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1. INTRODUCTION

Genomic selection (GS) has rapidly emerged as a pivotal field within
contemporary livestock genomics, becoming an essential component of animal
breeding strategies over the past two decades. Following the seminal work of
Meuwissen, Hayes, and Goddard (2001), which introduced prediction models
utilizing all genome-wide markers simultaneously, many limitations inherent in
classical selection methods were effectively addressed. With the widespread
adoption of high-density SNP panels, this innovative approach became routine in
the dairy cattle industry beginning in 2008 and subsequently expanded to the
swine, poultry, and small ruminant sectors (Goddard & Hayes, 2009). Today,
genomic selection has evolved beyond a genotype-based tool; it has transformed
into a multidimensional selection platform supported by multi-omics integration,
artificial intelligence, big data analytics, sensor technologies, disease-resistance
genomics, and climate-adaptation research.

Given the intricate genetic architecture underlying economically significant
traits, the majority of phenotypic variation in livestock can be attributed to the
aggregate effects of numerous loci, each contributing minimally (Hill, Goddard
& Visscher, 2008). Consequently, genomic selection (GS) offers considerable
advantages over traditional marker-assisted selection (MAS), particularly for
polygenic traits. For example, genomic data has been demonstrated to enhance
prediction accuracy by 20—50% for traits with low heritability, such as milk yield,
reproductive performance, health traits, resilience, and behavior (VanRaden et
al., 2009). This improvement not only increases the reliability of genomic
estimated breeding values (GEBVs) but also fundamentally transforms breeding
programs—most notably by obviating the necessity for progeny testing in dairy
bulls.

The increasing complexity of livestock genomics in recent years can be
largely attributed to the rapid advancement of multi-omics technologies. Beyond
genotypic data, the integration of transcriptomic (RNA-seq), epigenomic (DNA
methylation and histone modifications), metagenomic (rumen microbiome),
proteomic, and metabolomic datasets into genomic prediction models facilitates
a more comprehensive understanding of the molecular mechanisms underlying
animal performance (Kadarmideen, 2014). This multi-layered approach presents
new opportunities for predicting complex phenotypes, including disease
resistance, environmental stress tolerance, feed efficiency, and adaptive capacity.

Concurrently, the swift advancement of artificial intelligence (AI) and
machine learning (ML) has significantly augmented the predictive capabilities of
genomic selection models. Beyond traditional GBLUP and Bayesian



methodologies, algorithms such as random forests, gradient boosting, support
vector machines, and multilayer neural networks are increasingly implemented
in livestock breeding programs (Gianola & Rosa, 2015). Notably, deep learning
models leverage the hierarchical architecture of neural networks to discern
intricate, high-dimensional genomic patterns, resulting in marked enhancements
in prediction accuracy (Montesinos-Lopez et al., 2018). Given the heterogeneous
nature of multi-omics data, deep learning-based data-fusion frameworks have
emerged as a pivotal area of research.

Another notable advancement in genomic selection (GS) is the widespread
adoption of digital phenotyping and sensor-based data collection systems. The
rapid integration of Internet of Things (IoT)-enabled technologies into modern
agricultural practices facilitates high-frequency phenotypic measurements,
thereby improving the precision of environmental variation modeling (Halachmi,
2019). As a result, genomic prediction models can more accurately account for
both genetic and environmental sources of variation. Genomic selection also has
significant economic and social implications. Substantial evidence suggests that
genomic evaluation provides considerable economic benefits in large commercial
herds by enhancing fertility, herd health, and feed efficiency, ultimately reducing
production costs (Schaeffer, 2006). However, the ethical and socio-economic
aspects of GS require careful consideration. Issues such as technology access for
small-scale farmers, preservation of local breeds, long-term genetic diversity, and
data privacy necessitate thorough examination (Fraser, 2019). In this context,
genomic selection should be regarded not merely as a breeding tool but as a
multidimensional ecosystem encompassing data science, artificial intelligence,
molecular biology, systems biology, and ethical frameworks. This book chapter
aims to comprehensively evaluate all components of this evolving ecosystem.



2. HISTORICAL DEVELOPMENT OF GENOMIC SELECTION

The development of genomic selection has been a transformative journey
shaped by decades of scientific progress and technological innovation. Initially,
breeding programs relied heavily on phenotypic and pedigree-based selection,
where observable traits and family lineage were the primary criteria for selecting
superior individuals. This traditional approach, while foundational, was limited
by its dependence on visible characteristics and the slow pace of genetic gain.
The subsequent introduction of Marker-Assisted Selection (MAS) marked a
significant advancement by enabling breeders to use molecular markers linked to
desirable traits, thereby improving selection accuracy and efficiency. However,
MAS was constrained by the limited number of markers and the complexity of
polygenic traits, which often involve many genes with small effects.

The emergence of genomic selection revolutionized breeding by leveraging
dense genome-wide markers to predict the genetic potential of individuals more
comprehensively. This approach allowed for the capture of the cumulative effects
of numerous loci, enhancing prediction accuracy and accelerating breeding
cycles. In the modern era, genomic selection has evolved further through the
integration of artificial intelligence (AI) and multi-omics data, including
genomics, transcriptomics, proteomics, and metabolomics. These advancements
enable the analysis of complex biological interactions and environmental
influences on traits, supported by big data analytics and machine learning
algorithms. Together, these innovations have culminated in highly sophisticated
breeding systems that optimize genetic improvement with unprecedented
precision and speed.

This section reviews the historical evolution of genomic selection in four
major phases:

(1) phenotypic and pedigree-based selection, (2) Marker-Assisted Selection
(MAS), (3) the emergence of genomic selection, and (4) the modern era
characterized by artificial intelligence and multi-omics integration.

2.1. Phenotype and Pedigree-Based Selection (1930-1990)

Between 1930 and 1960, the field of animal breeding predominantly relied on
phenotypic measurements, with selection processes based on the comparison of
individual performance records. However, substantial environmental variation
posed significant constraints on genetic advancement. A pivotal development
during this period was the introduction of the Best Linear Unbiased Prediction
(BLUP) methodology by Henderson in the 1970s (Henderson, 1975). BLUP



enhanced prediction accuracy by incorporating both pedigree and phenotypic
data, rapidly establishing itself as the standard method in livestock breeding.

The phenotype and pedigree-based selection method possesses several
advantages, including operational simplicity, a well-established statistical
framework, and the standardization of progeny testing in dairy -cattle.
Nevertheless, this approach also exhibits certain limitations, such as extended
generation intervals (e.g., 5—6 years required for bull daughter performance
testing), diminished accuracy for traits with low heritability, and susceptibility to
errors in pedigree recording. These limitations underscore the necessity for
molecular tools that can provide additional genetic information beyond what is
available from pedigree data.

2.2. Marker-Assisted Selection (QTL and MAS Era, 1990-2005)

Since the early 1990s, the extensive application of microsatellite markers and
quantitative trait loci (QTL) mapping techniques marked the advent of the
Marker-Assisted Selection (MAS) era. MAS has achieved significant success in
traits governed by major genes, particularly those associated with disease
resistance (Dekkers, 2012). Notable examples include: the DGAT1 K232A
mutation linked to milk fat percentage, MSTN (myostatin) mutations affecting
muscle development in cattle and sheep, and PRLR (prolactin receptor) variants
related to milk production. However, despite these achievements, MAS has
proven inadequate for addressing complex traits controlled by hundreds or
thousands of loci with minor effects (Goddard & Hayes, 2009).

The limitations of Marker-Assisted Selection (MAS) include the inability to
identify effective Quantitative Trait Loci (QTLs) for all traits, low prediction
accuracy for polygenic traits, and a significant portion of genetic variance
remaining unexplained. These shortcomings have led to the development of
approaches capable of simultaneously evaluating the entire genome.

2.3. Genomic Selection (2001-2010): A Paradigm Shift

The pivotal advancement in genomic selection was marked by the work of
Meuwissen, Hayes, and Goddard (2001), who introduced prediction models
utilizing genome-wide marker information. This innovation facilitated the
concurrent estimation of effects for thousands of markers, each presumed to exert
a minor influence. Core components of genomic selection include a genotyped
reference population, high-quality phenotypic data, and a statistical prediction
model (e.g., GBLUP, BayesA/B/C), culminating in the Genomic Estimated
Breeding Value (GEBV). The most transformative benefit of genomic selection
was the substantial reduction in the generation interval. For instance, in dairy



cattle, breeding values could be estimated without the necessity of waiting for
daughters' performance data (VanRaden, 2008).

2008-2012: Initial Large-Scale Commercial Implementations

The formal adoption of genomic evaluations within the North American
Holstein population (VanRaden et al., 2009) marked a significant advancement.
Concurrently, the initiation of genomic data sharing among European countries
was facilitated through Interbull. Additionally, genomic testing was adopted by
swine, poultry, and sheep breeding companies. This period was catalyzed by the
decreasing cost of genotyping, with medium-density panels such as the
BovineSNP50 becoming central tools for routine genomic selection.

2010-2015: Growth of big data and new prediction models

The development of high-density SNP panels (HD 700K), improvements in
imputation accuracy, and the introduction of single-step GBLUP (ssGBLUP)
(Legarra et al., 2014), alongside the widespread use of low-density panels for
cost-effective genotyping, have collectively facilitated the establishment of
genomic selection as a standard practice in large commercial breeding programs.

2.4. Whole-Genome Sequencing and the Omics Era (2015-2023)

Following 2015, the field of livestock genomics experienced significant
advancements due to the increased accessibility of whole-genome sequencing
(WGS) data. The contributions of WGS to genomic selection include the
identification of rare variants, the characterization of regulatory region variation,
the incorporation of structural variants (SVs) into prediction models, and the
enhanced resolution of linkage disequilibrium (LD) blocks. Notably, the 1000
Bull Genomes Project has become a global benchmark for bovine genomics
(Hayes & Daetwyler, 2019). During this period, additional omics layers—such
as transcriptomics, methylomics, proteomics, and metagenomics—were also
integrated into prediction frameworks.

2.5. Artificial Intelligence, Multi-Omics, and Digital Phenotyping (2020-
Present)

Since 2020, genomic selection has advanced significantly beyond SNP-based
models. Contemporary breeding programs now incorporate deep learning
algorithms, multi-omics data fusion approaches, sensor-based real-time
phenotyping, rumen microbiome profiling, and environmental data alongside
GxE modeling. Deep learning methodologies (Montesinos-Lopez et al., 2021)
facilitate the identification of nonlinear interactions and intricate genomic
patterns. Concurrently, sensor technologies (IoT) provide high-frequency



measurements of behavior, feed intake, activity, and physiological status, thereby
enhancing genomic prediction models (Halachmi et al., 2020).

2.6. Historical Overview and Emerging Trends

Genomic selection has become a pivotal component of livestock breeding,
primarily due to its capacity to achieve high prediction accuracy, shorten
generation intervals, reduce phenotyping costs, and integrate diverse biological
data layers. The historical progression of genomic selection clearly illustrates its
ability to transcend the limitations inherent in classical genetic evaluation. Over
the next decade, significant advancements are anticipated, driven by Al-enhanced
prediction systems, multi-omics data fusion, and autonomous phenotyping
technologies.



3. GENETIC ARCHITECTURE AND
GENOMIC DATA STRUCTURES

Achieving success in livestock genomic selection is contingent upon the
precise characterization of the genetic architecture of traits that hold economic
significance. Genetic architecture refers to the number of contributing loci, effect
sizes, allele frequencies, interactions such as epistasis, and the genomic
distribution of causal variants (Mackay, 2001). As contemporary genomic
prediction models strive to encapsulate this complexity, the type, density, and
quality of input data have a direct impact on prediction accuracy. This section
provides a systematic review of the genetic basis of complex traits, genomic data
sources, marker technologies, variant types, linkage disequilibrium (LD)
patterns, and the contributions of modern sequencing technologies to selection
models.

