g1) ◦ (f0, g0)), ((r · f0, r · g0) ◦ (α0, β0))], Id

= [((r · f1, r · g1), (r · f0, r · g0), Id) ◦ ((α1, β1), (α0, β0), Id)]

= (r · (f1, g1), r · (f0, g0), Id) ◦ ((α1, β1), (α0, β0), Id)

= r · ((f1, g1), (f0, g0), Id) ◦ ((α1, β1), (α0, β0), Id)
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r · [((f1, g1), (f0, g0), Id) ◦ ((α1, β1), (α0, β0), Id)] =

= r · [((f1, g1) ◦ (α1, β1)), ((f0, g0) ◦ (α0, β0)), Id]

= r · [(α1 ◦ f1, g1 ◦ β1), (α0 ◦ f0, g0 ◦ β0), Id]
= [r · (α1 ◦ f1, g1 ◦ β1), r · (α0 ◦ f0, g0 ◦ β0), Id]
= [r · (α1 ◦ f1), r · (g1 ◦ β1)], [r · (α0 ◦ f0), r · (g0 ◦ β0)], Id
= ([α1 ◦ r · (f1), r · (g1) ◦ β1], [α0 ◦ r · (f0), r · (g0) ◦ β0])
= ([((f1, g1) ◦ (r · f0, r · g0)), ((f0, g0) ◦ (r · α0, r · β0))], Id
= [((f1, g1), (f0, g0), Id) ◦ ((r · α1, r · β1), (r · α0, r · β0), Id)]
= ((f1, g1), (f0, g0), Id) ◦ (r · (α1, β1), r · (α0, β0), Id)

= ((f1, g1), (f0, g0), Id) ◦ r · ((α1, β1), (α0, β0), Id)

.
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Homotopy of Bimultipliers ofCrossedModule ofR-algebroids

Gizem KAHRIMAN*

1. Introduction

The study of crossed modules of bimultipliers of R-algebroids constitutes a significant and growing
direction within algebraic topology and homological algebra. In particular, understanding homotopies
between such crossed modules has emerged as an area of considerable mathematical interest, owing to its
connections with higher-dimensional categorical structures and homotopical algebra. The purpose of this
article is to undertake a comprehensive examination of homotopies of crossed modules of bimultipliers
of R-algebroids, presenting refined formulations, structural properties, and recent developments in the
field.

We begin by recalling the foundational notions of R-algebroids and crossed modules of bimultipliers,
and subsequently establish the homotopical framework in detail. Throughout our exposition, the central
ideas are supplemented with illustrative examples and rigorous proofs of the main theorems. This work
is intended for advanced graduate students and researchers in algebraic topology, homological algebra,
and related disciplines who seek a deeper understanding of the theory of crossed modules of bimultipliers
of R-algebroids and its applications.

In group theory, it is a classical observation that the action of one group on another is governed by the
automorphism group; such an action corresponds canonically to a homomorphismA −→ Aut(B), which
also determines extensions of the groups A and B. An analogous phenomenon arises in algebra, where
the action of one algebra upon another is encoded in the structure of multiplication algebras—a notion
introduced in the seminal work of MacLane [1]. Building on this idea, Ege and Arvasi [2] developed the
theory of actor crossed modules of commutative algebras, employing multiplication algebras to transport
concepts from commutative algebra to the broader categorical setting of crossed modules.

The theory of R-algebroids has been the subject of extensive investigation, particularly through the con-
tributions of Mitchell [3, 4, 5] and Amgott [6], whose categorical treatment of algebroids has shaped
much subsequent research. Mosa [7] introduced crossed modules of R-algebroids and established their
equivalence with special double algebroids equipped with connections. Further developments by Akça
and Avcıoğlu [8, 9, 10, 11, 12] enriched the structural understanding of crossed modules ofR-algebroids
and clarified several aspects of their internal behaviour.

The concept of bimultipliers of an R-algebroid and their interaction with other algebroids is investigated
in [22]. In particular, Lavendhomme and Lucas examined the interplay between bimultiplication algebras
and crossed module structures. In the present work, we introduce the notion of bimultipliers of an R-
algebroid crossed module (M,A, η), and denote the corresponding collection by Bim(M,A, η). We
subsequently show that this collection naturally inherits the structure of an R-algebroid.

* Asst. Prof. Dr., İstanbul Gedik University, Gedik Vocational School, Computer Programming Program,
gizem.kahriman@gedik.edu.tr, https://orcid.org/0000-0003-2930-828X,
This chapter is produced from Ph.D Thesis [23]
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Furthermore, the formulation of homotopy between crossed module morphisms of R-algebroids, devel-
oped by Avcıoğlu [13], forms the conceptual basis for our exploration of homotopies of bimultipliers. We
define the homotopy set U∗(A,M) of bimultipliers associated with a crossed module and demonstrate
that U∗(A,M) also carries the structure of an R-algebroid. This establishes a homotopical framework
within which bimultipliers of crossed modules may be studied systematically.

1.1. Preliminaries

Definition 1.1. Let R be a commutative ring with identity. For all x, y, z ∈ Ob(A), a, a1, a2 ∈ A(x, y)

and a′, a′1, a
′
2 ∈ A(y, z) and r, r1, r2 ∈ R, A category A of which each homset has an R-module

structure
R×A(x, y) → A(x, y)

(r, a) 7→ r · a

i) r · (a1 + a2) = r · a1 + r · a2
ii) (r1 + r2) · a = r1 · a+ r2 · a
iii) (r1r2) · a = r1 · (r2 · a)
iv) 1R · a = a

and of which composition is R-bilinear,

A(x, y)×A(y, z) → A(x, z)

(a, a′) 7→ aa′

x
a1 //

a2

99

a

%%
y

a′1 //

a′2

99

a′

%%
z

i) (a1 + a2)a
′ = a1a

′ + a2a
′

ii) a(a′1 + a′2) = aa′1 + aa′2
iii) r · (aa′) = (r · a)a′ = a(r · a′)

is called an R-category.

Definition 1.2. A small R-category is called an R-Algebroid. An R-Algebroid with a single object corre-
sponds to an associative R-Algebra. Each R-algebroid is pre-R-algebroid.

Remark 1.3. In the context of a pre-R-algebroid denoted as A, the subsequent notational conventions
are observed:

1. Ob(A) represents the collection of objects within A, while Mor(A) designates the set of morphisms
in A. Additionally, A is described as being over A0.

