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1. INTRODUCTION

Genomic selection (GS) has rapidly emerged as a pivotal field within 

contemporary livestock genomics, becoming an essential component of animal 

breeding strategies over the past two decades. Following the seminal work of 

Meuwissen, Hayes, and Goddard (2001), which introduced prediction models 

utilizing all genome-wide markers simultaneously, many limitations inherent in 

classical selection methods were effectively addressed. With the widespread 

adoption of high-density SNP panels, this innovative approach became routine in 

the dairy cattle industry beginning in 2008 and subsequently expanded to the 

swine, poultry, and small ruminant sectors (Goddard & Hayes, 2009). Today, 

genomic selection has evolved beyond a genotype-based tool; it has transformed 

into a multidimensional selection platform supported by multi-omics integration, 

artificial intelligence, big data analytics, sensor technologies, disease-resistance 

genomics, and climate-adaptation research. 

Given the intricate genetic architecture underlying economically significant 

traits, the majority of phenotypic variation in livestock can be attributed to the 

aggregate effects of numerous loci, each contributing minimally (Hill, Goddard 

& Visscher, 2008). Consequently, genomic selection (GS) offers considerable 

advantages over traditional marker-assisted selection (MAS), particularly for 

polygenic traits. For example, genomic data has been demonstrated to enhance 

prediction accuracy by 20–50% for traits with low heritability, such as milk yield, 

reproductive performance, health traits, resilience, and behavior (VanRaden et 

al., 2009). This improvement not only increases the reliability of genomic 

estimated breeding values (GEBVs) but also fundamentally transforms breeding 

programs—most notably by obviating the necessity for progeny testing in dairy 

bulls. 

The increasing complexity of livestock genomics in recent years can be 

largely attributed to the rapid advancement of multi-omics technologies. Beyond 

genotypic data, the integration of transcriptomic (RNA-seq), epigenomic (DNA 

methylation and histone modifications), metagenomic (rumen microbiome), 

proteomic, and metabolomic datasets into genomic prediction models facilitates 

a more comprehensive understanding of the molecular mechanisms underlying 

animal performance (Kadarmideen, 2014). This multi-layered approach presents 

new opportunities for predicting complex phenotypes, including disease 

resistance, environmental stress tolerance, feed efficiency, and adaptive capacity. 

Concurrently, the swift advancement of artificial intelligence (AI) and 

machine learning (ML) has significantly augmented the predictive capabilities of 

genomic selection models. Beyond traditional GBLUP and Bayesian 
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methodologies, algorithms such as random forests, gradient boosting, support 

vector machines, and multilayer neural networks are increasingly implemented 

in livestock breeding programs (Gianola & Rosa, 2015). Notably, deep learning 

models leverage the hierarchical architecture of neural networks to discern 

intricate, high-dimensional genomic patterns, resulting in marked enhancements 

in prediction accuracy (Montesinos-López et al., 2018). Given the heterogeneous 

nature of multi-omics data, deep learning-based data-fusion frameworks have 

emerged as a pivotal area of research. 

Another notable advancement in genomic selection (GS) is the widespread 

adoption of digital phenotyping and sensor-based data collection systems. The 

rapid integration of Internet of Things (IoT)-enabled technologies into modern 

agricultural practices facilitates high-frequency phenotypic measurements, 

thereby improving the precision of environmental variation modeling (Halachmi, 

2019). As a result, genomic prediction models can more accurately account for 

both genetic and environmental sources of variation. Genomic selection also has 

significant economic and social implications. Substantial evidence suggests that 

genomic evaluation provides considerable economic benefits in large commercial 

herds by enhancing fertility, herd health, and feed efficiency, ultimately reducing 

production costs (Schaeffer, 2006). However, the ethical and socio-economic 

aspects of GS require careful consideration. Issues such as technology access for 

small-scale farmers, preservation of local breeds, long-term genetic diversity, and 

data privacy necessitate thorough examination (Fraser, 2019). In this context, 

genomic selection should be regarded not merely as a breeding tool but as a 

multidimensional ecosystem encompassing data science, artificial intelligence, 

molecular biology, systems biology, and ethical frameworks. This book chapter 

aims to comprehensively evaluate all components of this evolving ecosystem. 
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2. HISTORICAL DEVELOPMENT OF GENOMIC SELECTION 

 
The development of genomic selection has been a transformative journey 

shaped by decades of scientific progress and technological innovation. Initially, 

breeding programs relied heavily on phenotypic and pedigree-based selection, 

where observable traits and family lineage were the primary criteria for selecting 

superior individuals. This traditional approach, while foundational, was limited 

by its dependence on visible characteristics and the slow pace of genetic gain. 

The subsequent introduction of Marker-Assisted Selection (MAS) marked a 

significant advancement by enabling breeders to use molecular markers linked to 

desirable traits, thereby improving selection accuracy and efficiency. However, 

MAS was constrained by the limited number of markers and the complexity of 

polygenic traits, which often involve many genes with small effects. 

The emergence of genomic selection revolutionized breeding by leveraging 

dense genome-wide markers to predict the genetic potential of individuals more 

comprehensively. This approach allowed for the capture of the cumulative effects 

of numerous loci, enhancing prediction accuracy and accelerating breeding 

cycles. In the modern era, genomic selection has evolved further through the 

integration of artificial intelligence (AI) and multi-omics data, including 

genomics, transcriptomics, proteomics, and metabolomics. These advancements 

enable the analysis of complex biological interactions and environmental 

influences on traits, supported by big data analytics and machine learning 

algorithms. Together, these innovations have culminated in highly sophisticated 

breeding systems that optimize genetic improvement with unprecedented 

precision and speed.   