3.1. Genetic Architecture of Complex Traits

Numerous economically significant traits in livestock, such as milk yield,
growth rate, feed efficiency, fertility, and disease resistance, are polygenic in
nature. This means that these traits are controlled by the combined influence of
hundreds or even thousands of genetic loci, each contributing a relatively small
effect rather than a single gene having a major impact (Hill et al., 2008). The
polygenic architecture of these traits results in continuous variation within
populations, making their genetic improvement more complex compared to traits
governed by single genes. Understanding the polygenic basis is essential for
implementing effective breeding strategies, such as genomic selection, which
leverages information from numerous genetic markers across the genome to
predict an animal's genetic merit. This approach enables more accurate selection
decisions, accelerating genetic progress for these complex traits in livestock
populations.

Genetic architecture encompasses several critical components that
collectively influence the heritability and expression of complex traits. The effect
size distribution highlights that most genes contribute small effects, consistent
with the infinitesimal model originally proposed by Fisher (1918), which
underpins many regression-based genomic prediction methods like GBLUP. This
model assumes an essentially infinite number of loci, each with minuscule
effects, facilitating the prediction of phenotypes based on additive genetic
variance. However, while rare variants can have larger individual effects, their
overall impact on prediction accuracy tends to be limited due to their low
frequency in reference populations, as noted by Goddard et al. (2010).



Beyond additive effects, dominance and epistatic interactions play important
roles, particularly in traits related to fitness and health (Varona et al., 2018).
Although additive variance generally explains the bulk of phenotypic variance,
these nonlinear genetic interactions can influence trait expression in complex
ways. Advanced nonlinear models, such as deep learning approaches, are better
suited to capture these complexities. Additionally, variants within functional
genomic regions—such as promoters, enhancers, and miRNA binding sites—
affect gene regulation and expression. Incorporating functional annotations into
predictive models has been shown to improve accuracy by prioritizing
biologically relevant variants (Zhang et al., 2021), thereby enhancing the
understanding and prediction of genetic contributions to complex traits.

3.2. Genomic Data Sources and SNP Technologies

The cornerstone of genomic selection is the utilization of SNP marker data,
although the discovery of variants through sequencing methods is becoming
increasingly prevalent. Due to their low cost and high accuracy, SNP chips have
become the standard in livestock genomics since 2008 (Matukumalli et al.,
2009)(Table 1).

Table 1. Common SNP panel densities

Panel Type Density Application

Low density (LD) | 3K-20K Inexpensive genotyping + imputation

Medium  density | 35K-80K Standard for cattle, sheep, swine

(MD)

High density (HD) | 600K—900K High resolution, improved LD
estimation

WGS 20-30 million SNPs | Research, rare variant detection

The use of SNP chips in genetic studies provides several significant benefits
that make them a popular choice for genotyping. Their low cost enables large-
scale studies to be conducted more affordably, while the low error rate ensures
reliable and reproducible data. Additionally, SNP chips are highly effective for
cross-population comparisons because they target common variants shared across
diverse groups. This broad applicability is further enhanced by imputation
techniques, which increase marker density and resolution, allowing researchers
to infer genotypes at untyped loci and thus achieve finer-scale genetic mapping
without the need for more expensive sequencing.

Despite these advantages, SNP chips have important limitations that restrict
their utility in certain contexts. The panels are primarily designed to capture



common variants, which means they provide limited information on rare or
population-specific alleles, particularly in indigenous or underrepresented breeds.
This bias reduces their effectiveness in studies aiming to understand genetic
diversity in such populations. Moreover, SNP chips do not detect structural
variations (SVs) such as insertions, deletions, or copy number variations, which
can have substantial functional impacts. Consequently, while SNP chips are
valuable for many applications, complementary approaches like whole-genome
sequencing may be necessary to capture the full spectrum of genetic variation,
especially in diverse or less-studied populations.

3.3. Whole-Genome Sequencing (WGS)

WGS technologies allow comprehensive characterization of genomic
variation (Daetwyler et al., 2012), capturing rare variants, regulatory mutations,
and structural variants that SNP chips cannot detect.

Contributions of WGS

e Detection of rare variants

¢ High-accuracy imputation reference panels

e Identification of functional mutations (e.g., in enhancers, promoters,

intronic regulatory regions)

e Structural variant (SV) analysis, including CNVs, inversions, and

translocations

3.4. Linkage Disequilibrium (LD) and Population Structure

LD refers to the nonrandom association of alleles at different loci and plays a
central role in genomic selection success (Flint-Garcia et al., 2003).

Importance of LD

e Markers act as proxies for QTLs

e Determines required SNP panel density

e Longer LD in small populations allows cheaper genotyping

Species comparisons

e Cattle: long-range LD — 35K-50K panels are sufficient

e Sheep and goats: LD varies significantly among breeds

e Chickens: short LD — require dense SNP panels

e Pigs: high LD in commercial lines, lower in indigenous breeds

e Salmon: LD varies by strain — 50K panels often sufficient for GS, but

some populations benefit from >100K density.

Population structure (e.g., breed differences) also influences prediction

accuracy because LD patterns differ between breeds (Hayes et al., 2009).



3.5. Variant Types and Functional Annotations
Modern genomic analyses incorporate a diverse range of variant types:

SNPs (Single Nucleotide Polymorphisms) — the core of genomic
selection

Indels — may alter gene transcription or translation

CNVs (Copy Number Variations) — influence growth, immunity, and
adaptation (Zhou et al., 2014)

Structural variants — inversions, translocations, large deletions
Regulatory variants — promoters, enhancers, miRNA-binding sites, CpG
methylation regions

Incorporating functional annotations into models (e.g., BayesRC) improves
prediction accuracy (Edwards et al., 2019).

3.6. Genomic Data Integration
Integrating multiple genomic data sources strengthens prediction models.
Major integration strategies

Imputation: Enhancing low-density genotypes to high-density levels
Functional weighting: Allocating greater prior weights to variants located
in functional regions

Multi-omics fusion: Integrating genotypes with RNA-seq, methylation,
proteome, and metagenome data

Across-population analyses: Augmenting accuracy through the
utilization of shared reference populations

10



4. STATISTICAL AND MACHINE LEARNING MODELS IN
GENOMIC SELECTION

Genomic selection relies heavily on advanced statistical frameworks that can
manage high-dimensional genomic data, enabling the simultaneous evaluation of
thousands to millions of markers across the genome. These models not only
capture the direct associations between marker genotypes and phenotypic traits
but also adjust for confounding factors such as population stratification and
relatedness among individuals. Key considerations in model design include the
extent of linkage disequilibrium (LD) within the population, which affects how
well markers tag causal variants, as well as marker density and sample size, both
of which influence the power and accuracy of predictions. Traditional linear
mixed models, such as genomic best linear unbiased prediction (GBLUP), have
been widely used due to their robustness and interpretability in capturing additive
genetic effects (Sillanpai, 2010).

The integration of machine learning (ML) and deep learning techniques into
genomic selection frameworks has introduced greater flexibility and improved
predictive performance, especially for complex traits influenced by non-additive
genetic architectures and gene-by-environment interactions. ML models,
including random forests, support vector machines, and gradient boosting, can
capture nonlinear relationships and interactions without explicit parametric
assumptions. Deep learning approaches, such as convolutional neural networks
and recurrent neural networks, further enhance the ability to model hierarchical
and temporal genomic patterns by learning multi-layered feature representations
directly from raw genotype data. These innovations have expanded the
methodological repertoire for genomic prediction, enabling more accurate
selection decisions and accelerating breeding programs across diverse species
(Montesinos-Lopez et al., 2021).

4.1. Classical Linear Models

Classical linear models in genomic prediction primarily utilize linear
regression frameworks to estimate the effects of genetic markers on complex
traits. These models assume that the relationship between marker genotypes and
phenotypic values is additive, meaning that the total genetic effect is the sum of
individual marker effects without considering interactions or dominance effects.
This additive assumption simplifies the genetic architecture and allows for
straightforward interpretation and computation, making these models
computationally efficient and broadly applicable. Consequently, they have
become foundational in animal breeding programs, particularly in major livestock

1"



species where additive genetic variance is a key driver of trait heritability (Azodi
etal., 2019).

Despite their simplicity, classical linear models remain highly effective for
many quantitative traits due to the predominance of additive genetic variance in
livestock populations. They enable breeders to predict genomic breeding values
by leveraging dense marker information, thus accelerating genetic gain through
more accurate selection decisions. However, these models may have limitations
in capturing non-additive genetic effects such as epistasis or dominance, which
can be important for certain traits. Nonetheless, their robustness, ease of
implementation, and proven success have sustained their widespread use in the
genomic prediction landscape, often serving as a baseline for comparison with
more complex nonlinear or machine learning approaches (Hay, 2024).

4.1.1. Genomic Best Linear Unbiased Prediction (GBLUP)

GBLUP is one of the most widely used models in genomic selection. It
represents a genomic extension of the BLUP framework developed by Henderson
(1975), incorporating a genomic relationship matrix (G-matrix) constructed from
SNP marker data (VanRaden, 2008). GBLUP aligns with the infinitesimal model
(Goddard et al., 2010), which assumes that many loci contribute small additive
effects.

GBLUP (Genomic Best Linear Unbiased Prediction) is highly valued for its
computational efficiency and ability to scale effectively with large datasets,
making it particularly suitable for modern genomic selection programs where vast
amounts of marker data are common. Its robust performance across a wide range
of polygenic traits—those influenced by many genes each with small effects—
has established GBLUP as the standard model in commercial breeding, where
reliability and speed are critical for practical implementation (Karaman et al.,
2018).

However, the model's assumption that all marker effects have equal variance
can limit its predictive accuracy for traits governed by major quantitative trait loci
(QTL) with large effects. This equal variance assumption means GBLUP may
underperform when genetic architecture is dominated by a few loci with
substantial influence, as it tends to distribute genetic variance uniformly across
markers. Consequently, alternative models that allow for heterogeneous marker
variances may be more appropriate in such cases to capture the true genetic signal
more effectively (Tiezzi & Maltecca, 2015).

12



4.1.2. Single-Step Genomic BLUP (ssGBLUP)

The single-step Genomic Best Linear Unbiased Prediction (ssGBLUP)
method represents an advanced approach in genetic evaluation by seamlessly
integrating genomic, pedigree, and phenotypic data within a single analytical
framework. This integration allows for more accurate estimation of breeding
values by leveraging the complementary information contained in each data type.
Unlike traditional BLUP, which relies solely on pedigree and phenotypic records,
ssGBLUP incorporates dense marker information from genomic data, enhancing
the precision of genetic evaluations especially for individuals without extensive
phenotypic records (Vallejo et al., 2017).

By combining the strengths of BLUP and Genomic BLUP (GBLUP),
ssGBLUP improves prediction accuracy and genetic gain in breeding programs.
It achieves this by constructing a unified relationship matrix that blends pedigree-
based relationships with genomic relationships, thereby capturing both the
historical and realized genetic relationships among individuals. This unified
approach simplifies the evaluation process, reduces bias, and enables the
inclusion of genotyped and non-genotyped individuals simultaneously, making
ssGBLUP a powerful tool for modern animal and plant breeding applications
(Gowane et al., 2019).

4.2. Bayesian Models

Bayesian models are particularly advantageous in genomic selection due to
their ability to accommodate heterogeneous marker effects by assigning distinct
prior distributions to each marker. This flexibility allows them to effectively
model genetic architectures where only a subset of markers has significant
influence, capturing sparse effect patterns that traditional models may overlook.
For instance, Bayes A assumes marker effects follow a t-distribution, which helps
identify markers with large effects, while Bayes B posits that many markers have
zero effect, making it suitable for traits governed by sparse genetic architectures.
Bayes Cr builds on Bayes B by introducing the © parameter, which explicitly
defines the probability that a marker has no effect, further refining the model’s
capacity to represent genetic sparsity (Stock et al., 2020).

More advanced Bayesian approaches like Bayes R and BayesRC extend this
framework by incorporating mixture distributions and functional genomic
information, respectively. Bayes R uses a mixture of normal distributions with
different variances to model varying effect sizes, providing greater flexibility for
complex quantitative trait loci (QTL) architectures. BayesRC enhances this by
integrating functional annotations into the prior distributions, such as assigning
higher prior probabilities to single nucleotide polymorphisms (SNPs) located in
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coding or enhancer regions, or weighting markers based on population-specific
biological relevance. This integration of functional genomic data represents a
significant advancement, enabling more biologically informed genomic
predictions and improving the accuracy of selection by leveraging prior
knowledge about marker functionality (Macleod et al., 2016).