2. The functions s and t : Mor(A) → A0 are referred to as the source and target mappings, respectively.
Consequently, for every morphism a ∈ Mor(A), sa and ta represent the source and target elements of
a, respectively. Moreover, a is designated as originating from sa and terminating at ta.

3. For any pair of elements x and y belonging to A0, the set comprising all morphisms from x to y is
symbolized as A(x, y).

4. The identity for the zero morphism within any homset A(x, y) is represented as 0A(x,y), or simply as 0
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in cases where clarity is not compromised.

5. The unit morphism corresponding to any element x in A0, provided it exists, is symbolized as 1x, or
abbreviated as 1 when context allows for clarity.

6. The notation a ∈ A succinctly refers to a ∈ Mor(A), while ab signifies the composition of any pair
a and b ∈ A where ta = sb.

Definition 1.4. A functor that preserves R-linearity between two R-categories is termed an R-functor,
while an R-functor operating between two R-algebroids is labeled as an R-algebroid morphism. Fur-
thermore, a mapping between two pre-R-algebroids that adheres to all axioms of an R-functor except for
the preservation of identity is termed a pre-R-algebroid morphism.

It is noteworthy, as per the definition, that every R-algebroid morphism inherently qualifies as a pre-R-
algebroid morphism.

Definition 1.5. Suppose M and A are two pre-R-algebroids sharing the same set of objects, denoted as
A0. A collection of mappings, designated for all elements x, y, and z within A0, denoted as

M(x, y)×A(y, z) → M(x, z)

(m, a) 7→ ma

is termed a right action of A on M if it satisfies certain conditions for all r ∈ R, a, a′, a1, a2 ∈ A, and
m,m′,m1,m2 ∈ M , where the sources and targets are compatible.

1) ma1+a2 = ma1 +ma2

2) (m1 +m2)
a = ma

1 +ma
2

3) (ma)a
′
= maa′

4) (m′m)a = m′ma

5) r ·ma = (r ·m)a = mr·a

6) m1y = m

and the axiomm1tm = m whenever 1tm exists are satisfied.

Similarly, a left action of A onM is established, albeit with a distinguishing characteristic on one side.

Definition 1.6. Consider A and M as two pre-R-algebroids sharing an identical set of objects. Should
A possess both a right and left action on M , and if (am)a

′
=a (ma′) holds true for every a and a′ in A,

as well as for every m in M where ta = sm and tm = sa′, then A is deemed to exhibit an associative
action on M , or simply, to act on M associatively.

Definition 1.7. Consider A as an R-algebroid and M as a pre-R-algebroid sharing the same set of
objects. Suppose A has a fixed associative action on M . A pre-R-algebroid morphism µ : M → A is
termed a crossed (A-)module of R-algebroids if it adheres to the following axioms:

CM1) µ(am) = aµ(m)

µ(ma′) = µ(m)a′

CM2) mµ(m′) = mm′ =µ(m) m′

These axioms are satisfied for all a, a′ ∈ M where ta = sm and tm = sa′ = sm′. It is evident from this
definition that if µ : M → A is a crossed module, then it acts as the identity on A0.
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Proposition 1.8. Suppose µ : M → A represents a crossed module of R-algebroids. Then, (ma)m′ =

m(am′) holds true for every a ∈ A and m,m′ ∈ M where tm = sa and ta = sm′.

Proof. (ma)m′ =µ(ma) m′ =(µm)a m′ =µm (am′) = m(am′).

It is worth noting from the proposition that if µ : M → A stands as a crossed module of R-algebroids,
then for any a ∈ A and m,m′ ∈ M with tm = sa and ta = sm′, the notation mam′ does not lead to
ambiguity.

Definition 1.9. Given two crossed modulesM = (µ : M → A) andN = (η : N → B) of R-algebroids,
a pre-R-algebroid morphism f2 : M → N and an R-algebroid morphism f1 : A → B, if the axioms

CMM1. f2(
am) =f1a (f2m) and f2(m

a′) = (f2m)f1a
′

CMM2. ηf2 = f1µ

are satisfied for all a, a′ ∈ A and m ∈ M with ta = sm, tm = sa′ then the pair f = (f2, f1) is called
a crossed module morphism (of R-algebroids) from M to N and we write f : M → N to denote it.

Note from the definition that if f = (f2, f1) is a crossed module morphism then f2 and f1 are equal to
each other on object set.

2. Bimultipliers of R-algebroids

Let M be an R-algebroid. Let R-linear transformations f1, g1 : M → M be identity on the object set, if
the axioms

(i) f1(mm′) = mf1(m
′)

(ii) g1(mm′) = g1(m)m′

(iii) f1(m)m′ = mg1(m
′)

are satisfied for allm,m′ ∈ M with t(m) = s(m′) then the pair (f1, g1) is called a set of all bimultipliers
and denoted by Bim(M).

If the axioms

(i) (f1, g1) + (α1, β1) = (f1 + α1, g1 + β1)

(ii) (f1, g1) ◦ (α1, β1) = (α1 ◦ f1, g1 ◦ β1)
(iii) r(f1, g1) = (rf1, rg1)

are satisfied then Bim(M) is R-algebroid. [14]

3. Homotopy Between R-algebroid Crossed Module Mor-
phisms

LetM = (M,A, µ) veN = (N,B, η) crossed modules of R-algebroids and f = (f2, f1, f0) : M → N
crossed module morphisms. A mapping H0 : A0 → B and H1 : A → N that satisfies the following
properties is called an f-derivation on theH = (H1,H0) pair. [13]
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M

f2

		

g2

��

µ // A

H1

��~~
~~
~~
~~
~~
~~
~~
~

f1

		

g1

��

s //
t

// A0

H0

��~~
~~
~~
~~
~~
~~
~~
~

f0

		

g0

��
N η

// B
s //
t

// A0

∗ For all x ∈ A0, t(H0(x)) = f0(x) and H0(x) is an isomorphism.

∗ For all a ∈ A, s(H1(a)) = s(H0(s(a))) ve t(H1(a)) = f0(t(a)).

∗ For all x ∈ A0, H1(1x) = 0(= 0M(s(H0(x)),f0(x)).

∗ For all a, a′ ∈ A ve t(a) = s(a′),

H1(aa
′) =(H0(s(a)))f1(a)(H

−1
0 (t(a))) (H1(a

′)) + (H1(a))
f1(a′) + (H1(a))(

H−1
0 (t(a))(H1(a

′)))

.