This section reviews the historical evolution of genomic selection in four 

major phases: 

(1) phenotypic and pedigree-based selection, (2) Marker-Assisted Selection 

(MAS), (3) the emergence of genomic selection, and (4) the modern era 

characterized by artificial intelligence and multi-omics integration. 

 

2.1. Phenotype and Pedigree-Based Selection (1930–1990) 

Between 1930 and 1960, the field of animal breeding predominantly relied on 

phenotypic measurements, with selection processes based on the comparison of 

individual performance records. However, substantial environmental variation 

posed significant constraints on genetic advancement. A pivotal development 

during this period was the introduction of the Best Linear Unbiased Prediction 

(BLUP) methodology by Henderson in the 1970s (Henderson, 1975). BLUP 
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enhanced prediction accuracy by incorporating both pedigree and phenotypic 

data, rapidly establishing itself as the standard method in livestock breeding. 

The phenotype and pedigree-based selection method possesses several 

advantages, including operational simplicity, a well-established statistical 

framework, and the standardization of progeny testing in dairy cattle. 

Nevertheless, this approach also exhibits certain limitations, such as extended 

generation intervals (e.g., 5–6 years required for bull daughter performance 

testing), diminished accuracy for traits with low heritability, and susceptibility to 

errors in pedigree recording. These limitations underscore the necessity for 

molecular tools that can provide additional genetic information beyond what is 

available from pedigree data. 

 

2.2. Marker-Assisted Selection (QTL and MAS Era, 1990–2005) 

Since the early 1990s, the extensive application of microsatellite markers and 

quantitative trait loci (QTL) mapping techniques marked the advent of the 

Marker-Assisted Selection (MAS) era. MAS has achieved significant success in 

traits governed by major genes, particularly those associated with disease 

resistance (Dekkers, 2012). Notable examples include: the DGAT1 K232A 

mutation linked to milk fat percentage, MSTN (myostatin) mutations affecting 

muscle development in cattle and sheep, and PRLR (prolactin receptor) variants 

related to milk production. However, despite these achievements, MAS has 

proven inadequate for addressing complex traits controlled by hundreds or 

thousands of loci with minor effects (Goddard & Hayes, 2009). 

The limitations of Marker-Assisted Selection (MAS) include the inability to 

identify effective Quantitative Trait Loci (QTLs) for all traits, low prediction 

accuracy for polygenic traits, and a significant portion of genetic variance 

remaining unexplained. These shortcomings have led to the development of 

approaches capable of simultaneously evaluating the entire genome. 

 

2.3. Genomic Selection (2001–2010): A Paradigm Shift 

The pivotal advancement in genomic selection was marked by the work of 

Meuwissen, Hayes, and Goddard (2001), who introduced prediction models 

utilizing genome-wide marker information. This innovation facilitated the 

concurrent estimation of effects for thousands of markers, each presumed to exert 

a minor influence. Core components of genomic selection include a genotyped 

reference population, high-quality phenotypic data, and a statistical prediction 

model (e.g., GBLUP, BayesA/B/C), culminating in the Genomic Estimated 

Breeding Value (GEBV). The most transformative benefit of genomic selection 

was the substantial reduction in the generation interval. For instance, in dairy 

4



cattle, breeding values could be estimated without the necessity of waiting for 

daughters' performance data (VanRaden, 2008). 

2008–2012: Initial Large-Scale Commercial Implementations  

The formal adoption of genomic evaluations within the North American 

Holstein population (VanRaden et al., 2009) marked a significant advancement. 

Concurrently, the initiation of genomic data sharing among European countries 

was facilitated through Interbull. Additionally, genomic testing was adopted by 

swine, poultry, and sheep breeding companies. This period was catalyzed by the 

decreasing cost of genotyping, with medium-density panels such as the 

BovineSNP50 becoming central tools for routine genomic selection. 

 

2010–2015: Growth of big data and new prediction models 

The development of high-density SNP panels (HD 700K), improvements in 

imputation accuracy, and the introduction of single-step GBLUP (ssGBLUP) 

(Legarra et al., 2014), alongside the widespread use of low-density panels for 

cost-effective genotyping, have collectively facilitated the establishment of 

genomic selection as a standard practice in large commercial breeding programs. 

 

2.4. Whole-Genome Sequencing and the Omics Era (2015–2023) 

Following 2015, the field of livestock genomics experienced significant 

advancements due to the increased accessibility of whole-genome sequencing 

(WGS) data. The contributions of WGS to genomic selection include the 

identification of rare variants, the characterization of regulatory region variation, 

the incorporation of structural variants (SVs) into prediction models, and the 

enhanced resolution of linkage disequilibrium (LD) blocks. Notably, the 1000 

Bull Genomes Project has become a global benchmark for bovine genomics 

(Hayes & Daetwyler, 2019). During this period, additional omics layers—such 

as transcriptomics, methylomics, proteomics, and metagenomics—were also 

integrated into prediction frameworks. 