4.3. Sparsity and Regularization-Based Models

Sparsity and regularization-based models are essential tools in genomic
prediction, particularly for handling high-dimensional data where the number of
predictors exceeds the number of observations. LASSO (Least Absolute
Shrinkage and Selection Operator) applies an L1 penalty, which induces sparsity
by shrinking some marker effect estimates exactly to zero. This feature selection
property makes LASSO especially useful for traits influenced by a few major
quantitative trait loci (QTL), as it effectively identifies and retains only the most
relevant markers, similar in principle to marker-assisted selection (MAS). In contrast,
Ridge regression (also known as RRBLUP in genomic contexts) uses an L2 penalty
that shrinks all marker effects towards zero uniformly without setting any coefficients
exactly to zero. This approach is mathematically equivalent to genomic best linear
unbiased prediction (GBLUP) and is more suitable for traits governed by many
small-effect loci, as it retains all markers but controls overfitting by shrinking their
effects (Meher et al., 2022).

The Elastic Net method integrates both L1 and L2 penalties, combining the
strengths of LASSO and Ridge regression. By balancing variable selection and effect
shrinkage, the Elastic Net can handle correlated predictors better than LASSO alone,
which tends to arbitrarily select one marker from a group of correlated variables. This
makes it particularly effective for polygenic traits where numerous loci with small to
moderate effects contribute to the phenotype. The Elastic Net’s flexibility allows it
to perform robust variable selection while maintaining predictive accuracy,
especially in complex genetic architectures where both sparsity and shrinkage are
beneficial. This combination enhances model stability and interpretability, making
the Elastic Net a valuable approach in genomic prediction frameworks (Waldron et
al., 2011).

4.4. Machine Learning Models

Machine learning (ML) models have become increasingly popular in genomic
prediction due to their ability to capture complex, nonlinear relationships and
interactions among genetic markers that traditional linear models may overlook.
Random Forests, for example, leverage an ensemble of decision trees to model
epistatic effects naturally and provide robust variable importance measures,
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which help identify key markers influencing traits. Their stability across large
datasets makes them suitable for genomic contexts; however, their predictive
performance can suffer when faced with extremely high-dimensional marker sets,
and they may underperform compared to genomic best linear unbiased prediction
(GBLUP) models when traits are predominantly controlled by additive genetic
effects (Li et al., 2024).

Support Vector Regression (SVR) extends the capacity to model nonlinear
relationships by employing kernel functions, making it well-suited for medium-
density marker datasets and traits with significant non-additive genetic
components. By transforming input data into higher-dimensional feature spaces,
SVR can capture complex patterns that linear models cannot. This flexibility
allows SVR to address genetic architectures where interactions and dominance
effects play a substantial role, although its performance depends on careful tuning
of kernel parameters and may be computationally intensive for very large datasets
(Li et al., 2024).

4.5. Deep Learning Models

Deep learning has emerged as a powerful approach in genomic prediction,
particularly effective for handling the complexity and high dimensionality of
genomic datasets. Multilayer Perceptrons (MLPs) serve as foundational models
that capture nonlinear interactions through fully connected layers; however, their
effectiveness depends heavily on the availability of large training populations and
the application of appropriate regularization techniques to prevent overfitting.
Convolutional Neural Networks (CNNs) extend this capability by interpreting
single nucleotide polymorphisms (SNPs) as sequential genomic features,
enabling the capture of linkage disequilibrium (LD) blocks and haplotype
structures, which has been shown to improve prediction accuracy in several
studies (Li, 2024).

Recurrent Neural Networks (RNNs) further leverage the sequential nature of
genomic data, making them well-suited to model complex biological phenomena
such as epistasis, long-range LD, and regulatory motifs that influence gene
expression and trait variation. Meanwhile, Deep Gaussian Process Models
provide an advanced framework that combines nonlinear modeling with
uncertainty estimation, offering a promising alternative for genomic prediction
tasks where quantifying prediction confidence is critical. Together, these deep
learning architectures represent a versatile toolkit for advancing genomic
prediction by accommodating the intricate patterns and dependencies inherent in
genetic data (Mcdermott & Wikle, 2019).
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4.6. Comparative Performance of Models

Table 2. General tendencies across trait architectures

Trait Type Preferred Model(s)
Highly polygenic traits GBLUP / RRBLUP
Traits with major QTL Bayes B, Bayes R
When functional data are available BayesRC

Traits with epistasis Random Forest, CNN
Highly nonlinear genetic architectures Deep learning models
Small reference populations ssGBLUP

Several additional factors critically influence the performance of predictive
models in genetic studies (Table 2). Sample size plays a fundamental role, as
larger datasets generally provide more statistical power, enabling models to
capture complex genetic architectures more accurately and reduce overfitting.
Marker density, or the number of genetic markers used, affects the resolution with
which models can detect associations; higher marker density improves the ability
to capture linkage disequilibrium patterns and genetic variation but may also
increase computational complexity. Phenotype accuracy is equally important, as
precise and reliable measurement of traits ensures that the models learn from
valid signals rather than noise, directly impacting predictive reliability (Liu et al.,
2015).

Population structure is another key factor that can affect model outcomes.
Differences in allele frequencies and genetic backgrounds across subpopulations
can introduce biases if not properly accounted for, potentially leading to spurious
associations or reduced prediction accuracy. Models that incorporate or adjust for
population stratification tend to perform better in diverse or structured
populations. Together, these factors—sample size, marker density, phenotype
accuracy, and population structure—interact to determine the robustness and
generalizability of genetic prediction models, underscoring the need for careful
experimental design and data preprocessing in genomic research (Guo et al.,
2014).
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5. DATA INTEGRATION AND MULTI-OMICS APPROACHES IN
GENOMIC SELECTION

Traditional genomic selection models have predominantly depended on SNP
genotypes; nevertheless, the intricacy of biological systems cannot be
comprehensively elucidated by DNA sequence variation alone. Phenotypic
variation is influenced by multifaceted biological processes, including gene
expression, epigenetic regulation, protein—protein interactions, metabolic
pathways, microbiome dynamics, and environmental factors (L. Zhao et al.,
2025). Consequently, the integration of multi-omics data has emerged as a pivotal
research frontier to enhance predictive accuracy and deepen mechanistic
understanding in livestock genomics (Li et al., 2022). This chapter examines the
principal types of multi-omics data, integration strategies, computational
frameworks, artificial intelligence—based unified modeling approaches, and their
applications in livestock breeding.

5.1. Types of Multi-Omics Data

Multi-omics data encompass various biological layers that elucidate the
structure and function of living systems. The most pertinent omics categories for
genomic selection are outlined below.

5.1.1. Genomics (DNA-seq) Data

Genomic data refer to the various types of DNA-level variations that exist
within the genome and serve as critical inputs for genomic prediction models.
These variations include single nucleotide polymorphisms (SNPs), which are
changes at a single base pair; insertions and deletions (Indels), which involve the
addition or loss of small DNA segments; structural variants, encompassing larger
rearrangements such as inversions or translocations; and copy number variations
(CNVs), which represent changes in the number of copies of particular DNA
regions. Together, these diverse forms of genetic variation provide a
comprehensive landscape of genomic differences that influence phenotypic traits
and disease susceptibility (Hinds et al., 2005).

The integration of these genomic variations into prediction models enables
researchers to identify genetic markers associated with complex traits and
improve the accuracy of trait prediction across populations. By leveraging high-
throughput sequencing and genotyping technologies, large-scale genomic
datasets capturing these variations are generated, facilitating the development of
statistical and machine learning models that can predict outcomes such as disease
risk, treatment response, and agricultural trait performance. Thus, genomic data
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form the foundational basis for advancing personalized medicine, crop
improvement, and evolutionary studies through precise and data-driven genomic
predictions (Moler et al., 2018).

5.1.2. Epigenomics (DNA Methylation, Histone Modifications)

Epigenetic modifications constitute a dynamic and reversible layer of gene
regulation that does not alter the underlying DNA sequence but profoundly
influences cellular function and identity. DNA methylation typically involves the
addition of a methyl group to cytosine residues, often leading to transcriptional
repression when occurring in gene promoter regions. Histone modifications, such
as acetylation and methylation, alter chromatin structure by modulating the
accessibility of DNA to transcriptional machinery; for example, histone
acetylation generally promotes gene activation by loosening chromatin, whereas
specific histone methylation marks can either activate or repress transcription
depending on the context. Additionally, miRNA-mRNA interactions regulate
gene expression post-transcriptionally by targeting messenger RNAs for
degradation or translational inhibition, adding another layer of fine-tuning in
tissue-specific gene expression (Auverlot et al., 2024).

These epigenetic mechanisms are highly responsive to environmental cues,
enabling organisms to adapt to changing conditions without permanent genetic
changes. In livestock, such epigenomic plasticity has been linked to phenotypic
variation in traits critical for production, such as growth rate, milk yield, and
stress resilience. Environmental stressors like temperature fluctuations, nutrition,
and disease exposure can induce epigenetic changes that influence gene
expression patterns, thereby affecting animal health and productivity.
Understanding these epigenetic adaptations offers promising avenues for
improving livestock breeding and management strategies by integrating
epigenomic information alongside traditional genetic selection. (Gao et al., 2021)

5.1.3. Transcriptomics (RNA-seq) Data

Gene expression plays a fundamental role in shaping phenotypic traits by
regulating the functional output of the genome. RNA sequencing (RNA-seq) data
provide a comprehensive snapshot of gene activity, enabling researchers to
capture dynamic expression patterns that underlie complex traits. Incorporating
transcriptomic information into genomic prediction models enhances their
predictive power by directly linking gene expression profiles to phenotypic
variation. This integration allows for more precise modeling of gene expression—
phenotype associations, which improves the identification of causal genes and
pathways influencing traits of interest (Lee, 2018).
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Additionally, RNA-seq facilitates the mapping of expression quantitative trait
loci (eQTLs), which are genomic regions that regulate gene expression levels. By
overlaying eQTL data with genomic markers, researchers can uncover regulatory
variants that contribute to phenotypic diversity. The construction of tissue-
specific regulatory networks using transcriptomic data further refines predictions
by accounting for the context-dependent nature of gene regulation (Battle &
Montgomery, 2014). Moreover, RNA-seq supports feature selection by
highlighting genes with significant expression changes relevant to the trait,
thereby reducing noise and focusing the model on biologically meaningful
variables. Collectively, these mechanisms contribute to a 10—25% improvement
in genomic prediction accuracy, as demonstrated in multiple studies (Dutta et al.,
2020).

5.1.4. Proteomics Data

Protein abundance serves as a crucial indicator of biological function because
it directly reflects the presence and activity of proteins that execute cellular
processes, unlike genomic or transcriptomic data, which represent potential or
intermediate stages of gene expression. While genomic and transcriptomic
analyses provide valuable insights into genetic variation and gene expression
patterns, they do not always correlate precisely with protein levels due to post-
transcriptional and post-translational modifications, protein degradation, and
other regulatory mechanisms. Therefore, proteomics offers a more accurate
snapshot of the functional state of cells and tissues, enabling better understanding
of phenotypic traits and disease mechanisms.

However, the integration of proteomics into routine genomic selection
programs faces significant hurdles. The high costs associated with proteomic
measurements, including sample preparation, instrumentation, and data analysis,
limit large-scale application, especially in breeding populations where extensive
sample sizes are needed for robust statistical power. Additionally, current
proteomic techniques may have lower throughput and reproducibility compared
to genomic methods. Despite these limitations, proteomics has successfully
identified key biomarkers linked to important traits such as metabolic syndrome,
mastitis, and immune response, demonstrating its potential to complement
genomic data and enhance selection accuracy by providing functional validation
and mechanistic insights (Bonnet et al., 2020).
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5.1.5. Metabolomics Data

Metabolites represent the end products of cellular metabolism and provide a
direct snapshot of the physiological state of an organism. Because they reflect the
integrated output of gene expression, protein activity, and environmental
influences, metabolites are valuable as biomarkers for assessing complex
biological traits. In livestock and animal science, metabolite profiling through
metabolomics enables the identification of biochemical signatures associated
with feed efficiency, helping to optimize nutrition and reduce production costs.
Additionally, metabolites can indicate an animal’s ability to tolerate
environmental stressors, such as heat or disease, thereby supporting strategies to
improve resilience and welfare (Clemmons et al., 2017).