∗ For all r ∈ R ve a, a1, a2 ∈ A, s(a1) = s(a2), t(a1) = t(a2)

H1(a1 + a2) = H1(a1) +H1(a2)

H1(r · a) = r ·H1(a).

LetM = (M,A, µ) and N = (N,B, η) be crossed module of R-algebroid, f = (f2, f1, f0) : M → N
be a crossed module morphism and H = (H1,H0) be a f-derivation. The function g0 : A0 → B0 and
the R-Algebroid morphisms g1 : A → B and g2 : M → N are introduced and specified in the following
manner.

g0(x) = s(H0(x))

g1(a) = (H0(s(a))f1(a) + ηH1(a))H
−1
0 (t(a))

g2(m) = (H0(s(m))f2(m) +H1(η(m)))(H
−1
0 (t(m)))

This research is centered around algebroid automorphisms. Consequently, the statements defined on the
same R-algebroid crossed module are presented as follows.

Let (M,A, η) be crossed module of R-algebroid and f = (f0, f1, f2) be crossed module morphism. If
H0 : A0 → A and H1 : A → M satisfy the given properties, then the pair H = (H0,H1) becomes an
f-derivation.

M

f2

		

g2

��

η // A

H1

����
��
��
��
��
��
��
�

f1

		

g1

��

s //
t

// A0

H0

��~~
~~
~~
~~
~~
~~
~~
~

f0

		

g0

��
M η

// A
s //
t

// A0

∗ For all x ∈ A0, t(H0(x)) = f0(x) and H0(x) is a isomorphism.
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∗ For all a ∈ A, s(H1(a)) = s(H0(s(a))) ve t(H1(a)) = f0(t(a)).

∗ For all x ∈ A0, H1(1x) = 0(= 0M(s(H0(x)),f0(x)).

∗ For all a, a′ ∈ A ve t(a) = s(a′),

H1(aa
′) =(H0(s(a)))f1(a)(H

−1
0 (t(a))) (H1(a

′)) + (H1(a))
f1(a′) + (H1(a))(

H−1
0 (t(a))(H1(a

′))).

∗ For all r ∈ R ve a, a1, a2 ∈ A, s(a1) = s(a2), t(a1) = t(a2)

H1(a1 + a2) = H1(a1) +H1(a2)

H1(r · a) = r ·H1(a).

Accordingly,

If define g0 : A0 → A0 and g1 : A → A , g2 : M → M R-algebroid morphism

g0(x) = s(H0(x))

g1(a) = (H0(s(a))f1(a) + ηH1(a))H
−1
0 (t(a))

g2(m) = (H0(s(m))f2(m) +H1(η(m)))(H
−1
0 (t(m)))

then g = (g0, g1, g2) is crossed module morphism of R-algebroid and the pair (H1,H0) is define a
homotopy from f to g. This is expressed as follows (H1,H0) : (f2, f1, f0) ' (g2, g1, g0).

If (g2, g1, g0) is a crossedmodulemorphism (0, 0, Id) : M → M a crossedmodulemorphism homotopic
to the zero morphism then (H1,H0) : (0, 0, Id) ' (g2, g1, g0) and thus

g0(x) = s(H0(x))

g1(a) = ηH1(a))H
−1
0 (t(a))

g2(m) = H1η(m))H
−1
0 (t(m))

M

0

		

g2

��

η // A

H1

����
��
��
��
��
��
��
�

0

		

g1

��

s //
t

// A0

H0

��~~
~~
~~
~~
~~
~~
~~
~

Id

		

g0

��
M η

// A
s //
t

// A0
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4. Bimultipliers of Crossed Module of R-algebroid

In this section, the bimultipliers of R-algebroid Crossed Modules will be defined, and it will be shown
that the set of bimultipliers is R-algebroid. For (M,A, η) crossed module of R-algebroid

M

(β1,α1)

����

(f1,g1)

�� ��

η // A

(β0,α0)

����

(f0,g0)

�� ��

s //
t

// A0

Id

��

Id

��
M η

// A
s //
t

// A0

(i) (f0, g0) ∈ Bim(A) for all a, a′ ∈ A, with t(a) = s(a′),

f0(aa
′) = af0(a

′)

g0(aa
′) = g0(a)a

′

f0(a)a
′ = ag0(a

′)

and (f1, g1) ∈ Bim(M) for allm,m′ ∈ M with t(m) = s(m′),

f1(mm′) = mf1(m
′)

g1(mm′) = g1(m)m′

f1(m)m′ = mg1(m
′)

(ii) For allm ∈ M and a ∈ A, for all t(m) = s(a′) with t(a) = s(m),

f1(
am) = af1(m)

f1(m
a′) = mf0(a′)

g1(
am) = g0(a)m

g1(m
a′) = g1(m)a

′

f1(m)a
′

= mg0(a′)

ag1(m) = f0(a)m

if the conditions are satisfied f = ((f1, g1), (f0, g0), Id) bimultipliers of crossed module of the algeroid
is called and denoted by Bim(M,A, η). The set Bim(M,A, η) forms an R-algebroid structure with the
operations defined by

(i) ((f1, g1), (f0, g0), Id) + ((α1, β1), (α0, β0), Id) = ((f1 + α1, g1 + β1), (f0 + α0, g0 + β0), Id)

(ii) ((f1, g1), (f0, g0), Id) ◦ ((α1, β1), (α0, β0), Id) = ((α1 ◦ f1, g1 ◦ β1), (α0 ◦ f0, g0 ◦ β0), Id)
(iii) r · ((f1, g1), (f0, g0), Id) = ((r · f1, r · g1), (r · f0, r · g0), Id).
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5. Homotopy of Bimultipliers ofCrossedModule ofR-algebroid

In this section, we will examine the concept of homotopy for bimultipliers of crossed module of R-
algebroid, considering the R-algebroid crossed module morphisms given in 2.1.

M

(α1,β1)

����

(f1,g1)

�� ��

η // A

H2

||yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy

H1

||yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy

(α0,β0)

����

(f0,g0)

�� ��

s //
t

// A0

H0

||yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy

Id

��

Id

��
M η

// A
s //
t

// A0

For a crossed module of an R-algebroid (M,A, η), the homotopy of bimultipliers of the crossed module
of R-algeroid is given by:

f(x) = s(H0(x))

f0(a) = (H0(s(a))β0(a) + ηH2(a))H
−1
0 (t(a))

g0(a) = (H0(s(a))α0(a) + ηH1(a))H
−1
0 (t(a))

f1(m) = (H0(s(m))β1(m) +H2η(m))H
−1
0 (t(m))

g1(m) = (H0(s(m))α1(m) +H1η(m))H
−1
0 (t(m))

WhereH0 : A0 → A andH1,H2 : A → M are transformations satisfying the equations, and represented
by the pair

((H1,H2),H0) : ((α1, β1, ), (α0, β0), Id) ' ((f1, g1), (f0, g0), Id).