 

2.5. Artificial Intelligence, Multi-Omics, and Digital Phenotyping (2020–

Present) 

Since 2020, genomic selection has advanced significantly beyond SNP-based 

models. Contemporary breeding programs now incorporate deep learning 

algorithms, multi-omics data fusion approaches, sensor-based real-time 

phenotyping, rumen microbiome profiling, and environmental data alongside 

G×E modeling. Deep learning methodologies (Montesinos-López et al., 2021) 

facilitate the identification of nonlinear interactions and intricate genomic 

patterns. Concurrently, sensor technologies (IoT) provide high-frequency 
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measurements of behavior, feed intake, activity, and physiological status, thereby 

enhancing genomic prediction models (Halachmi et al., 2020). 

 

2.6. Historical Overview and Emerging Trends 

Genomic selection has become a pivotal component of livestock breeding, 

primarily due to its capacity to achieve high prediction accuracy, shorten 

generation intervals, reduce phenotyping costs, and integrate diverse biological 

data layers. The historical progression of genomic selection clearly illustrates its 

ability to transcend the limitations inherent in classical genetic evaluation. Over 

the next decade, significant advancements are anticipated, driven by AI-enhanced 

prediction systems, multi-omics data fusion, and autonomous phenotyping 

technologies. 
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3. GENETIC ARCHITECTURE AND  

GENOMIC DATA STRUCTURES 

 

Achieving success in livestock genomic selection is contingent upon the 

precise characterization of the genetic architecture of traits that hold economic 

significance. Genetic architecture refers to the number of contributing loci, effect 

sizes, allele frequencies, interactions such as epistasis, and the genomic 

distribution of causal variants (Mackay, 2001). As contemporary genomic 

prediction models strive to encapsulate this complexity, the type, density, and 

quality of input data have a direct impact on prediction accuracy. This section 

provides a systematic review of the genetic basis of complex traits, genomic data 

sources, marker technologies, variant types, linkage disequilibrium (LD) 

patterns, and the contributions of modern sequencing technologies to selection 

models. 

 

3.1. Genetic Architecture of Complex Traits 

Numerous economically significant traits in livestock, such as milk yield, 

growth rate, feed efficiency, fertility, and disease resistance, are polygenic in 

nature. This means that these traits are controlled by the combined influence of 

hundreds or even thousands of genetic loci, each contributing a relatively small 

effect rather than a single gene having a major impact (Hill et al., 2008). The 

polygenic architecture of these traits results in continuous variation within 

populations, making their genetic improvement more complex compared to traits 

governed by single genes. Understanding the polygenic basis is essential for 

implementing effective breeding strategies, such as genomic selection, which 

leverages information from numerous genetic markers across the genome to 

predict an animal's genetic merit. This approach enables more accurate selection 

decisions, accelerating genetic progress for these complex traits in livestock 

populations. 

Genetic architecture encompasses several critical components that 

collectively influence the heritability and expression of complex traits. The effect 

size distribution highlights that most genes contribute small effects, consistent 

with the infinitesimal model originally proposed by Fisher (1918), which 

underpins many regression-based genomic prediction methods like GBLUP. This 

model assumes an essentially infinite number of loci, each with minuscule 

effects, facilitating the prediction of phenotypes based on additive genetic 

variance. However, while rare variants can have larger individual effects, their 

overall impact on prediction accuracy tends to be limited due to their low 

frequency in reference populations, as noted by Goddard et al. (2010). 
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Beyond additive effects, dominance and epistatic interactions play important 

roles, particularly in traits related to fitness and health (Varona et al., 2018). 

Although additive variance generally explains the bulk of phenotypic variance, 

these nonlinear genetic interactions can influence trait expression in complex 

ways. Advanced nonlinear models, such as deep learning approaches, are better 

suited to capture these complexities. Additionally, variants within functional 

genomic regions—such as promoters, enhancers, and miRNA binding sites—

affect gene regulation and expression. Incorporating functional annotations into 

predictive models has been shown to improve accuracy by prioritizing 

biologically relevant variants (Zhang et al., 2021), thereby enhancing the 

understanding and prediction of genetic contributions to complex traits. 

 

3.2. Genomic Data Sources and SNP Technologies 

The cornerstone of genomic selection is the utilization of SNP marker data, 

although the discovery of variants through sequencing methods is becoming 

increasingly prevalent. Due to their low cost and high accuracy, SNP chips have 

become the standard in livestock genomics since 2008 (Matukumalli et al., 

2009)(Table 1). 

 

Table 1. Common SNP panel densities 

Panel Type Density Application 

Low density (LD) 3K–20K Inexpensive genotyping + imputation 

Medium density 

(MD) 

35K–80K Standard for cattle, sheep, swine 

High density (HD) 600K–900K High resolution, improved LD 

estimation 

WGS 20–30 million SNPs Research, rare variant detection 

 

The use of SNP chips in genetic studies provides several significant benefits 

that make them a popular choice for genotyping. Their low cost enables large-

scale studies to be conducted more affordably, while the low error rate ensures 

reliable and reproducible data. Additionally, SNP chips are highly effective for 

cross-population comparisons because they target common variants shared across 

diverse groups. This broad applicability is further enhanced by imputation 

techniques, which increase marker density and resolution, allowing researchers 

to infer genotypes at untyped loci and thus achieve finer-scale genetic mapping 

without the need for more expensive sequencing. 