The application of metabolomics extends beyond performance traits to
encompass animal health monitoring and disease diagnosis. By capturing
dynamic changes in metabolic pathways, metabolite analysis can reveal early
signs of metabolic disorders or infections before clinical symptoms arise. This
capacity makes metabolomics a powerful tool for precision livestock farming,
facilitating targeted interventions and improving overall productivity. The
comprehensive insights gained from metabolomics complement genomic and
proteomic data, offering a holistic understanding of physiological processes and
enabling more effective management practices in animal agriculture (Lecchi et
al., 2019).

5.1.6. Microbiome Data

The rumen microbiota is integral to the overall health and productivity of
ruminant animals, influencing key physiological processes that affect feed
utilization and environmental impact. The specific composition of these
microbial communities determines how efficiently feed is broken down and
converted into energy, directly impacting growth rates and milk production.
Furthermore, the diversity within the rumen microbiome plays a crucial role in
modulating methane emissions, a potent greenhouse gas, thereby linking
microbial ecology to both agricultural sustainability and climate change
mitigation efforts (Bowen et al., 2020).

Advancements in metagenomic technologies have allowed for the integration
of detailed microbial data into genomic prediction models, significantly
improving the accuracy of these models by up to 15% (Wallace et al., 2019). This
integration provides a more comprehensive understanding of the genetic and
microbial factors that influence ruminant traits, enabling more precise selection
and breeding strategies. Ultimately, leveraging metagenomic insights enhances
the potential for optimizing animal performance while reducing environmental
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footprints, marking a significant step forward in the field of animal genetics and
microbiome research (Montesinos-Lopez et al., 2024).

5.2. Strategies for Multi-Omics Integration

Several integration strategies have been developed to effectively combine
heterogeneous omics datasets, each addressing different challenges inherent in
multi-omics analysis. Early integration involves merging all omics data types into
a single unified feature matrix, enabling a comprehensive analytical model that
naturally captures interactions across omics layers such as SNPs, gene
expression, and methylation. This approach benefits from a holistic view of the
data but faces challenges due to high dimensionality, which can increase the risk
of overfitting, and issues related to missing data that may impair model
performance (Flores et al., 2023).

Late integration, by contrast, models each omics type separately using
specialized methods optimized for that data, such as GBLUP for SNPs, BayesR
for CNVs, and artificial neural networks for expression data, before combining
the results through ensemble techniques. This allows for tailored modeling of
heterogeneous datasets but introduces computational complexity and increases
the burden of managing multiple models. Intermediate integration offers a
balanced alternative by applying dimensionality reduction techniques like
principal component analysis (PCA) or autoencoders to extract latent features
from each omics layer prior to integration. This strategy reduces dimensionality
and noise, facilitating more efficient and interpretable multi-omics analyses, and
is widely adopted in deep learning frameworks designed for multi-omics data
fusion (Zhao et al., 2022).
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6. ARTIFICIAL INTELLIGENCE AND BIG DATA ANALYTICS IN
GENOMIC SELECTION APPLICATIONS

The exponential growth in data generation within livestock genomics has
transformed breeding programs into complex, data-intensive ecosystems. This
data diversity, ranging from single nucleotide polymorphism (SNP) arrays and
whole-genome sequencing (WGS) to transcriptomic profiles from RNA-seq and
microbiome analyses, is further complemented by continuous streams of
phenotypic information collected via on-animal sensors and digital phenotyping
platforms. Managing and integrating this multi-dimensional data requires not
only vast computational resources but also sophisticated analytical frameworks
capable of handling high dimensionality, heterogeneity, and dynamic data
structures (Wojcik-Gront et al., 2024). Traditional statistical models, which often
assume linearity and independence, are increasingly inadequate for capturing the
intricate biological interactions and environmental influences that shape complex
traits in livestock (Montesinos-Lopez et al., 2021).

To address these challenges, artificial intelligence (Al) and machine learning
(ML) techniques have been rapidly adopted in genomic selection pipelines. These
approaches facilitate enhanced prediction accuracy by uncovering nonlinear
relationships and complex patterns embedded within large-scale datasets.
Moreover, Al-driven phenotyping methods enable real-time, high-throughput
trait measurement, improving the resolution and reliability of phenotype data.
Integrating big data analytics with scalable learning algorithms also supports the
development of dynamic decision-support systems that can adapt to evolving
datasets and breeding goals. This convergence of Al and big data analytics not
only accelerates genetic gain but also deepens biological understanding,
ultimately enabling more precise and sustainable livestock breeding strategies
(Wojcik-Gront et al., 2024).

6.1. The Big Data Ecosystem in Genomic Selection

The contemporary stage of genomic selection operates within an environment
where multi-layered biological and sensor-derived data are continuously
generated. The principal components of this big data infrastructure are outlined
below.

6.1.1. Genotype Data

Modern genotyping platforms have revolutionized genetic research by
enabling the generation of extraordinarily large and diverse datasets. These
platforms encompass a range of technologies, from low- to high-density single
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nucleotide polymorphism (SNP) arrays, which provide varying resolutions of
genetic variation across the genome. Additionally, whole-genome sequencing
(WGS) techniques produce comprehensive datasets containing 20 to 30 million
variants per individual, offering an unprecedented depth of genetic information.
Beyond SNPs and small-scale variants, these datasets also capture complex
structural variations (SVs) such as copy number variations (CNVs) and
chromosomal inversions, which play critical roles in genomic diversity and
disease susceptibility (Cooper et al., 2008; Hou et al., 2011).

The scale and complexity of these datasets pose significant challenges and
opportunities for data storage, processing, and analysis. The integration of
haplotype-based variation further enriches the genetic landscape by allowing
researchers to study combinations of alleles inherited together, which can be
crucial for understanding population genetics and linkage disequilibrium
patterns. Collectively, these advances result in terabyte-scale datasets that
demand sophisticated computational tools and analytical frameworks to extract
meaningful biological insights, thereby driving forward precision medicine and
genomics research (Wojcik-Gront et al., 2024).

6.1.2. Phenotype Data and Digital Phenotyping

Precision livestock systems have evolved significantly by integrating a wide
array of sensor technologies that extend beyond traditional phenotypic
measurements. These systems utilize tools such as RFID tracking to monitor
animal location and movement patterns, infrared thermography to detect
temperature variations indicative of health status, and accelerometers coupled
with IoT-based activity sensors to capture detailed behavioral data. Automated
feed intake measurement devices provide continuous, precise records of
consumption, while acoustic sensors enable real-time respiratory monitoring.
Robotic milking systems further contribute by automating routine tasks and
collecting data on milk yield and quality. Collectively, these technologies
produce an immense volume of data points daily, offering granular insights into
each animal’s physiological and behavioral states (Bailey et al., 2021; Lamanna
et al., 2025; Tzanidakis et al., 2023).

The data generated by these advanced sensors exhibit the key characteristics
of big data: high volume, velocity, and variety. The continuous and rapid stream
of diverse data types—from spatial movement to physiological signals—requires
sophisticated data management and analytical approaches to extract meaningful
information (Neethirajan & Kemp, 2021a). This integration facilitates more
precise and timely decision-making in livestock management, improving animal
welfare, productivity, and disease detection. By harnessing such comprehensive
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datasets, precision livestock farming moves towards a data-driven paradigm that
enhances sustainability and operational efficiency within the agricultural sector
(Halachmi et al., 2020).

6.1.3. Multi-Omics Data

Crucial high-dimensional omics layers encompass diverse biological data
types that capture different aspects of cellular and molecular function. RNA
sequencing (RNA-seq) provides comprehensive profiles of gene expression,
revealing which genes are active under specific conditions or in particular cell
types. The methylome reflects epigenetic modifications, such as DNA
methylation patterns, that regulate gene activity without altering the underlying
DNA sequence. The microbiome characterizes the composition and dynamics of
microbial communities inhabiting various environments, including the human
body, which can influence host physiology and disease states. Proteomics and
metabolomics analyze the biochemical phenotypes by quantifying proteins and
metabolites, respectively, offering insights into functional pathways and
metabolic states (Acharya & Mukhopadhyay, 2024; Wu et al., 2024)

Integrating these heterogeneous datasets poses significant analytical
challenges due to their high dimensionality, varying data structures, and complex
interdependencies. Each omics layer generates vast amounts of data with distinct
measurement scales, noise profiles, and biological contexts, requiring
sophisticated computational and statistical methods for effective integration and
interpretation. Addressing these challenges is essential for uncovering
comprehensive molecular mechanisms, identifying biomarkers, and advancing
precision medicine. Multimodal analysis frameworks and advanced machine
learning approaches are increasingly employed to harness the full potential of
these layered omics data, enabling a more holistic understanding of biological
systems (Acharya & Mukhopadhyay, 2024).

6.2. Big Data Analytics Frameworks

Several computational frameworks have been specifically designed to handle
the challenges posed by genomics and multi-omics big data, which often involve
massive datasets requiring scalable and efficient processing. Platforms such as
Hadoop, Apache Spark, Dask, Delta Lake, and distributed implementations of
TensorFlow and PyTorch offer robust solutions by enabling parallel processing
and distributed computation across clusters of machines. These frameworks
facilitate the management of high-throughput sequencing data and complex
multi-omics datasets by providing fault tolerance, scalability, and optimized
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resource utilization, thereby accelerating data analysis workflows in genomics
research (Liu et al., 2023).

Among these, Spark-based genomic frameworks like HAIL and ADAM have
gained significant traction due to their ability to integrate distributed computing
with domain-specific optimizations. HAIL, for example, is designed to simplify
the analysis of large-scale genetic data by providing high-level APIs that abstract
complex distributed operations, while ADAM offers a genomics-focused data
model and processing pipeline built on Apache Spark. Such tools enable
researchers to perform variant calling, genotype imputation, and other
computationally intensive tasks more efficiently, supporting large cohort studies
and population-scale analyses. Together, these frameworks represent a critical
infrastructure component for advancing precision medicine and large-scale
genomic investigations (Xu et al., 2025).

6.3. Artificial Intelligence—Based Genomic Prediction Models

Al-based genomic prediction models differ from classical linear approaches
by capturing nonlinear relationships, epistatic effects, and complex multi-
dimensional data structures.

6.3.1. Deep Learning Approaches

Deep learning has revolutionized genomic prediction by enabling models to
automatically learn hierarchical and complex features directly from high-
dimensional genomic data. Various architectures are employed for this purpose,
including Multilayer Perceptrons (MLPs), Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs) such as Long Short-Term Memory
(LSTM) and Gated Recurrent Units (GRU), Deep Gaussian Processes, and
Transformer-based models. Each architecture leverages unique strengths: CNNs
efficiently identify linkage disequilibrium (LD) blocks by capturing local spatial
patterns; RNNs exploit the sequential nature of genomic data to model
dependencies along the genome; and Transformers excel at capturing long-range
interactions, which are critical for understanding complex genomic architectures
(Liu et al., 2019).

The advantages of deep learning in genomics include its adaptive learning
capacity, which allows models to capture nonlinear and intricate interactions
among genetic variants that traditional linear models might miss. Additionally,
these methods facilitate the integration of multi-omics data, enabling a more
holistic understanding of biological systems. However, challenges remain, such
as the requirement for large labeled datasets to effectively train deep models,
which can be a limiting factor in many genomic studies. Furthermore, the high
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computational cost associated with training and tuning deep architectures can be
prohibitive. Another significant limitation is the limited interpretability of these
models, which complicates biological insight extraction and hinders trust and
adoption in clinical settings. Addressing these challenges is crucial for the
broader application of deep learning in genomic prediction (Abimannan et al.,
2023; Mienye et al., 2024).