M

(0,0)

����

(f1,g1)

�� ��

η // A

H2

||yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy

H1

||yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy

(0,0)

����

(f0,g0)

�� ��

s //
t

// A0

H0

||yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy

Id

��

Id

��
M η

// A
s //
t

// A0

For a crossed module of R-algebroid (M,A, η), A composition of ((f1, g1), (f0, g0), Id) factors that are
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homotopic to ((0, 0), Id) satisfies

f(x) = s(H0(x))

f0(a) = ηH2(a))H
−1
0 (t(a))

g0(a) = ηH1(a))H
−1
0 (t(a))

f1(m) = H2η(m))H
−1
0 (t(m))

g1(m) = H1η(m))H
−1
0 (t(m))

equations and this homotopy is pair of transformationsH0 : A0 → A and H1,H2 : A → M

((H1,H2),H0) : ((0, 0), (0, 0), Id) ' ((f1, g1), (f0, g0), Id)

For a, a′ ∈ A and g0 ∈ Bim(A) with t(a) = s(a′) and g0(aa′) = g0(a)a
′, t(g0(a)) = s(a′). Thus

t(ηH1(a)(H
−1
0 t(a))) = s(a′)

t(H−1
0 t(a)) = s(a′)

H0t(a) = H0(y) ve s(H−1
0 t(a)) = y ve

t(H−1
0 t(a)) = s(H0(y)) = s(a′) = y

t(H0(y)) = s(H0(y)). Furthermore

t(H0t(a)) = s(H−1
0 t(a))

= t(H0(y))

= Id(y)

= y

that is,
t(H−1

0 t(a)) = s(H−1
0 t(a))

Furthermore

H1(aa
′) = H1(a)

H−1
0 t(a)a′H0t(a′)

H2(aa
′) = aH2(a)

aH1(a
′) = H2(a)

H−1
0 t(a)a′H0t(a′).
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6. U*(A,M)

(M,A, η) R-algebroid crossed module and H2,H1 : A → M ve H0 : A0 → A for a, a′ ∈ A with
t(a) = s(a′),

H1(aa
′) = H1(a)

H−1
0 t(a)a′H0t(a′)

H2(aa
′) = aH2(a)

aH1(a
′) = H2(a)

H−1
0 t(a)a′H0t(a′)

provide the conditions ((H1,H2),H0) set of the pair denoted by U(A,M). H0 : A0 → A be restricted.
That is, for all ((K1,K2),K0) ∈ U(A,M) K0 = H0 get it. Restricted set U∗(A,M) = U(A,M)|H0

be shown with. The following operations are defined on this set. For ((H2,H1),H0), ((K2,K1),H0) ∈
U∗(A,M), (K2 ◦H2)(a) = K2ηH2(a)H

−1
0 t(a) and (H1 ◦K1)(a) = H1ηK1(a)(H

−1
0 t(a))

(H2,H1) + (K2,K1) = (H2 +K2,H1 +K1)

r · (H2,H1) = (r ·H2, r ·H1)

(H2,H1) ◦ (K2,K1) = (K2 ◦H2,H1 ◦K1).

M

(0,0)

����

(α1,β1)

�� ��

η // A

K2

||yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy

K1

||yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy

(0,0)

����

(α0,β0)

�� ��

s //
t

// A0

H0

||yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy

Id

��

Id

��
M

(0,0)

����

(f1,g1)

�� ��

η // A

H2

||yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy

H1

||yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy

(0,0)

����

(f0,g0)

�� ��

s //
t

// A0

H0

||yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy

Id

��

Id

��
M η

// A
s //
t

// A0

M

(0,0)

����

(α1f1,g1β1)

�� ��

η // A

K2◦H2

zzuu
uu
uu
uu
uu
uu
uu
uu
uu
uu
uu
uu
uu
u

H1◦K1

zzuu
uu
uu
uu
uu
uu
uu
uu
uu
uu
uu
uu
uu
u

(0,0)

����

(α0f0,g0β0)

�� ��

s //
t

// A0

H0

zzuu
uu
uu
uu
uu
uu
uu
uu
uu
uu
uu
uu
uu
u

Id

��

Id

��
M η

// A
s //
t

// A0

Proposition 6.1. Let (M,A, η) be a crossedmodule ofR-algebroids. For any ((H2,H1),H0) ∈ U∗(A,M),
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define
Id(x) = s(H0(x)),

f0(a) = η(H2(a))H
−1
0 (t(a)),

g0(a) = η(H1(a))H
−1
0 (t(a)),

f1(m) = (H2(η(m)))H
−1
0 (t(m)) ,

g1(m) = (H1(η(m)))H
−1
0 (t(m)) .

Then (f1, g1) ∈ Bim(M) and (f0, g0) ∈ Bim(A).

Proof.

f1(mm′) = H2η(mm′)H
−1
0 t(mm′)

= H2(η(m)η(m′))H
−1
0 t(m′)

= (η(m)H2η(m
′))H

−1
0 t(m′)

= mH2η(m
′)H

−1
0 t(m′)

= mf1(m
′)

g1(mm′) = H1η(mm′)H
−1
0 t(mm′)

= H1(η(m)η(m′))H
−1
0 t(m′)

= H1η(m)H
−1
0 t(η(m))η(m′)H0t(η(m′))H−1

0 t(m′)

= H1η(m)H
−1
0 t(η(m)η(m′))

= H1η(m)H
−1
0 t(m)η(m′)

= H1η(m)H
−1
0 t(m)m′

= g1(m)m′

f0(aa
′) = η(H2(aa

′))H−1
0 t(aa′)

= η(aH2(a
′)H−1

0 t(a′))

= aη(H2(a
′)H−1

0 t(a′))

= af0(a
′)

g0(aa
′) = η(H1(aa

′))H−1
0 t(aa′)

= η(H1(a)
H−1

0 t(a)a′H0t(a′))H−1
0 t(a′)