Despite these advantages, SNP chips have important limitations that restrict 

their utility in certain contexts. The panels are primarily designed to capture 
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common variants, which means they provide limited information on rare or 

population-specific alleles, particularly in indigenous or underrepresented breeds. 

This bias reduces their effectiveness in studies aiming to understand genetic 

diversity in such populations. Moreover, SNP chips do not detect structural 

variations (SVs) such as insertions, deletions, or copy number variations, which 

can have substantial functional impacts. Consequently, while SNP chips are 

valuable for many applications, complementary approaches like whole-genome 

sequencing may be necessary to capture the full spectrum of genetic variation, 

especially in diverse or less-studied populations. 

 

3.3. Whole-Genome Sequencing (WGS) 

WGS technologies allow comprehensive characterization of genomic 

variation (Daetwyler et al., 2012), capturing rare variants, regulatory mutations, 

and structural variants that SNP chips cannot detect. 

Contributions of WGS 

• Detection of rare variants  

• High-accuracy imputation reference panels  

• Identification of functional mutations (e.g., in enhancers, promoters, 

intronic regulatory regions)  

• Structural variant (SV) analysis, including CNVs, inversions, and 

translocations  

 

3.4. Linkage Disequilibrium (LD) and Population Structure 

LD refers to the nonrandom association of alleles at different loci and plays a 

central role in genomic selection success (Flint-Garcia et al., 2003). 

Importance of LD 

• Markers act as proxies for QTLs  

• Determines required SNP panel density  

• Longer LD in small populations allows cheaper genotyping  

Species comparisons 

• Cattle:  long-range LD → 35K–50K panels are sufficient  

• Sheep and goats:  LD varies significantly among breeds  

• Chickens:  short LD → require dense SNP panels  

• Pigs:  high LD in commercial lines, lower in indigenous breeds  

• Salmon: LD varies by strain → 50K panels often sufficient for GS, but 

some populations benefit from ≥100K density. 

Population structure (e.g., breed differences) also influences prediction 

accuracy because LD patterns differ between breeds (Hayes et al., 2009). 
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3.5. Variant Types and Functional Annotations 

Modern genomic analyses incorporate a diverse range of variant types: 

• SNPs (Single Nucleotide Polymorphisms)  – the core of genomic 

selection  

• Indels  – may alter gene transcription or translation  

• CNVs (Copy Number Variations)  – influence growth, immunity, and 

adaptation (Zhou et al., 2014)  

• Structural variants  – inversions, translocations, large deletions  

• Regulatory variants  – promoters, enhancers, miRNA-binding sites, CpG 

methylation regions  

Incorporating functional annotations into models (e.g., BayesRC) improves 

prediction accuracy (Edwards et al., 2019). 

 

3.6. Genomic Data Integration 

Integrating multiple genomic data sources strengthens prediction models. 

Major integration strategies 

• Imputation: Enhancing low-density genotypes to high-density levels 

• Functional weighting: Allocating greater prior weights to variants located 

in functional regions 

• Multi-omics fusion: Integrating genotypes with RNA-seq, methylation, 

proteome, and metagenome data 

• Across-population analyses: Augmenting accuracy through the 

utilization of shared reference populations  
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4. STATISTICAL AND MACHINE LEARNING MODELS IN 

GENOMIC SELECTION 

 

Genomic selection relies heavily on advanced statistical frameworks that can 

manage high-dimensional genomic data, enabling the simultaneous evaluation of 

thousands to millions of markers across the genome. These models not only 

capture the direct associations between marker genotypes and phenotypic traits 

but also adjust for confounding factors such as population stratification and 

relatedness among individuals. Key considerations in model design include the 

extent of linkage disequilibrium (LD) within the population, which affects how 

well markers tag causal variants, as well as marker density and sample size, both 

of which influence the power and accuracy of predictions. Traditional linear 

mixed models, such as genomic best linear unbiased prediction (GBLUP), have 

been widely used due to their robustness and interpretability in capturing additive 

genetic effects (Sillanpää, 2010). 

The integration of machine learning (ML) and deep learning techniques into 

genomic selection frameworks has introduced greater flexibility and improved 

predictive performance, especially for complex traits influenced by non-additive 

genetic architectures and gene-by-environment interactions. ML models, 

including random forests, support vector machines, and gradient boosting, can 

capture nonlinear relationships and interactions without explicit parametric 

assumptions. Deep learning approaches, such as convolutional neural networks 

and recurrent neural networks, further enhance the ability to model hierarchical 

and temporal genomic patterns by learning multi-layered feature representations 

directly from raw genotype data. These innovations have expanded the 

methodological repertoire for genomic prediction, enabling more accurate 

selection decisions and accelerating breeding programs across diverse species 

(Montesinos-López et al., 2021). 

 

4.1. Classical Linear Models 

Classical linear models in genomic prediction primarily utilize linear 

regression frameworks to estimate the effects of genetic markers on complex 

traits. These models assume that the relationship between marker genotypes and 

phenotypic values is additive, meaning that the total genetic effect is the sum of 

individual marker effects without considering interactions or dominance effects. 

This additive assumption simplifies the genetic architecture and allows for 

straightforward interpretation and computation, making these models 

computationally efficient and broadly applicable. Consequently, they have 

become foundational in animal breeding programs, particularly in major livestock 
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species where additive genetic variance is a key driver of trait heritability (Azodi 

et al., 2019). 