6.4. Machine Learning—Based Prediction Models

Machine learning models have become essential tools in genomic selection
due to their ability to capture complex nonlinear relationships and epistatic
interactions among genetic markers that traditional linear models may fail to
detect. Algorithms such as Random Forest, Gradient Boosting frameworks
(including XGBoost and LightGBM), Support Vector Machines (SVM/SVR),
and k-Nearest Neighbors are commonly employed because they can model
intricate patterns in high-dimensional genomic data. Ensemble learning
approaches, which combine predictions from multiple models, further enhance
predictive accuracy by reducing variance and bias, making them particularly
effective in capturing the multifaceted genetic architecture of traits (Perez et al.,
2022; Wang & Zhang, 2024).

These machine learning methods often outperform linear models when traits
are influenced by significant non-additive genetic effects, such as dominance and
epistasis, which involve interactions between different loci. By leveraging their
flexibility and capacity to model complex interactions without explicit parametric
assumptions, ML models provide more accurate genomic predictions, improving
selection decisions in breeding programs (Li et al., 2024). This advantage is
supported by studies like Ortuio et al. (2019), which demonstrate superior
performance of ML models over linear approaches in scenarios where genetic
effects deviate from additivity, highlighting their growing importance in modern
genomic selection frameworks.

6.5. AI-Driven Sensor Data Analysis

The integration of Internet of Things (IoT) sensor data with genomic
prediction represents a significant advancement in precision livestock breeding
by enabling environmentally responsive genomic selection. Through the
deployment of diverse sensor technologies, such as computer vision,
accelerometers, and behavioral analytics, Al-driven systems can continuously
monitor key physiological and behavioral traits. For example, automated feed
intake prediction leverages deep learning applied to visual data, while
accelerometer-based sensors track rumen activity to provide insights into
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digestive health. Early detection of heat stress, disease surveillance via cough
detection and gait analysis, and reproduction monitoring through activity spikes
further enrich the phenotypic data captured in real time (Cooper & Messina,
2021; Lamanna et al., 2025).

Incorporating these dynamic environmental and behavioral indicators directly
into genomic prediction models enhances the modeling of genotype-by-
environment (GXE) interactions, which are critical for accurate selection
decisions under variable conditions. By capturing the complex interplay between
an animal’s genetic potential and its immediate environment, this approach
improves the precision of breeding value estimates and supports more resilient
and productive livestock populations. This synergy of Al-analyzed sensor data
with genomic tools thus offers a powerful framework for optimizing animal
performance and welfare in diverse production systems (Cooper et al., 2020).

6.8.1. Digital Twin—Enabled Livestock Systems

Emerging research in precision livestock farming is increasingly centered on
the full integration of artificial intelligence (Al) to optimize animal management
and productivity. A key innovation in this domain is the development of digital
twins—yvirtual replicas of individual animals that leverage comprehensive
datasets to simulate and predict performance outcomes. These digital twins
integrate multiple data layers, including genomic architecture, which provides
insights into the genetic potential and predispositions of the animal; phenotypic
history, capturing observable traits and past performance; real-time sensor data,
offering continuous monitoring of physiological and behavioral parameters; and
detailed health records, documenting medical history and treatments (Arulmozhi
et al., 2024; Vallée, 2024).

By synthesizing this diverse information, digital twins enable the generation
of accurate virtual simulations that can forecast growth, health status, and
productivity under varying environmental and management conditions. This
holistic approach facilitates precision decision-making, allowing farmers to tailor
interventions such as nutrition, breeding, and healthcare on an individual basis.
The integration of Al-driven digital twins thus represents a transformative step
toward sustainable and efficient livestock farming, enhancing animal welfare
while maximizing resource use and economic returns (Monteiro et al., 2018;
Neethirajan & Kemp, 2021b).
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7. SPECIES-SPECIFIC APPLICATIONS OF
GENOMIC SELECTION

The efficacy of genomic selection in livestock breeding is contingent upon
several critical factors that are specific to each species. The genetic architecture,
encompassing the number, effect size, and distribution of genes influencing traits,
is pivotal in determining the effectiveness of genomic information in predicting
breeding values. Species characterized by simpler genetic architectures or traits
governed by fewer genes typically exhibit higher prediction accuracies.
Furthermore, population size and structure significantly impact the degree of
linkage disequilibrium (LD) between genetic markers and causal variants,
thereby influencing the reliability of genomic predictions. Larger, well-
characterized populations with robust LD patterns enable more precise genomic
evaluations. The availability and quality of phenotyping infrastructure are equally
crucial, as accurate and consistent trait measurement is fundamental to the
training of genomic prediction models (Heffner et al., 2011; Liu et al., 2019).

The economic significance of traits targeted by genomic selection also varies
across species and production systems, influencing breeding priorities and
investment in genomic tools. For instance, traits such as milk yield and quality
are of paramount importance in dairy cattle, whereas growth rate and feed
efficiency may be prioritized in pigs and poultry. This chapter systematically
examines how these factors affect implementation strategies, prediction
accuracies, and realized genetic gains in cattle, sheep, goats, poultry, and pigs. It
further elucidates species-specific challenges, such as the relatively limited
genomic resources in small ruminants compared to cattle or the complex breeding
structures in poultry, emphasizing the necessity for tailored approaches to
optimize the benefits of genomic selection across diverse livestock species
(Nayak et al., 2024; Strandén et al., 2019).

7.1. Cattle (Dairy and Beef)

Cattle have emerged as the leading species for genomic selection in livestock
breeding, owing to several synergistic factors that have facilitated its rapid and
effective implementation. A primary enabler is the establishment of extensive
reference populations, which offer a large and diverse genetic dataset crucial for
the precise estimation of marker effects. These populations are bolstered by
robust, standardized phenotypic recording systems that ensure high-quality and
consistent trait measurements across animals, thereby enhancing the reliability of
genomic predictions. Moreover, cattle populations exhibit long-range linkage
disequilibrium (LD), allowing genetic markers to reliably tag causal variants
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across broader genomic regions, thus augmenting the efficacy of genomic
selection models (Esrafili Taze Kand Mohammaddiyeh et al., 2023; Strandén et
al., 2019).

Additionally, the widespread commercial availability and adoption of
genotyping technologies have reduced costs and increased accessibility for
producers, expediting the integration of genomic information into breeding
programs. The economic incentives are also substantial, as production traits in
cattle—such as milk yield, growth rate, and feed efficiency—possess high
financial value, motivating investment in genomic tools to enhance these traits
efficiently. Collectively, these factors have created an optimal environment for
genomic selection to flourish in cattle, establishing a benchmark for other
livestock species seeking to leverage genomic advancements for genetic
improvement (Wiggans et al., 2016; Wiggans & Carrillo, 2022).

7.1.1. Dairy Cattle Genomic Selection

Since its introduction in North America and Europe around 2008, genomic
selection in dairy breeds such as Holstein, Jersey, and Brown Swiss has
significantly transformed breeding programs. This method utilizes dense single
nucleotide polymorphism (SNP) arrays, typically comprising 50K to 150K
markers, in conjunction with extensive genomic databases like CDCB and
EuroGenomics, to estimate breeding values with markedly enhanced accuracy.
The reported accuracies for genomic estimated breeding values (GEBVs) differ
by trait category, with milk yield exhibiting the highest accuracy range of 50—
70%, followed by fertility traits at 30—50%, and health and robustness traits at
25-45% (VanRaden, 2008). These advancements in prediction accuracy facilitate
more precise selection decisions, thereby accelerating genetic gain across
economically significant traits (Wiggans et al., 2016).

The economic impact of genomic selection is substantial, primarily due to a
significant reduction in the generation interval from the traditional 5-6 years to
approximately 2 years. This reduction enables a more rapid turnover of superior
genetics within the population, thereby enhancing overall herd performance more
swiftly. Furthermore, the widespread adoption of genomic indices by artificial
insemination (AI) companies has enabled the large-scale dissemination of
genetically superior sires. Key factors contributing to this success include
standardized phenotyping protocols that ensure consistent trait measurements,
high imputation accuracies that facilitate cost-effective genotyping even with
lower-density arrays, and the integration of comprehensive genomic and
phenotypic data. Collectively, these elements have established genomic selection
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as a fundamental component of contemporary dairy cattle breeding strategies
(Brito et al., 2020a; Mrode et al., 2019).

7.1.2. Beef Cattle Genomic Selection

Genomic selection in beef cattle breeds, including Angus, Hereford,
Charolais, and Limousin, has experienced significant growth, albeit at a slower
pace compared to dairy cattle. This slower advancement is primarily attributed to
several challenges inherent in beef production systems. Beef breeds display more
heterogeneous phenotypes than dairy cattle, complicating the capture of
consistent genetic signals across populations. Furthermore, the recording of key
traits such as feed efficiency and survival is more complex in extensive or
pasture-based systems, thereby limiting the availability of high-quality
phenotypic data. The smaller size of reference populations in beef cattle further
constrains the accuracy and robustness of genomic predictions, as fewer animals
with both genotypic and phenotypic data are available for model training (Esrafili
Taze Kand Mohammaddiyeh et al., 2023).

Despite these challenges, recent advancements have enhanced the precision
of genomic predictions for significant traits in beef cattle. Noteworthy progress
has been achieved in predicting feed efficiency, a critical factor for reducing
production costs and minimizing environmental impact. Additionally,
improvements have been realized in carcass quality traits, which directly affect
meat value and consumer preferences. Furthermore, adaptation to pasture-based
systems, a crucial element for many beef production environments, has become
more predictable through genomic tools. These advancements reflect ongoing
efforts to expand and refine reference populations and integrate diverse data
sources, thereby enhancing the utility of genomic selection in beef breeds
(Boichard et al., 2015).

7.2. Sheep

Genomic selection in sheep has lagged behind cattle primarily due to several
genetic and practical challenges. One major factor is the substantial variation in
linkage disequilibrium (LD) patterns across different sheep breeds, which
complicates the transferability and accuracy of genomic predictions.
Additionally, sheep populations tend to have highly heterogeneous structures,
often influenced by diverse breeding practices and geographic isolation, further
limiting the effectiveness of uniform genomic selection models. Compounding
these issues are incomplete or inconsistent phenotypic records in many countries,
which reduce the reliability of training datasets needed for robust genomic
evaluations (Larkin et al., 2019; Prieur et al., 2017).
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The introduction of the 50K Sheep HD SNP array (Kijas et al., 2012)
represented a significant advancement, enabling more precise genotyping and
facilitating the application of genomic selection in sheep breeding. This
technology has been successfully applied to improve key traits such as parasite
resistance (e.g., fecal egg count), wool yield and fiber quality, growth and carcass
characteristics, and reproductive performance. National breeding programs like
Australia’s MERINOSelect and New Zealand’s Sheep Improvement Ltd (SIL)
have incorporated genomic tools into their selection schemes, often employing
hybrid statistical models such as BayesR and GBLUP to enhance prediction
accuracy and genetic gain. These developments underscore the growing
integration of genomic technologies in sheep breeding, despite the earlier
challenges (Bolormaa et al., 2015; Daetwyler et al., 2010).

7.3. Goats

Genomic selection in goats has advanced at a slower rate compared to cattle
and sheep, primarily due to several limiting factors. These factors include the
limited availability of reference populations, which constrains the accuracy and
robustness of genomic predictions, as well as inaccuracies in pedigrees that
undermine the reliability of genetic evaluations. Furthermore, small herd sizes
and inconsistent phenotyping practices have impeded the accumulation of high-
quality data necessary for effective genomic selection (Carillier-Jacquin et al.,
2018). Despite these challenges, significant advancements have been made in
dairy goat breeds, particularly in France, where genomic selection programs have
been successfully implemented for Saanen and Alpine breeds. These programs
have demonstrated genomic estimated breeding value (GEBV) accuracies
ranging from 30% to 60% for key milk production traits, indicating promising
potential for genetic improvement (Boichard et al., 2015; Teissier et al., 2018).