= η(H1(a))H
−1
0 t(a)a′H0t(a

′)H−1
0 t(a′)

= g0(a)a
′
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t(a) = s(m) ve t(m) = s(a′)

f1(
am) = H2η(

am)H
−1
0 t(am)

= H2(aη(m))H
−1
0 t(m)

= aH2(η(m))H
−1
0 t(m)

= af1(m)

f1(m
a′) = H2η(m

a′)H
−1
0 t(ma′ )

= H2(η(m)a′)H
−1
0 t(a′)

= η(m)H2(a
′)H

−1
0 t(a′)

= mH2(a
′)H

−1
0 t(a′)

= mηH2(a′)H
−1
0 t(a′)

= mf0(a′)

g1(m
a′) = H1η(m

a′)H
−1
0 t(ma′ )

= H1(η(m)a′)H
−1
0 t(a′)

= (H1(η(m))H
−1
0 t(η(m))a′H0t(a′))H

−1t(a′)

= H1(η(m))H
−1
0 t(η(m))a′

= H1(η(m))H
−1
0 t(m)a′

= g1(m)a
′

g1(
am) = H1η(

am)H
−1
0 t(am)

= H1(aη(m))H
−1
0 t(m)

= H1(a)
H−1

0 t(a)η(m)H0t(η(m))H−1
0 t(m)

= H1(a)
H−1

0 t(a)η(m)

= H1(a)
η(H

−1
0 t(a)m)

= H1(a)H
−1
0 t(a)m

= ηH1(a)(H
−1
0 t(a)m)

= ηH1(a)H
−1
0 t(a)m

= g0(a)m
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ag1(m) = (aH1η(m))H
−1
0 t(m)

= H2(a)
H−1

0 t(a)η(m)H0t(η(m))H−1
0 t(m)

= H2(a)
H−1

0 t(a)η(m)

= H2(a)
η(H

−1
0 t(a)m)

= H2(a)H
−1
0 t(a)m

= ηH2(a)(H
−1
0 t(a)m)

= ηH2(a)H
−1
0 t(a)m

= f0(a)m

f1(m)a
′

= H2η(m)H
−1
0 t(m)a′

= H2η(m)H
−1
0 t(m)a′H0t(a′)H

−1
0 t(a′)

= (η(m)H1(a
′))H

−1
0 t(a′)

= (mH1(a
′))H

−1
0 t(a′)

= (mηH1(a′))H
−1
0 t(a′)

= mηH1(a′)H
−1
0 t(a′)

= mg0(a′).

▶ In this paper ((H2,H1),H0) ∈ U∗(A,M) will be displayed briefly (H2,H1) ∈ U∗(A,M).

Proposition 6.2. The set U∗(A,M) creates an R-algebraid structure with the operations defined on it.

Proof. (H1,H2), (K1,K2) ∈ U(M,A) için,

(H1 ◦K1)(aa
′) = H1(ηK1(aa

′)(K−1
0 t(aa′))

= H1(η(K1(a)
K−1

0 t(a)a′K0t(a′)))K−1
0 t(aa′)

= H1(η(K1(a))K
−1
0 t(a)a′)K0t(a

′)K−1
0 t(a′)

(H1 ◦K1)(a)
(H0◦K0)−1t(a)a′(H0◦K0)t(a′) =

= H1(ηK1(a)K
−1
0 t(a))(H

−1
0 t(K0))−1t(a)a′(H−1

0 t(K0))−1t(a′)

= H1(ηK1(a)K
−1
0 t(a))H−1

0 t(K−1
0 t(a))a′H−1

0 t(a′)
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(H2 ◦K2)(aa
′) = H2(ηK2(aa

′)(K−1
0 t(aa′))

= H2(η(
aK2(a

′))(K−1
0 t(a′))

= H2(aηK2(a
′))(K−1

0 t(a′))

= aH2ηK2(a
′)(K−1

0 t(a′))

= a(H2 ◦K2)(a
′)

R× U∗(A,M) → U∗(A,M)

(r, (H2,H1)) 7→ (r ·H2, r ·H1)

olmak üzere

r · [(H2,H1) + (K2,K1)(a)] = r · [(H2 +K2,H1 +K1)(a)]

= r · [(H2 +K2)(a), (H1 +K1)(a)]

= [r · (H2 +K2)(a), r · (H1 +K1)(a)]

= [(r ·H2 + r ·K2)(a), (r ·H1 + r ·K1)(a)]

= (r ·H2, r ·H1)(a) + (r ·K2, r ·K1)(a)

= [r · (H2,H1) + r · (K2,K1)](a)

(r1 + r2) · (H2,H1)(a) = [(r1 + r2) ·H2(a), (r1 + r2) ·H1(a)]

= [r1 ·H2(a) + r2 ·H2(a), r1 ·H1(a) + r2 ·H1(a)]

= (r1 ·H2(a), r2 ·H2(a)) + (r2 · (H2,H1)(a))

= r1 · (H2,H1)(a) + r2 · (H2,H1)(a)

(r1r2) · (H2,H1)(a) = r1 · (r2 ·H2(a), r2 ·H1(a))

= (r1r2 ·H2(a), r1r2 ·H1(a))

= r1 · (r2 · (H2,H1))(a)

r · ((H2,H1) ◦ (K2,K1))(a) = (r · (K2 ◦H2), r · (H1 ◦K1))(a)

= (r · (K2ηH2(a)H
−1
0 t(a)), r · (H1ηK1(a)H

−1
0 t(a)))

= (K2ηH2(r · a)H−1
0 t(r · a),H1ηK1(r · a)H−1

0 t(r · a))
= (K2 ◦H2,H1 ◦K1)(r · a)
= (r ·K2 ◦H2, r ·H1 ◦K1)(a)

= (r ·H2, r ·H1) ◦ (K2,K1)(a)

= (r · (H2,H1) ◦ (K2,K1))(a)

.
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FromSimplicial R-Algebroids toCrossed Squares ofR-Algebroids

Isinsu DOGANAY YALGIN* and Ummahan EGE ARSLAN**

1. Introduction

Whitehead introduced crossed modules of groups for the first time in [1, 2]. Group crossed modules
are equivalent to simplicial groups with Moore complex of length one [3] and similarly for groupoid
crossed modules [4]. Conduche addressed the idea of a group 2-crossed module and shown in [3] that
the category of group 2-crossed modules is equal to the category of simplicial groups with a two-length
Moore complex. Arvasi and Ulualan investigated the relationships between simplicial groups with a
length of two Moore complex, crossed squares, quadratic modules, and 2-crossed modules in [18]. The
definitions of algebra crossed and 2-crossed modules [5, 8] are similar to those of the group case, actions
by the automorphisms is replaced by the actions by the multipliers.