Despite their simplicity, classical linear models remain highly effective for 

many quantitative traits due to the predominance of additive genetic variance in 

livestock populations. They enable breeders to predict genomic breeding values 

by leveraging dense marker information, thus accelerating genetic gain through 

more accurate selection decisions. However, these models may have limitations 

in capturing non-additive genetic effects such as epistasis or dominance, which 

can be important for certain traits. Nonetheless, their robustness, ease of 

implementation, and proven success have sustained their widespread use in the 

genomic prediction landscape, often serving as a baseline for comparison with 

more complex nonlinear or machine learning approaches (Hay, 2024). 

 

4.1.1. Genomic Best Linear Unbiased Prediction (GBLUP) 

GBLUP is one of the most widely used models in genomic selection. It 

represents a genomic extension of the BLUP framework developed by Henderson 

(1975), incorporating a genomic relationship matrix (G-matrix) constructed from 

SNP marker data (VanRaden, 2008). GBLUP aligns with the infinitesimal model 

(Goddard et al., 2010), which assumes that many loci contribute small additive 

effects. 

GBLUP (Genomic Best Linear Unbiased Prediction) is highly valued for its 

computational efficiency and ability to scale effectively with large datasets, 

making it particularly suitable for modern genomic selection programs where vast 

amounts of marker data are common. Its robust performance across a wide range 

of polygenic traits—those influenced by many genes each with small effects—

has established GBLUP as the standard model in commercial breeding, where 

reliability and speed are critical for practical implementation (Karaman et al., 

2018). 

However, the model's assumption that all marker effects have equal variance 

can limit its predictive accuracy for traits governed by major quantitative trait loci 

(QTL) with large effects. This equal variance assumption means GBLUP may 

underperform when genetic architecture is dominated by a few loci with 

substantial influence, as it tends to distribute genetic variance uniformly across 

markers. Consequently, alternative models that allow for heterogeneous marker 

variances may be more appropriate in such cases to capture the true genetic signal 

more effectively (Tiezzi & Maltecca, 2015). 
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4.1.2. Single-Step Genomic BLUP (ssGBLUP) 

The single-step Genomic Best Linear Unbiased Prediction (ssGBLUP) 

method represents an advanced approach in genetic evaluation by seamlessly 

integrating genomic, pedigree, and phenotypic data within a single analytical 

framework. This integration allows for more accurate estimation of breeding 

values by leveraging the complementary information contained in each data type. 

Unlike traditional BLUP, which relies solely on pedigree and phenotypic records, 

ssGBLUP incorporates dense marker information from genomic data, enhancing 

the precision of genetic evaluations especially for individuals without extensive 

phenotypic records (Vallejo et al., 2017). 

By combining the strengths of BLUP and Genomic BLUP (GBLUP), 

ssGBLUP improves prediction accuracy and genetic gain in breeding programs. 

It achieves this by constructing a unified relationship matrix that blends pedigree-

based relationships with genomic relationships, thereby capturing both the 

historical and realized genetic relationships among individuals. This unified 

approach simplifies the evaluation process, reduces bias, and enables the 

inclusion of genotyped and non-genotyped individuals simultaneously, making 

ssGBLUP a powerful tool for modern animal and plant breeding applications 

(Gowane et al., 2019). 

 

4.2. Bayesian Models 

Bayesian models are particularly advantageous in genomic selection due to 

their ability to accommodate heterogeneous marker effects by assigning distinct 

prior distributions to each marker. This flexibility allows them to effectively 

model genetic architectures where only a subset of markers has significant 

influence, capturing sparse effect patterns that traditional models may overlook. 

For instance, Bayes A assumes marker effects follow a t-distribution, which helps 

identify markers with large effects, while Bayes B posits that many markers have 

zero effect, making it suitable for traits governed by sparse genetic architectures. 

Bayes Cπ builds on Bayes B by introducing the π parameter, which explicitly 

defines the probability that a marker has no effect, further refining the model’s 

capacity to represent genetic sparsity (Stock et al., 2020). 

More advanced Bayesian approaches like Bayes R and BayesRC extend this 

framework by incorporating mixture distributions and functional genomic 

information, respectively. Bayes R uses a mixture of normal distributions with 

different variances to model varying effect sizes, providing greater flexibility for 

complex quantitative trait loci (QTL) architectures. BayesRC enhances this by 

integrating functional annotations into the prior distributions, such as assigning 

higher prior probabilities to single nucleotide polymorphisms (SNPs) located in 
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coding or enhancer regions, or weighting markers based on population-specific 

biological relevance. This integration of functional genomic data represents a 

significant advancement, enabling more biologically informed genomic 

predictions and improving the accuracy of selection by leveraging prior 

knowledge about marker functionality (Macleod et al., 2016). 

 

4.3. Sparsity and Regularization-Based Models 

Sparsity and regularization-based models are essential tools in genomic 

prediction, particularly for handling high-dimensional data where the number of 

predictors exceeds the number of observations. LASSO (Least Absolute 

Shrinkage and Selection Operator) applies an L1 penalty, which induces sparsity 

by shrinking some marker effect estimates exactly to zero. This feature selection 

property makes LASSO especially useful for traits influenced by a few major 

quantitative trait loci (QTL), as it effectively identifies and retains only the most 

relevant markers, similar in principle to marker-assisted selection (MAS). In contrast, 

Ridge regression (also known as RRBLUP in genomic contexts) uses an L2 penalty 

that shrinks all marker effects towards zero uniformly without setting any coefficients 

exactly to zero. This approach is mathematically equivalent to genomic best linear 

unbiased prediction (GBLUP) and is more suitable for traits governed by many 

small-effect loci, as it retains all markers but controls overfitting by shrinking their 

effects (Meher et al., 2022). 