Despite advancements, the development of genomic tools in goats continues
to encounter challenges, notably the significant wvariation in linkage
disequilibrium (LD) patterns across different breeds, which complicates the
transferability of genomic information. Additionally, the lack of a centralized
phenotyping infrastructure restricts the consistency and scale of data collection.
To mitigate cost-related barriers, the implementation of low-density single
nucleotide polymorphism (SNP) arrays, in conjunction with imputation
techniques, has been instrumental in reducing genotyping expenses. This strategy
has broadened the accessibility of genomic selection programs to a wider array
of herds, thereby facilitating more extensive implementation. Furthermore,
genomic models targeting traits such as mastitis resistance have been developed,
reflecting efforts to enhance animal health alongside production traits.
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Collectively, these advancements contribute to the gradual yet significant
integration of genomic selection in goat breeding programs (De Lima et al., 2020;
Larkin et al., 2019).

7.4. Poultry

Poultry represents the second most advanced livestock species in the
implementation of genomic selection, following cattle. This advancement is
primarily attributed to the commercial poultry industry's integration of genomic
tools, facilitated by the species' rapid generational turnover and large population
sizes. The genomic architecture of poultry is characterized by short-range linkage
disequilibrium (LD), necessitating the employment of higher-density single
nucleotide polymorphism (SNP) panels to adequately capture genetic variation.
Furthermore, the complex population structure, shaped by multiple distinct
breeding lines, presents unique challenges and opportunities for genomic
selection strategies (Aslam et al., 2012; Dekkers, 2012; Goddard et al., 2010).

Genomic selection in poultry has successfully improved a variety of
economically significant traits, including egg production and quality, growth rate,
feed conversion efficiency, mortality rates, robustness, and health-related traits
such as tibial dyschondroplasia and heat tolerance. Leading breeding companies,
such as Hy-Line, Aviagen, and Cobb, intensively utilize genomic selection to
accelerate genetic gain while effectively managing inbreeding levels. Their use
of advanced genomic tools facilitates more precise selection decisions, thereby
enhancing overall productivity and sustainability within the poultry industry (De
Beukelaer et al., 2017; Liu et al., 2018; Wolc et al., 2015).

7.5. Aquaculture

In the past decade, genomic selection in aquaculture has undergone substantial
advancements, driven by the rapid expansion of global aquaculture production
and the increasing demand for genetically improved stocks. Compared to
terrestrial livestock, aquaculture species often exhibit higher fecundity, larger
effective population sizes, and shorter generation intervals, creating an ideal
environment for the application of genomic-based breeding strategies. However,
challenges such as high within-family variance, limited pedigree accuracy, and
the widespread use of mass spawning in hatcheries underscore the need for
genomic tools to enhance the accuracy of breeding value estimation (Houston et
al., 2020; Yanez et al., 2015). The development of species-specific SNP arrays,
including those for Atlantic salmon, rainbow trout, tilapia, and shrimp, has
facilitated reliable genome-wide marker coverage, thereby enabling more precise
genomic predictions (Correa et al., 2015; Palaiokostas et al., 2016).
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Genomic selection has facilitated significant advancements in various
economically important aquaculture traits, including disease resistance, growth
performance, feed efficiency, fillet quality, and stress tolerance. Among these,
disease resistance has emerged as a primary focus due to the substantial economic
losses associated with pathogens in farmed fish populations. For instance,
genomic selection for resistance to Piscirickettsia salmonis in Atlantic salmon has
achieved prediction accuracies up to twofold higher than those obtained through
pedigree-based BLUP methods, indicating the considerable genetic gain
achievable for health traits (Yafiez et al., 2014; Barria et al., 2018). Similarly,
genomic prediction for sea lice resistance has been successfully integrated into
breeding programs, contributing to reduced parasite loads and diminishing the
necessity for chemical treatments (Tsai et al., 2016). In species such as tilapia,
genomic models have enhanced the accuracy of breeding values for growth and
carcass traits, despite the complex mating systems and limited pedigree
information typical of many tilapia hatcheries (Joshi et al., 2020).

The integration of genomic technologies into aquaculture is steadily
advancing as the costs associated with sequencing decrease and high-throughput
phenotyping tools—such as automated imaging, hyperspectral sensors, and
environmental monitoring platforms—are increasingly utilized. However,
several challenges persist, including the high cost of genotyping for species with
low economic value, the requirement for large and diverse reference populations,
and the complexity of implementing genomic selection in species with polyploid
genomes, such as sturgeon and certain oyster species. Despite these constraints,
the growing body of evidence demonstrating enhanced genetic gain, improved
disease resilience, and increased production efficiency underscores genomic
selection as a transformative approach poised to drive the next generation of
breeding advancements in aquaculture (Houston, 2017; Robledo et al., 2018).
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7.6. Cross-Species Comparative Assessment
The Table 3, summarizes species-specific differences in genomic selection
implementation.

Table 3. Species-specific differences in genomic selection implementation

Im lementatioReference
Species P Population LD Pattern Key Challenges
n Level .
Size
Cattle Very high Very large Long LD GXE, health traits
Highl - Pedi lati
Sheep Moderate Medium ighly breed edigree gzllps, population
dependent heterogeneity
P h i 1
Goats Low-moderate Small Short LD oor phenotyping, sma
herds
Poultry Very high E)r(;r:mely Short LD Between-line variability

Mass spawning causing
pedigree uncertainty; high
within-family variance;
limited phenotyping
infrastructure; polyploidy

Aquaculture Moderate Very large Short LD

in some species

7.7. Future Directions in Species-Specific Genomic Selection

The future of livestock genomics is poised to benefit significantly from the
routine implementation of Whole-Genome Sequencing (WGS). This advanced
sequencing technique will greatly enhance the identification of genetic variants
and improve the precision of genomic predictions across diverse species. WGS
facilitates the accurate detection of genetic markers associated with traits of
economic and biological significance. In addition to WGS, the integration of
multi-omics data—including microbiome profiles, metabolomics, and epigenetic
modifications—will be essential for unraveling the intricate biological pathways
that govern traits influenced by a combination of genetic and environmental
factors. This comprehensive approach provides a deeper insight into trait
architecture and supports the development of more effective selection strategies
(Liu et al., 2023; Nayak et al., 2024; Xu et al., 2025; Ye et al., 2020).

Concurrently, advancements in artificial intelligence, particularly through
convolutional neural networks (CNNs), Transformer architectures, and hybrid
deep learning models, are poised to revolutionize the identification of causal
single nucleotide polymorphisms (SNPs) and functional genomic regions by
capturing intricate patterns within large-scale genomic datasets. The development
of cross-species genomic models, which leverage shared reference populations
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and multi-species prediction frameworks, is expected to further reduce costs and
enhance prediction accuracies by facilitating knowledge transfer across related
species. Moreover, as climate change intensifies, there will be an increasing focus
on breeding climate-resilient and heat-tolerant livestock. Genomic research will
prioritize adaptation traits to ensure sustainable productivity and animal welfare
under changing environmental conditions, marking a critical shift in breeding
objectives (Ehret et al., 2015; Haque et al., 2024; Meuwissen et al., 2016; Rasal
etal., 2024).
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8. INTEGRATION OF GENE-EDITING TECHNOLOGIES
(CRISPR, PRIME EDITING) WITH GENOMIC SELECTION

Genomic selection has markedly advanced livestock breeding by facilitating the
swift identification and propagation of advantageous genetic traits within
populations. This methodology utilizes extensive genomic data to predict breeding
values, thereby expediting genetic gain without necessitating phenotypic evaluation
of each individual. Nevertheless, its efficacy is inherently constrained by the genetic
variation already present within the breeding pool. Gene-editing technologies address
this limitation by directly modifying the genome to introduce novel alleles or rectify
deleterious mutations that are either absent or rare in the population. These
technologies provide precise, targeted interventions that can augment genomic
selection by broadening the genetic diversity available for breeding programs
(Bishop & Van Eenennaam, 2020; Lu et al., 2024).

Contemporary gene-editing technologies, including CRISPR-Cas systems, base
editors, and prime editors, offer versatile platforms for the precise and efficient
manipulation of livestock genomes. The CRISPR-Cas system facilitates targeted
DNA cleavage followed by repair, enabling the insertion, deletion, or replacement of
specific genetic sequences. Base editing allows for the conversion of individual
nucleotides without causing double-strand breaks, thereby minimizing off-target
effects and enhancing safety. Prime editing further refines this capability by
permitting precise insertions, deletions, and various base substitutions with minimal
unintended modifications. The integration of these gene-editing techniques with
genomic selection strategies can expedite the development of livestock exhibiting
enhanced traits, such as disease resistance, productivity, and environmental
adaptability. However, the application of these technologies necessitates careful
consideration of ethical issues, animal welfare, and regulatory frameworks to ensure
their responsible use in livestock breeding (Rodriguez-Villamil et al., 2024; Wani et
al., 2022).

8.1. Fundamentals of Gene-Editing Technologies

Gene editing encompasses a suite of biotechnological tools that enable
targeted cutting, modification, or replacement of DNA sequences within the
genome.

8.1.1. CRISPR-CAS9

CRISPR-Cas9’s versatility stems from its modular design, allowing
researchers to easily customize the single guide RNA (sgRNA) to target virtually
any DNA sequence of interest. This adaptability facilitates a wide range of
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genetic manipulations, including gene knockouts, insertions, and corrections,
which are invaluable for functional genomics studies and the development of
gene therapies. Moreover, the system’s ability to introduce multiplexed edits—
simultaneous targeting of multiple genomic sites—enables complex genetic
modifications that were previously challenging or impossible with earlier
genome-editing technologies such as zinc finger nucleases (ZFNs) or
transcription activator-like effector nucleases (TALENs). This capability
accelerates research workflows and expands the scope of potential applications
(Ferreira & Choupina, 2022; Naeem et al., 2020).

CRISPR-Cas9 technology has emerged as a transformative tool in animal
breeding, offering unprecedented precision and efficiency for modifying genomic
regions associated with economically important traits. By enabling targeted
editing of specific loci, CRISPR-Cas9 allows breeders to introduce beneficial
alleles, eliminate deleterious variants, and accelerate genetic improvement far
beyond the limits of traditional selection and even genomic selection alone. One
of the most prominent applications in livestock is the correction or introduction
of functional variants that confer disease resistance, such as editing the CD163
gene in pigs to generate complete resistance to Porcine Reproductive and
Respiratory Syndrome (PRRS), or modifying viral entry receptors in poultry to
enhance influenza resistance. Similarly, editing the PRNP gene in cattle has
demonstrated the potential to mitigate the risk of transmissible spongiform
encephalopathies (Cigan et al., 2024; Islam et al., 2020; Ruan et al., 2017).

Beyond disease resistance, CRISPR-Cas9 is being deployed to manipulate
traits linked to productivity, animal welfare, and environmental adaptability.
Notably, the introduction of the naturally occurring SLICK allele into beef cattle
has significantly improved heat tolerance, a trait of growing importance under
global climate change (Harris et al., 2020). Likewise, targeted disruption of the
MSTN (myostatin) gene in cattle, sheep, and goats has resulted in increased
muscle mass, offering potential benefits for meat production, although these
modifications require careful evaluation to avoid unintended physiological
consequences. Gene editing has also facilitated improvements in reproductive
efficiency and stress tolerance by fine-tuning endocrine, metabolic, or
thermoregulatory pathways (Kim et al., 2020; Pozzebon et al., 2024; Zhu et al.,
2020; Carlson et al., 2016).

Despite these promising advances, several challenges continue to shape the
responsible implementation of CRISPR-Cas9 in livestock breeding. Potential off-
target effects, mosaicism, variable editing efficiency, and the need for reliable
delivery systems—particularly in large domestic animals—remain areas of active
investigation. Ethical and regulatory considerations further influence the
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deployment of edited animals in commercial production, with global policies
differing markedly in their treatment of gene-edited livestock. Nevertheless,
when integrated with genomic selection, multi-omics data, and precision
phenotyping, CRISPR-Cas9 is poised to redefine the trajectory of animal
breeding, enabling rapid, targeted genetic progress that aligns with the goals of
sustainability, animal health, and agricultural resilience (Hennig et al., 2020;
Salvesen et al., 2024; Zhou et al., 2014).