Algebra 2-crossed modules and simplicial algebras are closely related, just like in the group case [3, 4, 9].
A 2-crossed module can be obtained from a simplicial algebra if it has a Moore complex of length two.
Equivalence from category of simplicial algebra with a two-length Moore complex to category algebra
crossed module is given in [8, 10, 11]. Also in [19, 20] Akca and Pak worked on the pseudo simplicial
groups. Moreover in [21], the higher order Peiffer elements in simplicial Lie algebras are examined.
The homotopy theory of 2 -crossed modules of commutative algebras studied in [22]. Then in [23],
the concept of a 2 -fold homotopy between a pair of 1 -fold homotopies connecting 2 -crossed module
morphisims was defined. As a more broadly, Mitchell in [12, 14] and Amgott in [15] specifically studied
R-algebroids, where R is a commutative ring. R-algebroids were defined categorically by Mitchell (see
Definition 1 ). Later, Mosa introduced crossed modules of R-algebroids as a generalization of crossed
modules of associative R-algebras and demonstrated in his thesis [16] that they are equivalent to special
double R-algebroids with connections. Additionally, it was mentioned in [17] that there was a close
relationship between the category of simplicial R-algebroids with the length one Moore complex and the
internal categories in the category of R-algebroids. Subsequent investigations by Akca and Avcıoglu [24,
25, 26, 27, 28] delve deeper into crossed modules of R-algebroids, unraveling intricate connections and
properties. Guin- Waléry and Loday defined crossed squares in [30] as an algebraic model for homotopy

3-type connected spaces. Thus crossed squares model homotopy types in dimensions bigger than 3.
Later Ellis defined the commutative algebra version of crossed squares in [29]. In this work we introduce
R-algebroid version of crossed square. Then we construct a functor from the category of simplicial R-
algebroids with Moore complexof length two to the category of crossed squares of R-algebroids.
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1.1. Preliminaries

Most of the following data, can be found in [12, 13, 14, 15, 16].

Definition 1.1. Let R be a commutative ring. An R-category is a category where composition is R-
bilinear and all homsets possess R-module structures. This framework enables the exploration of cat-
egorical concepts and constructions within the realm of R-modules, offering a robust foundation for
algebraic and categorical inquiries.

Definition 1.2. An R-algebroid is a small R-category. R- algebroids can be non identity. A set of functions
s, t : Mor(U) → Ob(U), the source and target functions, respectively, and an object set Ob(U) = U0,
a morphism set Mor(U), are included with an R-algebroid U . A single object R-algebroid corresponds
to an associative R-algebra.

Let U and V be R-algebroids and U0 = V0 , if the family of maps

V (a, b)× U(b, c) → V (a, c)

(v, u) 7→ vu
(1)

satisfies the following conditions

1) vu1+u2 = vu1 + vu2

2) (v1 + v2)
u = vu1 + vu2

3) (vu)u
′
= vuu

′

4) (v′v)u = v′vu

5) r · vu = (r · v)u = vr·u

6) v1tv = v

(2)

for all a, b, c ∈ U0 and u, u′, u1, u2 ∈ Mor(U),v, v′, v1, v2 ∈ Mor(V ) such that t(v′) = s(v), t(u) =

s(u′),t(v) = t(v1) = t(v2) = s(u) = s(u1) = s(u2), r ∈ R it is called the right action of U on V .

The left action of U on V similarly defined. While U has right and left action on V if the condition

(uv)u
′
= u(vu

′
)

is satisfied for all d, a, b, c ∈ U0, v ∈ V (a, b), u ∈ U(d, a) and u′ ∈ U(b, c) then U has an associative
action on V .

Definition 1.3. An R-functor is an R-linear functor between two R-categories, and an R-algebroid mor-
phism is an R-functor between two R-algebroids.

In category Alg(R), all R-algebroids and their morphisms are included.

Definition 1.4. Let R is an commutative ring U and V be two R-algebroids of the same object set U0

and V has an associative action on U . For the set U o V = {(u, v)|u ∈ U, v ∈ V }, if the following
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conditions are satisfied

1) (u, v) + (u′, v′) = (u+ u′, v + v′)

2) R× (U o V ) → U o V

(r, (u, v)) r(u, v) = (ru, rv)

3) ((u, v), (u′′, v′′)) = (uu′′ + uv ′′ + vu′′, vv′′)

(3)

U o V is an R-algebroid, where for all (u, v) ∈ U o V and r ∈ R, s(u, v) = s(u) = s(v), t(u, v) =

t(u) = t(v), (u, v), (u′, v′), (u′′, v′′) ∈ U o V , s(u, v) = s(u′, v′), t(u, v) = t(u′, v′), t(u, v) =

s(u′′, v′′). This R-algebroid is called the semi-direct product R-algebroid of U and V .

Definition 1.5. A simplicial R-algebroid is a sequence of R-algebroidsE = {E0, E1, ..., En, ...} together
with homomorphisms dni : En → En−1 (0 ≤ i ≤ n ̸= 0) and snj : En → En+1 (0 ≤ j ≤ n) for each
(0 ≤ i ≤ n ̸= 0) such that identity on object set, this homomorphisms are requared to satisfy the
simplicial identities

1) dn−1
i dnj = dn−1

j−1 d
n
j , 0 ≤ i < j ≤ n

2) sn+1
i snj = sn+1

j+1 s
n
i , 0 ≤ i ≤ j ≤ n

3) dn+1
i snj = sn−1

j−1 d
n
i , 0 ≤ i < j ≤ n

4) dn+1
i snj = Id , i = j or i = j + 1

5) dn+1
i snj = sn−1

j dni−1 , 0 ≤ j < i− 1 ≤ n

(4)

We denote this simplicial R-algebroid with E = (En, d
n
i , s

n
j ).

E = E3

//////// E2

d2 //
d1 //
d0 //

ff``[[ E1
d1 //
d0 //

s0
ff

s1

`` E0
s0

ff

Let E = (En, d
n
i , s

n
j ) and F = (Fn, δ

n
i , σ

n
j ) be R-algebroids. A simplicial map f = {fn : n ∈ N} :

E → F is a family of homomorphisms fn = En → Fn satisfying δni fn = fn−1d
n
i and fns

n−1
j =

∂n−1
j fn−1 for all n ∈ N. We have thus defined category of simplicial R-algebroids, which we will denote

by Simp.R-Alg..