The Elastic Net method integrates both L1 and L2 penalties, combining the 

strengths of LASSO and Ridge regression. By balancing variable selection and effect 

shrinkage, the Elastic Net can handle correlated predictors better than LASSO alone, 

which tends to arbitrarily select one marker from a group of correlated variables. This 

makes it particularly effective for polygenic traits where numerous loci with small to 

moderate effects contribute to the phenotype. The Elastic Net’s flexibility allows it 

to perform robust variable selection while maintaining predictive accuracy, 

especially in complex genetic architectures where both sparsity and shrinkage are 

beneficial. This combination enhances model stability and interpretability, making 

the Elastic Net a valuable approach in genomic prediction frameworks (Waldron et 

al., 2011). 

 

4.4. Machine Learning Models 

Machine learning (ML) models have become increasingly popular in genomic 

prediction due to their ability to capture complex, nonlinear relationships and 

interactions among genetic markers that traditional linear models may overlook. 

Random Forests, for example, leverage an ensemble of decision trees to model 

epistatic effects naturally and provide robust variable importance measures, 
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which help identify key markers influencing traits. Their stability across large 

datasets makes them suitable for genomic contexts; however, their predictive 

performance can suffer when faced with extremely high-dimensional marker sets, 

and they may underperform compared to genomic best linear unbiased prediction 

(GBLUP) models when traits are predominantly controlled by additive genetic 

effects (Li et al., 2024). 

Support Vector Regression (SVR) extends the capacity to model nonlinear 

relationships by employing kernel functions, making it well-suited for medium-

density marker datasets and traits with significant non-additive genetic 

components. By transforming input data into higher-dimensional feature spaces, 

SVR can capture complex patterns that linear models cannot. This flexibility 

allows SVR to address genetic architectures where interactions and dominance 

effects play a substantial role, although its performance depends on careful tuning 

of kernel parameters and may be computationally intensive for very large datasets 

(Li et al., 2024). 

 

4.5. Deep Learning Models 

Deep learning has emerged as a powerful approach in genomic prediction, 

particularly effective for handling the complexity and high dimensionality of 

genomic datasets. Multilayer Perceptrons (MLPs) serve as foundational models 

that capture nonlinear interactions through fully connected layers; however, their 

effectiveness depends heavily on the availability of large training populations and 

the application of appropriate regularization techniques to prevent overfitting. 

Convolutional Neural Networks (CNNs) extend this capability by interpreting 

single nucleotide polymorphisms (SNPs) as sequential genomic features, 

enabling the capture of linkage disequilibrium (LD) blocks and haplotype 

structures, which has been shown to improve prediction accuracy in several 

studies (Li, 2024). 

Recurrent Neural Networks (RNNs) further leverage the sequential nature of 

genomic data, making them well-suited to model complex biological phenomena 

such as epistasis, long-range LD, and regulatory motifs that influence gene 

expression and trait variation. Meanwhile, Deep Gaussian Process Models 

provide an advanced framework that combines nonlinear modeling with 

uncertainty estimation, offering a promising alternative for genomic prediction 

tasks where quantifying prediction confidence is critical. Together, these deep 

learning architectures represent a versatile toolkit for advancing genomic 

prediction by accommodating the intricate patterns and dependencies inherent in 

genetic data (Mcdermott & Wikle, 2019). 
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4.6. Comparative Performance of Models 

 
Table 2. General tendencies across trait architectures 

Trait Type Preferred Model(s) 

Highly polygenic traits GBLUP / RRBLUP 

Traits with major QTL Bayes B, Bayes R 

When functional data are available BayesRC 

Traits with epistasis Random Forest, CNN 

Highly nonlinear genetic architectures Deep learning models 

Small reference populations ssGBLUP 

 

Several additional factors critically influence the performance of predictive 

models in genetic studies (Table 2). Sample size plays a fundamental role, as 

larger datasets generally provide more statistical power, enabling models to 

capture complex genetic architectures more accurately and reduce overfitting. 

Marker density, or the number of genetic markers used, affects the resolution with 

which models can detect associations; higher marker density improves the ability 

to capture linkage disequilibrium patterns and genetic variation but may also 

increase computational complexity. Phenotype accuracy is equally important, as 

precise and reliable measurement of traits ensures that the models learn from 

valid signals rather than noise, directly impacting predictive reliability (Liu et al., 

2015). 

Population structure is another key factor that can affect model outcomes. 