CRISPR-Cas9 has rapidly become one of the most influential technologies in
aquaculture genetics, offering precise manipulation of loci controlling growth,
disease resistance, sterility, and environmental tolerance. In salmonids, CRISPR-
mediated knockout of the dead end (dndl) gene has successfully produced
germline-sterile Atlantic salmon, providing a powerful strategy for preventing
genetic introgression between farmed and wild stocks and enhancing the
sustainability of aquaculture systems (Wargelius et al., 2016). Similarly, targeted
editing of the slc45a2 pigmentation gene in Atlantic salmon and Nile tilapia has
validated the efficiency and specificity of CRISPR tools for functional genomics
and trait mapping in teleost species (Edvardsen et al., 2014; Li et al., 2021). A
major focus of gene-editing research in aquaculture is the improvement of disease
resistance—an economically critical trait due to high mortality from viral and
bacterial infections. For example, CRISPR-Cas9 knockout of the pou2flb gene
in catfish has conferred enhanced resistance to Edwardsiella ictaluri, while
editing of immune-related loci such as tnfrsfl1b and tlr5 in common carp and
grass carp has significantly increased resilience against bacterial pathogens
(Khalil et al., 2017; Wang et al., 2018). In addition to disease resistance, gene
editing has been effectively used to enhance growth performance, as
demonstrated by CRISPR-induced mutations in the myostatin (mstn) gene in
channel catfish and tilapia, which resulted in increased muscle accretion and
accelerated growth rates (Zhong et al., 2016; Coogan et al., 2022). Beyond
targeted gene knockouts, CRISPR has become instrumental in developing strains
with improved thermal tolerance and salinity adaptation by modulating endocrine
and osmoregulatory pathways central to aquaculture productivity (Dehler et al.,
2016). Despite these achievements, limitations such as mosaicism, variable
editing efficiency, and ethical constraints regarding the commercial release of
gene-edited fish continue to shape regulatory and scientific discussions.
Nevertheless, with expanding genomic resources, improved delivery methods,
and integration with genomic selection and multi-omic datasets, CRISPR-Cas9
is expected to become a cornerstone technology for accelerating genetic gain,
improving animal health, and enhancing sustainability across global aquaculture
systems.
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8.2. Applications of Gene Editing in Livestock and Aquaculture

Gene-editing technologies have been successfully applied across multiple
livestock species and aquaculture. Advancements in livestock genetic
engineering have enabled the development of cattle with enhanced disease
resistance, such as those resistant to Bovine Viral Diarrhea Virus (BVDV). A
notable example includes the knockout of the PRNP gene, which confers
resistance to transmissible spongiform encephalopathies, a group of fatal
neurodegenerative diseases. These genetic modifications hold significant
promise for improving herd health and reducing economic losses caused by
infectious diseases (Antos et al., 2021; Brunelle et al., 2007; Kuile et al., 2017).

In addition to disease resistance, genetic improvements targeting
environmental adaptability and physical traits have been successfully
implemented. These innovations demonstrate the potential of precise genome
editing to improve both animal welfare and production efficiency (Proudfoot et
al., 2014).

Genome editing has shown significant potential in enhancing disease
resistance and production traits across various livestock species. For example,
editing the CD163 receptor in pigs has been demonstrated to confer complete
resistance to Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), a
major swine pathogen, thereby improving animal health and reducing economic
losses (Whitworth et al., 2016). Similarly, knocking out the MSTN (myostatin)
gene in pigs leads to increased muscle mass, presenting opportunities for
improved meat yield. In xenotransplantation research, multi-locus genome
editing has been employed to modify pig genes to reduce immunological
incompatibility with human recipients, advancing the prospects of using pig
organs for human transplantation (Wang et al., 2022).

In small ruminants like sheep and goats, targeted genome editing strategies
have focused on enhancing muscularity through MSTN knockouts and improving
disease resistance by editing immune-related genes associated with Ovine
Progressive Pneumonia Virus (OPPV) and scrapie. In poultry, editing viral entry
receptors has been explored to confer resistance against avian influenza, a critical
disease affecting poultry health and production. Additionally, targeted mutations
aim to improve laying performance and egg quality, supporting both productivity
and animal welfare in the poultry industry. These examples collectively illustrate
how precise genetic modifications can address key challenges in animal
agriculture by enhancing disease resistance and production efficiency (Wang et
al., 2015; Zhou et al., 2022).

For example, targeted edits of immune-related genes such as tnfaip8I3 in
zebrafish have demonstrated enhanced resistance to bacterial infections,
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supporting the development of genetically resilient strains (Wang et al., 2018;
Liu et al., 2019). Additionally, gene editing has been applied to modify traits
associated with environmental adaptability. For instance, altering endocrine
pathway genes in salmonids has shown potential to improve thermal tolerance,
an increasingly important trait under climate change pressures (Dehler et al.,
2016). Collectively, these innovations demonstrate that gene-editing technologies
offer transformative potential in aquaculture by enhancing disease resistance,
growth performance, environmental resilience, and stock management
efficiency.
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9. CHALLENGES, RISKS, AND FUTURE PERSPECTIVES IN
GENOMIC SELECTION

Genomic selection (GS) has significantly transformed livestock genetics by
facilitating more rapid and precise breeding decisions. However, it encounters
substantial limitations that impede its full potential. Biologically, challenges
include the intricate genetic architecture of traits, genotype-by-environment
interactions, and the difficulty of capturing rare variants or epistatic effects with
current models. From a computational perspective, the integration and analysis
of extensive, heterogeneous datasets necessitate advanced algorithms and
considerable computational resources. Economically, the expense associated
with generating high-quality genomic and phenotypic data can be prohibitive for
numerous breeding programs, particularly in developing regions. Furthermore,
social acceptance and ethical concerns emerge from the application of genome
editing and data-driven breeding approaches, encompassing issues related to
animal welfare, biodiversity loss, and equitable access to technology (Alali &
Wardat, 2024; Bhat et al., 2023; Elufioye et al., 2024; Mmbando & Ngongolo,
2024).

The future of genomic selection (GS) is set to undergo significant
transformation through the integration of big data analytics, artificial intelligence-
driven prediction systems, multi-omics integration, and genome editing
technologies. These advancements hold the potential to enhance predictive
accuracy, expedite genetic gain, and facilitate precision breeding tailored to
specific environmental conditions and production objectives. However, they also
introduce new complexities and risks, including concerns related to data privacy,
algorithmic biases, and unintended ecological consequences. Ethical and socio-
economic considerations must be meticulously addressed to ensure responsible
implementation, encompassing transparent governance, stakeholder engagement,
and policies that balance innovation with sustainability. Future research should
prioritize the development of robust, interpretable models, the improvement of
data sharing frameworks, and the exploration of the long-term impacts of
advanced genomic technologies on livestock populations and farming
communities (Aboelhassan & Abozaid, 2024; Lu et al., 2024; Quteishat, 2024).

9.1. Genetic and Biological Challenges

9.1.1. Complexity of Polygenic Traits

Many economically important livestock traits, including fertility, health,
behavior, and feed efficiency, exhibit a highly polygenic architecture
characterized by the involvement of numerous genetic loci, each contributing a
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small effect. This complexity, combined with their typically low heritability,
poses significant challenges for genetic evaluation and breeding programs. The
cumulative influence of many small-effect loci makes it difficult to accurately
capture the genetic variance underlying these traits, which in turn limits the
predictive accuracy of genomic estimated breeding values (GEBVs). Although
modern genomic selection (GS) programs utilize high-density single nucleotide
polymorphism (SNP) markers to capture genetic variation comprehensively, the
polygenic nature of these traits inherently restricts the performance of prediction
models (Calus & Veerkamp, 2007; Goddard et al., 2010; Liu et al., 2011).

Furthermore, environmental factors play a substantial role in shaping the
phenotypic expression of these traits, adding another layer of complexity to
prediction efforts. Traits with strong environmental influence tend to exhibit
greater phenotypic variability that is not attributable to genetic differences,
thereby diluting the genetic signal available for selection. This environmental
noise reduces the reliability of GEBVs, especially when the genetic architecture
is highly polygenic. Consequently, despite technological advances in genotyping
and statistical modeling, the interplay between polygenicity and environmental
variation remains a primary bottleneck in achieving high accuracy in genomic
predictions for these economically critical traits. Addressing these challenges
requires continued refinement of models that can better integrate genetic and
environmental data to improve prediction reliability (Habier et al., 2013;
Jayasinghe et al., 2024).

9.1.2. Genotype—Environment Interaction (GXE)

In production systems characterized by substantial environmental variation,
the accuracy of genomic predictions often suffers due to the complex interactions
between genotype and environment (GXE). For instance, in heat-stressed
environments, thermoregulatory responses can significantly influence gene
expression patterns, thereby altering phenotypic outcomes and reducing the
predictive power of genomic models that do not account for such stressors.
Similarly, variable feeding regimes can modify metabolic pathways, leading to
differential gene expression and physiological adaptations that challenge the
stability of genomic predictions. Extensive production systems with
heterogeneous management practices further exacerbate this variability, as
diverse environmental conditions and management inputs create a broad
spectrum of phenotypic responses that are difficult to capture with standard
genomic prediction models (Calus et al., 2016; Slater et al., 2022).

To address these challenges, future genomic selection (GS) frameworks must
explicitly incorporate GXE interaction models to enhance prediction robustness
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across diverse and fluctuating environments. Integrating environmental
covariates and interaction terms into GS models will enable a more accurate
representation of how genotypes perform under varying conditions, improving
the reliability of selection decisions. This approach will facilitate the
development of breeding strategies that are resilient to environmental
heterogeneity, ultimately optimizing genetic gain in real-world production
settings. By embracing GXE models, breeders can better predict performance
stability and adaptability, which are critical for sustainable genetic improvement
in complex, variable production environments (Morais Junior et al.,, 2018;
Mulder, 2016).

9.2. Modeling Challenges

Linkage disequilibrium (LD) reflects the non-random association of alleles at
different loci and varies considerably among breeds, lines, and composite
populations due to their unique breeding histories, effective population sizes, and
selection pressures. This variability in LD patterns poses significant challenges
for genomic prediction models, as models trained on one population often fail to
generalize effectively to others. The problem is particularly acute in species like
sheep, goats, and poultry, where populations tend to be highly structured and
fragmented, with reference datasets typically limited to specific breeds. Such
population stratification reduces the accuracy of across-breed genomic
predictions because the underlying LD structure and allele frequencies differ
substantially between populations (Daetwyler et al., 2012; Ma et al., 2024; Song
etal., 2019).

To overcome these limitations, enhancing across-breed prediction accuracy
requires leveraging more comprehensive genomic information beyond single-
marker effects. Incorporating deeper genomic features such as functional
annotations—identifying regions of the genome with biological significance—
and haplotype-based models that consider blocks of linked variants can capture
the shared genetic architecture more effectively across diverse populations. These
approaches enable models to exploit conserved genomic segments and functional
elements that transcend breed boundaries, thereby improving the transferability
of prediction models. Developing methodologies that integrate these richer
genomic data layers is essential for advancing genomic selection in fragmented
populations and for achieving robust, cross-population predictive performance
(Ma et al., 2024).
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9.3. Capturing Non-linear Genetic Relationships

Traditional linear models like GBLUP operate under the assumption that
genetic effects are additive, which limits their capacity to capture more complex
genetic phenomena such as dominance, epistasis, and higher-order interactions.
These non-additive genetic effects can contribute significantly to the genetic
architecture of complex traits, making purely additive models insufficient for
accurate genomic prediction in many cases. Consequently, there is a growing
need for more flexible modeling approaches that can accommodate these
complex relationships to improve predictive performance (Dos Santos et al.,
2016; Duenk et al., 2019).