Let E be a simplicial R-algebroid. The Moore complex (NE, ∂) of E is the chain complex defined by

NEn =
n−1∩
i=0

kerdni with ∂n : NEn → NEn−1 induced from dnn by restriction.

... → NE2
d22−→ NE1

d11−→ E0 = E0

We say that the Moore complex (NE, ∂) of E is of length k if NEn = 0 for all n ≥ k + 1. We denote
category of simplicial R-algebroids with Moore complex of lenght k by Simp.R-Alg.≤k.

2. Crossed Squares of R-algebroids

Guin- Waléry and Loday defined crossed squares in [30] as an algebraic model for homotopy 3-type
connected spaces. Thus crossed squares model homotopy types in dimensions bigger than 3. Later
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Ellis defined the commutative algebra version of crossed squares in [29]. In this section we introduce
R-algebroid version of crossed square.

Definition 2.1. A crossed square is a commutative square of R-algebroids with the same object set M0

L
λ //

λ′

��

M

µ

��
N υ

// P

together with associative actions P on L,M,N and a function h : M × N −→ L identity on M0 .Let
M and N act on M,N and L via P . The structure must satisfy the following axioms

CS 1) λ and λ′ preserve the action of P , and λ, λ′, µ, υ and υλ′ = µλ are crossed modules.

CS 2) h(m+m1, n) = h(m,n) + h(m1 + n), h(m,n+ n1) = h(m,n) + h(m,n1),

CS 3) r � h(m,n) = h(r �m,n) = h(m, r � n), (r ∈ R)

CS 4) ph(m,n) = h( pm,n), and h(m,n)p
′
= h(m,np′)

CS 5) h(m′m,n) = m′
h(m,n) = h(m′, mn),

CS 6) h(m,nn′) = h(m,n)n
′
= h(mn, n′),

CS 7) λ(h(m,n)) = mn,

CS 8) λ′(h(m,n)) = mn,

CS 9) h(λl, n) = ln,

CS 10) h(m,λ′l) = ml,

CS 11) h(m,n)h(m′′, n′′) = h(mn, m′′
n′′)

for all r ∈ R, m,m1,m
′,m′′ ∈ M, n, n1, n

′, n′′ ∈ N, p, p′ ∈ P , l ∈ L with tm = tm1 = sn = sn1,

tp = sm, tn = sp′, tm′ = sm, tn = sn′, tl = sn, tm = sl, tn = sm′′.

Wewill denote such a crossed squarewith

(
L M

N P

)
.Amorphism of crossed squares,Φ :

(
L M

N P

)
−→(

L′ M ′

N ′ P ′

)
consists of four R-algebroid morphisms ΦL : L −→ L′, ΦM : M −→ M ′, ΦN :

N −→ N ′ and ΦP : P −→ P ′ such that: the resulting cube of R-algebroid morphisms is commutative;
ΦL(h(m,n)) = h(ΦM (m),ΦN (n)) for m ∈ M , n ∈ N ; each of the morphisms ΦL, ΦM and ΦN

preserve the action of ΦP . Thus, all R-algebroid crossed squares and their morphisms form a category
denoted by XSqua.

3. From Simp.R-Alg.≤2 to XSqua

In this section, we will obtain a crossed square of R-algebroids from a simplicial R-algebroid E =

(En, d
n
i , s

n
j ) with Moore complex of lenght 2.
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Proposition 3.1. Given a simplicial R-algebroid E = (En, d
n
i , s

n
j ) with Moore complex of lenght 2, we

obtain a crossed square of R-algebroids.

Proof 3.2. Let E = (En, d
n
i , s

n
j ) be a simplicial R-algebroid with Moore complex of lenght 2. Then for

the simplicial R-algebroid

E = E3

//////// E2

d2 //
d1 //
d0 //

ff``[[ E1
d1 //
d0 //

s0
ff

s1

`` E0
s0

ff

its Moore complex is as follows,

... → 0 → 0 → NE2
d22−→ NE1

d11−→ NE0 = E0

Where NE2 = kerd20 ∩ kerd21, NE1 = kerd10 and NE0 = E0. Let NE1 = ker d11.

We consider the following diagram

NE2
d22 //

d22

��

NE1

i

��
NE1 i

// E1

E1 acts on NE1 and NE1 as;

E1 × NE1 −→ NE1

(e , x) 7→ ex = ex

NE1 × E1 −→ NE1

(x , e′) 7→ xe
′
= xe′

and
E1 × NE1 −→ NE1

(e , y) 7→ ey = ey

NE1 × E1 −→ NE1

(y , e′) 7→ ye
′
= ye′

E1 acts on NE2

E1 × NE2 −→ NE2

(e , a) 7→ ea = s11(e)a

NE2 × E1 −→ NE2

(a , e′) 7→ ae
′
= as11(e

′)

Also NE1 acts on NE1

NE1 × NE1 −→ NE1

(x , y) 7→ xy = xy

NE1 × NE1 −→ NE1

(y , x′) 7→ yx
′
= yx′

and NE1 acts on NE1

NE1 × NE1 −→ NE1

(y , x) 7→ yx = yx

NE1 × NE1 −→ NE1

(x , y′) 7→ xy
′
= xy′
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and consider the map

h : NE1 ×NE1 −→ NE2

(x, y) 7→ h(x, y) = s11(x)(s
1
1(y)− s10(y))

Thus the diagram

NE2
d22 //

d22

��

NE1

i

��
NE1 i

// E1

is a crossed square.

ÇK 1) d22 : NE2 −→ NE1 için

CM 1) d22(
xa) = d22(s

1
1(x)a) = d22s

1
1(x)d

2
2(a) = xd22(a)

CM 2) d22(a)a′ = s11d
2
2(a)a

′ = d33s
2
1(a)d

3
3s

2
2(a

′)− aa′ + aa′

= d33s
2
1(a)d

3
3s

2
2(a

′)− d33s
2
2(a)d

3
3s

2
2(a

′) + aa′

= d33(s
2
1(a)s

2
2(a

′)− s22(a)s
2
2(a

′)) + aa′

= aa′

where s21(a)s
2
2(a

′) − s22(a)s
2
2(a

′) ∈ NE3 = {0}. Thus d22 : NE2 −→ NE1 is a crossed module.
Similarly it can be show that the morphisms d22 : NE2 −→ NE1, i : NE1 −→ E1 , i : NE1 −→ E1 ve
id22 : NE2 −→ E1 are crossed modules.