Differences in allele frequencies and genetic backgrounds across subpopulations 

can introduce biases if not properly accounted for, potentially leading to spurious 

associations or reduced prediction accuracy. Models that incorporate or adjust for 

population stratification tend to perform better in diverse or structured 

populations. Together, these factors—sample size, marker density, phenotype 

accuracy, and population structure—interact to determine the robustness and 

generalizability of genetic prediction models, underscoring the need for careful 

experimental design and data preprocessing in genomic research (Guo et al., 

2014). 
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5. DATA INTEGRATION AND MULTI-OMICS APPROACHES IN 

GENOMIC SELECTION 

 

Traditional genomic selection models have predominantly depended on SNP 

genotypes; nevertheless, the intricacy of biological systems cannot be 

comprehensively elucidated by DNA sequence variation alone. Phenotypic 

variation is influenced by multifaceted biological processes, including gene 

expression, epigenetic regulation, protein–protein interactions, metabolic 

pathways, microbiome dynamics, and environmental factors (L. Zhao et al., 

2025). Consequently, the integration of multi-omics data has emerged as a pivotal 

research frontier to enhance predictive accuracy and deepen mechanistic 

understanding in livestock genomics (Li et al., 2022). This chapter examines the 

principal types of multi-omics data, integration strategies, computational 

frameworks, artificial intelligence–based unified modeling approaches, and their 

applications in livestock breeding. 

 

5.1. Types of Multi-Omics Data 

Multi-omics data encompass various biological layers that elucidate the 

structure and function of living systems. The most pertinent omics categories for 

genomic selection are outlined below. 

 

5.1.1. Genomics (DNA-seq) Data 

Genomic data refer to the various types of DNA-level variations that exist 

within the genome and serve as critical inputs for genomic prediction models. 

These variations include single nucleotide polymorphisms (SNPs), which are 

changes at a single base pair; insertions and deletions (Indels), which involve the 

addition or loss of small DNA segments; structural variants, encompassing larger 

rearrangements such as inversions or translocations; and copy number variations 

(CNVs), which represent changes in the number of copies of particular DNA 

regions. Together, these diverse forms of genetic variation provide a 

comprehensive landscape of genomic differences that influence phenotypic traits 

and disease susceptibility (Hinds et al., 2005). 

The integration of these genomic variations into prediction models enables 

researchers to identify genetic markers associated with complex traits and 

improve the accuracy of trait prediction across populations. By leveraging high-

throughput sequencing and genotyping technologies, large-scale genomic 

datasets capturing these variations are generated, facilitating the development of 

statistical and machine learning models that can predict outcomes such as disease 

risk, treatment response, and agricultural trait performance. Thus, genomic data 
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form the foundational basis for advancing personalized medicine, crop 

improvement, and evolutionary studies through precise and data-driven genomic 

predictions (Moler et al., 2018). 

 

5.1.2. Epigenomics (DNA Methylation, Histone Modifications) 

Epigenetic modifications constitute a dynamic and reversible layer of gene 

regulation that does not alter the underlying DNA sequence but profoundly 

influences cellular function and identity. DNA methylation typically involves the 

addition of a methyl group to cytosine residues, often leading to transcriptional 

repression when occurring in gene promoter regions. Histone modifications, such 

as acetylation and methylation, alter chromatin structure by modulating the 

accessibility of DNA to transcriptional machinery; for example, histone 

acetylation generally promotes gene activation by loosening chromatin, whereas 

specific histone methylation marks can either activate or repress transcription 

depending on the context. Additionally, miRNA–mRNA interactions regulate 

gene expression post-transcriptionally by targeting messenger RNAs for 

degradation or translational inhibition, adding another layer of fine-tuning in 

tissue-specific gene expression (Auverlot et al., 2024). 

These epigenetic mechanisms are highly responsive to environmental cues, 

enabling organisms to adapt to changing conditions without permanent genetic 

changes. In livestock, such epigenomic plasticity has been linked to phenotypic 

variation in traits critical for production, such as growth rate, milk yield, and 

stress resilience. Environmental stressors like temperature fluctuations, nutrition, 

and disease exposure can induce epigenetic changes that influence gene 

expression patterns, thereby affecting animal health and productivity. 

Understanding these epigenetic adaptations offers promising avenues for 

improving livestock breeding and management strategies by integrating 

epigenomic information alongside traditional genetic selection. (Gao et al., 2021)  

 

5.1.3. Transcriptomics (RNA-seq) Data 

Gene expression plays a fundamental role in shaping phenotypic traits by 

regulating the functional output of the genome. RNA sequencing (RNA-seq) data 

provide a comprehensive snapshot of gene activity, enabling researchers to 

capture dynamic expression patterns that underlie complex traits. Incorporating 

transcriptomic information into genomic prediction models enhances their 

predictive power by directly linking gene expression profiles to phenotypic 

variation. This integration allows for more precise modeling of gene expression–

phenotype associations, which improves the identification of causal genes and 

pathways influencing traits of interest (Lee, 2018). 
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Additionally, RNA-seq facilitates the mapping of expression quantitative trait 

loci (eQTLs), which are genomic regions that regulate gene expression levels. By 

overlaying eQTL data with genomic markers, researchers can uncover regulatory 

variants that contribute to phenotypic diversity. The construction of tissue-

specific regulatory networks using transcriptomic data further refines predictions 

by accounting for the context-dependent nature of gene regulation (Battle & 

Montgomery, 2014). Moreover, RNA-seq supports feature selection by 

highlighting genes with significant expression changes relevant to the trait, 

thereby reducing noise and focusing the model on biologically meaningful 

variables. Collectively, these mechanisms contribute to a 10–25% improvement 

in genomic prediction accuracy, as demonstrated in multiple studies (Dutta et al., 

2020).  