Deep learning (DL) models offer a promising alternative due to their ability
to model nonlinear and intricate patterns in genomic data. However, their
application in genomic selection (GS) is hindered by several challenges. The
"black-box" nature of DL algorithms results in limited interpretability, making it
difficult to trace decision pathways, understand biological relevance, or identify
causal variants underlying predictions. This opacity complicates error diagnosis
and reduces user trust. Explainable Al (XAI) methods are therefore critical for
enhancing transparency and interpretability in DL-based GS. Additionally, DL
models demand large, diverse training datasets to prevent overfitting and ensure
generalizability. In livestock species with small or limited reference
populations—particularly in small ruminants and minor breeds—this data
requirement restricts the practical utility of DL approaches, underscoring the need
for strategies to overcome these limitations (Singh et al., 2024; Zhang et al.,
2022).

44



10.CONCLUSION AND GENERAL EVALUATION

Genomic selection has revolutionized livestock breeding by enabling the
prediction of an animal’s genetic potential with unprecedented precision and
efficiency. By leveraging dense genome-wide markers, breeders can now capture
the effects of numerous quantitative trait loci simultaneously, which significantly
enhances the accuracy of estimated breeding values compared to traditional
pedigree-based methods. The establishment of large, well-characterized
reference populations has been critical in calibrating these genomic prediction
models, allowing for robust estimation of marker effects across diverse breeds
and populations. Furthermore, advancements in statistical modeling, including
Bayesian approaches and machine learning algorithms, combined with Al-driven
frameworks, have facilitated the integration of complex genomic data and
improved the prediction of economically important traits, such as growth rate,
disease resistance, and fertility (Chakraborty et al., 2022; Wellmann &
Bennewitz, 2012)

Beyond the core genomic data, the integration of multi-omics layers—such as
transcriptomics, proteomics, and metabolomics—holds great promise for further
refining selection accuracy and understanding the biological mechanisms
underlying complex traits. This holistic approach enables breeders to incorporate
functional genomic information, thereby enhancing the ability to predict
phenotypes under varying environmental conditions and management practices.
Economically, genomic selection accelerates genetic gain while reducing
generation intervals and costs associated with progeny testing, ultimately
improving productivity and sustainability in livestock systems. Looking ahead,
continued innovation in data collection technologies, computational methods,
and the expansion of global genomic resources will drive the evolution of
genomic selection, fostering precision breeding strategies that address emerging
challenges in animal agriculture (Choudhary et al., 2024; Li et al., 2024).

10.1. Strengthening of Scientific Foundations

The success of genomic selection has been propelled by significant
advancements in molecular genetics that have enhanced the resolution and
accuracy of genetic analyses. Key developments include a refined understanding
of genome structure and the delineation of linkage disequilibrium (LD) blocks,
which enable more precise identification of genomic regions associated with
traits of interest. The discovery and mapping of quantitative trait loci (QTL) have
provided critical targets for selection, while the creation of high-density single
nucleotide polymorphism (SNP) genotyping arrays has allowed for
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comprehensive and cost-effective genotyping across diverse populations.
Collectively, these innovations have improved the characterization of genetic
diversity and the establishment of robust reference populations in economically
important livestock species such as cattle, sheep, goats, pigs, and poultry, thus
facilitating more efficient and reliable genomic predictions (Hayes & Goddard,
2010; Theshiulor et al., 2016).

Moreover, the integration of multi-omics datasets—encompassing
transcriptomics, epigenomics, microbiomics, proteomics, and metabolomics—
has enriched the biological context underlying genomic selection. These multi-
layered data sources reveal complex interactions between gene expression,
regulatory elements, and phenotypic traits, providing a holistic view of the
genetic architecture of complex traits. By linking molecular mechanisms to
observed phenotypes, researchers can better understand gene regulation,
pleiotropy, and environmental influences, thereby enhancing the predictive
power and functional interpretation of genomic selection models. This systems-
level approach, as highlighted by Roukos et al. (2021), supports the development
of more precise breeding strategies that consider not only genetic markers but
also the dynamic biological pathways influencing trait variation (Hay, 2024; Ma
et al., 2024).

10.2. Evolution of Statistical Models

In the early stages of genomic selection, linear models such as GBLUP,
Bayesian Ridge Regression, and BayesA/B/C were foundational due to their
simplicity and interpretability. These models assume additive genetic effects and
linear relationships between markers and traits, which limits their ability to
capture the complexity inherent in biological systems. As genomic datasets grew
larger and more complex, researchers recognized the need for more flexible
modeling approaches capable of representing non-linear and interactive genetic
architectures (Hay, 2024).

The advent of machine learning (ML) and deep learning (DL) methods
marked a significant evolution in genomic prediction. These approaches can
model complex patterns such as epistatic interactions (interactions between
genes), gene—environment interactions, and other non-linear genetic relationships
that linear models cannot adequately capture. Kernel-based methods extend this
flexibility by implicitly mapping data into higher-dimensional spaces, enhancing
predictive performance. Additionally, the integration of explainable artificial
intelligence (XAI) tools has improved the interpretability of these complex
models, allowing researchers to better understand the biological significance of
predictions. Collectively, these second-generation genomic prediction methods
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have substantially increased prediction accuracy for complex traits, enabling
more effective selection strategies in breeding programs (Montesinos-Lopez et
al., 2021).

10.3. Role of Digital Phenotyping and Sensor Technologies

Modern livestock production increasingly leverages loT-based sensor
technologies to gather continuous, high-resolution data on various animal traits
such as activity levels, feed consumption, rumination behavior, health indicators,
and other behavioral characteristics. These sensors enable the collection of
dynamic phenotypic data in real time, providing a detailed and nuanced
understanding of individual animal status and performance. When this wealth of
phenotypic information is combined with Al-driven analytical frameworks, it
substantially improves the precision of predictive models, especially for traits
related to health, behavior, and welfare. This enhanced predictive capability
supports more timely and informed decision-making in livestock management,
allowing for early detection of health issues, optimization of feeding strategies,
and overall improvement of animal well-being (Lamanna et al., 2025;
Neethirajan, 2023).

The integration of continuous phenotypic monitoring with genomic selection
marks a significant evolution in breeding and farm management practices.
Traditionally, genomic selection has been a static process focused on genetic
evaluation based on historical data. However, by incorporating real-time sensor
data analyzed through AI models, genomic selection transforms into a dynamic
decision support system. This system can adapt to changing conditions on the
farm, providing actionable insights that guide management interventions and
breeding decisions in near real time. Such a shift not only enhances the accuracy
of genetic evaluations but also bridges the gap between genetic potential and
actual animal performance, ultimately contributing to more sustainable, efficient,
and welfare-conscious livestock production (Fatoki et al., 2024; Vlaicu et al.,
2024).

10.4. Economic and Sustainability Benefits

Genomic selection drives economic gains primarily by shortening the
generation interval, which accelerates genetic progress across livestock
populations. Enhanced prediction accuracy allows breeders to identify superior
animals more reliably, leading to improved traits such as feed efficiency and
disease resistance. These improvements reduce production losses and lower
overall costs, directly benefiting profitability. For example, in dairy cattle, the
implementation of genomic selection has been quantified to yield an annual
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economic advantage of approximately 50-100 USD per cow, reflecting
significant returns on investment in breeding programs (Wiggans et al., 2011).

From a sustainability standpoint, genomic selection contributes to climate-
positive livestock production by mitigating environmental impacts and
promoting animal health. Reduced methane emissions and decreased reliance on
antibiotics help address key concerns related to greenhouse gases and
antimicrobial resistance. Additionally, the development of heat-tolerant and
climate-resilient breeds supports adaptation to changing environmental
conditions, while efforts to preserve genetic diversity ensure long-term
population viability. Together, these factors position genomic selection as a
strategic tool for advancing both economic and ecological goals in modern animal
agriculture (Sachdeva et al., 2025; Strandén et al., 2019).

10.5. Challenges and Areas Requiring Further Development

Despite its transformative potential, genomic selection faces several
significant challenges that hinder its widespread and effective application in
breeding programs. One major limitation is the generally low accuracy of across-
population predictions, which restricts the transferability of genomic prediction
models between different genetic backgrounds or environments. This issue is
exacerbated for traits with low heritability, where the genetic signal is weak and
difficult to capture accurately. Additionally, the scarcity of large, high-quality
phenotypic and genotypic datasets, often compounded by sensor errors and
inconsistencies in data collection, limits the robustness and reliability of genomic
predictions. The high costs associated with genotyping and maintaining the
necessary data infrastructure also pose substantial barriers, particularly for
breeding programs with limited resources (Barwant et al., 2024; Demircioglu,
2024).

Beyond technical and economic constraints, genomic selection raises ethical
and regulatory concerns, including the risk of genetic erosion and increased
inbreeding as selection intensifies within narrower genetic pools. These
challenges underscore the need for sustainable breeding strategies that not only
aim for genetic gain but also preserve long-term population resilience.
Addressing these issues will require concerted efforts to develop larger and more
genetically diverse reference populations, facilitated by international data-
sharing initiatives that enhance the breadth and depth of available data.
Furthermore, breeding programs must integrate practices that balance short-term
improvements with the conservation of genetic diversity to mitigate risks
associated with inbreeding and maintain adaptability to future environmental
changes (Clark et al., 2013; De Beukelaer et al., 2017).
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10.6. The Future Selection Paradigm

Over the past decade, genomic selection has evolved through the integration
of diverse biological data types and advanced computational methods,
significantly enhancing the precision and scope of breeding programs. Multi-
omics data fusion now enables the simultaneous analysis of genomic,
epigenomic, transcriptomic, microbiome, and metabolomic information,
providing a holistic view of the biological systems that underpin traits of interest.
This integrative approach, combined with Al-driven predictive frameworks,
facilitates more accurate and robust predictions of complex traits by capturing
interactions across multiple biological layers. Hybrid models that merge deep
learning with explainable Al (XAI) techniques further advance this field by not
only improving predictive accuracy but also offering biological interpretability,
which is crucial for understanding the underlying genetic mechanisms and
ensuring trust in Al-assisted decisions (Hu et al., 2019; Xu et al., 2025).

In parallel, technological innovations in phenotyping and genome editing are
transforming breeding strategies. Autonomous phenotyping platforms employ
automated camera systems, RFID sensors, thermal imaging, and behavioral
classifiers to collect high-resolution, real-time data on animal traits and
behaviors, vastly increasing throughput and reducing human error. The
integration of genome editing tools such as CRISPR and prime editing into
breeding programs allows for precise genetic modifications that complement
genomic selection, accelerating genetic gains while maintaining genetic
diversity. Additionally, the concept of digital twin livestock—virtual replicas that
integrate genomic, phenotypic, and environmental data—enables simulation-
driven optimization of breeding decisions under varying scenarios. Collectively,
these advancements herald the era of Precision Breeding, characterized by data-
rich, sustainable, and Al-assisted genetic improvement systems that promise to
revolutionize animal breeding with unprecedented accuracy and efficiency (Brito
et al., 2020b; Klingstrom et al., 2024).

10.7. General Conclusion

Genomic selection has revolutionized livestock breeding by enabling the use
of comprehensive genetic information to predict the breeding value of animals
with unprecedented accuracy. This approach leverages large-scale genomic data
and advanced computational models to accelerate genetic gain far beyond what
traditional selection methods could achieve. The integration of data-intensive
techniques allows breeders to make rapid, informed decisions, optimizing traits
that enhance productivity, disease resistance, and environmental adaptability.
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Consequently, genomic selection not only improves economic returns by
increasing efficiency and output but also supports sustainability by promoting
traits that reduce the environmental footprint of livestock production.

Moreover, the convergence of genomic technologies with artificial
intelligence further amplifies the potential of livestock improvement programs.
Al-driven analytics can uncover complex genetic interactions and predict
outcomes under diverse environmental conditions, facilitating more precise and
adaptive breeding strategies. This synergy is critical in addressing global
challenges such as food security and climate change, as it enables the
development of resilient livestock populations tailored to evolving production
systems. Ultimately, genomic selection forms the cornerstone of a future
livestock industry that is integrated, intelligent, and sustainable, ensuring long-
term viability and responsiveness to societal needs.
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