ÇK 2)
h(x+ x′, y) = s11(x+ x′)(s11(y)− s10(y))

= s11(x)(s
1
1(y)− s10(y)) + s11(x

′)(s11(y)− s10(y))

= h(x, y) + h(x′, y)

and
h(x, y + y′) = s11(x)(s

1
1(y + y′)− s10(y + y′))

= s11(x)(s
1
1(y)− s10(y)) + s11(x)(s

1
1(y

′)− s10(y
′))

= h(x, y) + h(x, y′).

ÇK 3) For r ∈ R,
r � h(x, y) = r � s11(x)(s11(y)− s10(y))

= s11(r � x)(s11(y)− s10(y))

= h(r � x, y)
= s11(x)(r � s11(y)− r � s10(y))
= s11(x)(s

1
1(r � y)− s10(r � y))

= h(x, r � y).
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ÇK 4) For e ∈ E1
eh(x, y) = s11(e)(s

1
1(x)(s

1
1(y)− s10(y)))

= s11(ex)(s
1
1(y)− s10(y)))

= s11(
ex)(s11(y)− s10(y)))

= h(ex, y),

similarly we get h(x, y)e′ = h(x, ye
′
).

ÇK 5)
h(xx′, y) = s11(x)s

1
1(x

′)(s11(y)− s10(y))

= s11(x)(s
1
1(x

′)s11(y)− s11(x
′)s10(y))

= s11(x)(s
1
1(x

′)s11(y)− s11(x
′)s10(y) + s10(x

′)s10(y)−
s10(x

′)s10(y))

= s11(x)(s
1
1(x

′y)− s10(x
′y))− s11(x)(s

1
1(x

′)− s10(x
′))(s10(y)−

s11s
0
0d

1
1(y))

= h(x, x′
y)− d33[s

2
2s

1
1(x)(s

2
2s

1
1(x

′)− s22s
1
0(x

′))(s22s
1
0(y)−

s21s
1
0(y))]

= h(x, x′
y)

where s22s11(x)(s22s11(x′)− s22s
1
0(x

′))(s22s
1
0(y)− s21s

1
0(y)) ∈ NE3 = {0} .

ÇK 6) Similarly we can show that
h(x, yy′) = h(xy, y′).

ÇK 7- ÇK 8)
d22h(x, y) = d22(s

1
1(x)(s

1
1(y)− s10(y)))

= d22s
1
1(x)(d

2
2s

1
1(y)− d22s

1
0(y)))

= x(y − s00d
1
1(y)) (d11(y) = 0)

= xy = xy

= xy

ÇK 9 - ÇK 10)

h(d22(a), y) = s11(d
2
2(a))(s

1
1(y)− s10(y))

= s11d
2
2(a)(s

1
1(y)− s10(y))− as11(y) + as11(y)+

as11s
0
0d

1
1(y), (d11(y) = 0)

= d33s
2
1(a)(d

3
3s

2
2s

1
1(y)− d33s

2
2s

1
0(y))− d33s

2
2(a)d

3
3s

2
2s

1
1(y)+

d33s
2
2(a)d

3
3s

2
1s

1
0(y) + as11(y)

= d33(s
2
1(a)s

2
2s

1
1(y)− s22s

1
0(y))− s22(a)s

2
2s

1
1(y)+

s22(a)s
2
1s

1
0(y)) + ay

= ay
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where s21(a)s22s11(y)− s22s
1
0(y))− s22(a)s

2
2s

1
1(y) + s22(a)s

2
1s

1
0(y) ∈ NE3 = {0} and

h(x, d22(a)) = s11(x)(s
1
1(d

2
2(a))− s10(d

2
2(a)))

= s11(x)(s
1
1d

2
2(a)− s10d

2
2(a)− a+ a)

= d33s
2
2s

1
1(x)(d

3
3s

2
1(a)− d33s

2
0(a)− d33s

2
1(a)) + s11(x)a

= d33(s
2
2s

1
1(x)(s

2
1(a)− s20(a)− s21(a)) +

xa

= xa

where s22s11(x)(s21(a)− s20(a)− s21(a) ∈ NE3 = {0} .

ÇK 11)

h(x, y)h(x′, y′) = s11(x)(s
1
1(y)− s10(y))s

1
1(x

′)(s11(y
′)− s10(y

′))

= [s11(x)s
1
1(y)− s11(x)s

1
0(y)][s

1
1(x

′)s11(y
′)− s11(x

′)s10(y
′)]

= s11(x)s
1
1(y)s

1
1(x

′)s11(y
′)− s11(x)s

1
1(y)s

1
1(x

′)s10(y
′)−

s11(x)s
1
0(y)s

1
1(x

′)s11(y
′) + s11(x)s

1
0(y)s

1
1(x

′)s10(y
′)

= s11(x)s
1
1(y)s

1
1(x

′)s11(y
′)− s11(x)s

1
1(y)s

1
1(x

′)s10(y
′)−

s11(x)s
1
0(y)s

1
1(x

′)s11(y
′) + s11(x)s

1
0(y)s

1
1(x

′)s10(y
′)+

s11(x)s
1
1(y)s

1
0(x

′)s10(y
′)− s11(x)s

1
1(y)s

1
0(x

′)s10(y
′)

= s11(x)s
1
1(y)s

1
1(x

′)s11(y
′)− s11(x)s

1
1(y)s

1
0(x

′)s10(y
′)

−s11(x)s
1
1(y)s

1
1(x

′)s10(y
′)− s11(x)s

1
0(y)s

1
1(x

′)s11(y
′)+

s11(x)s
1
0(y)s

1
1(x

′)s10(y
′) + s11(x)s

1
1(y)s

1
0(x

′)s10(y
′)

= s11(xy)(s
1
1(x

′y′)− s10(x
′y′))

= h(xy, x′y′) = h(xy, x′
y′)

where

−s11(x)s
1
1(y)s

1
1(x

′)s10(y
′)− s11(x)s

1
0(y)s

1
1(x

′)s11(y
′) + s11(x)s

1
0(y)s

1
1(x

′)s10(y
′)+

s11(x)s
1
1(y)s

1
0(x

′)s10(y
′) ∈ d33(NE3).

Thus we have a crossed square.
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