 

5.1.4. Proteomics Data 

Protein abundance serves as a crucial indicator of biological function because 

it directly reflects the presence and activity of proteins that execute cellular 

processes, unlike genomic or transcriptomic data, which represent potential or 

intermediate stages of gene expression. While genomic and transcriptomic 

analyses provide valuable insights into genetic variation and gene expression 

patterns, they do not always correlate precisely with protein levels due to post-

transcriptional and post-translational modifications, protein degradation, and 

other regulatory mechanisms. Therefore, proteomics offers a more accurate 

snapshot of the functional state of cells and tissues, enabling better understanding 

of phenotypic traits and disease mechanisms. 

However, the integration of proteomics into routine genomic selection 

programs faces significant hurdles. The high costs associated with proteomic 

measurements, including sample preparation, instrumentation, and data analysis, 

limit large-scale application, especially in breeding populations where extensive 

sample sizes are needed for robust statistical power. Additionally, current 

proteomic techniques may have lower throughput and reproducibility compared 

to genomic methods. Despite these limitations, proteomics has successfully 

identified key biomarkers linked to important traits such as metabolic syndrome, 

mastitis, and immune response, demonstrating its potential to complement 

genomic data and enhance selection accuracy by providing functional validation 

and mechanistic insights (Bonnet et al., 2020). 
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5.1.5. Metabolomics Data 

Metabolites represent the end products of cellular metabolism and provide a 

direct snapshot of the physiological state of an organism. Because they reflect the 

integrated output of gene expression, protein activity, and environmental 

influences, metabolites are valuable as biomarkers for assessing complex 

biological traits. In livestock and animal science, metabolite profiling through 

metabolomics enables the identification of biochemical signatures associated 

with feed efficiency, helping to optimize nutrition and reduce production costs. 

Additionally, metabolites can indicate an animal’s ability to tolerate 

environmental stressors, such as heat or disease, thereby supporting strategies to 

improve resilience and welfare (Clemmons et al., 2017). 

The application of metabolomics extends beyond performance traits to 

encompass animal health monitoring and disease diagnosis. By capturing 

dynamic changes in metabolic pathways, metabolite analysis can reveal early 

signs of metabolic disorders or infections before clinical symptoms arise. This 

capacity makes metabolomics a powerful tool for precision livestock farming, 

facilitating targeted interventions and improving overall productivity. The 

comprehensive insights gained from metabolomics complement genomic and 

proteomic data, offering a holistic understanding of physiological processes and 

enabling more effective management practices in animal agriculture (Lecchi et 

al., 2019). 

 

5.1.6. Microbiome Data 

The rumen microbiota is integral to the overall health and productivity of 

ruminant animals, influencing key physiological processes that affect feed 

utilization and environmental impact. The specific composition of these 

microbial communities determines how efficiently feed is broken down and 

converted into energy, directly impacting growth rates and milk production. 

Furthermore, the diversity within the rumen microbiome plays a crucial role in 

modulating methane emissions, a potent greenhouse gas, thereby linking 

microbial ecology to both agricultural sustainability and climate change 

mitigation efforts (Bowen et al., 2020). 

Advancements in metagenomic technologies have allowed for the integration 

of detailed microbial data into genomic prediction models, significantly 

improving the accuracy of these models by up to 15% (Wallace et al., 2019). This 

integration provides a more comprehensive understanding of the genetic and 

microbial factors that influence ruminant traits, enabling more precise selection 

and breeding strategies. Ultimately, leveraging metagenomic insights enhances 

the potential for optimizing animal performance while reducing environmental 
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footprints, marking a significant step forward in the field of animal genetics and 

microbiome research (Montesinos-López et al., 2024). 

 

5.2. Strategies for Multi-Omics Integration 

Several integration strategies have been developed to effectively combine 

heterogeneous omics datasets, each addressing different challenges inherent in 

multi-omics analysis. Early integration involves merging all omics data types into 

a single unified feature matrix, enabling a comprehensive analytical model that 

naturally captures interactions across omics layers such as SNPs, gene 

expression, and methylation. This approach benefits from a holistic view of the 

data but faces challenges due to high dimensionality, which can increase the risk 

of overfitting, and issues related to missing data that may impair model 

performance (Flores et al., 2023). 

Late integration, by contrast, models each omics type separately using 

specialized methods optimized for that data, such as GBLUP for SNPs, BayesR 

for CNVs, and artificial neural networks for expression data, before combining 

the results through ensemble techniques. This allows for tailored modeling of 

heterogeneous datasets but introduces computational complexity and increases 

the burden of managing multiple models. Intermediate integration offers a 

balanced alternative by applying dimensionality reduction techniques like 

principal component analysis (PCA) or autoencoders to extract latent features 

from each omics layer prior to integration. This strategy reduces dimensionality 

and noise, facilitating more efficient and interpretable multi-omics analyses, and 

is widely adopted in deep learning frameworks designed for multi-omics data 

fusion (Zhao et al., 2022). 
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6. ARTIFICIAL INTELLIGENCE AND BIG DATA ANALYTICS IN 

GENOMIC SELECTION APPLICATIONS 

 

The exponential growth in data generation within livestock genomics has 

transformed breeding programs into complex, data-intensive ecosystems. This 

data diversity, ranging from single nucleotide polymorphism (SNP) arrays and 

whole-genome sequencing (WGS) to transcriptomic profiles from RNA-seq and 

microbiome analyses, is further complemented by continuous streams of 

phenotypic information collected via on-animal sensors and digital phenotyping 

platforms. Managing and integrating this multi-dimensional data requires not 

only vast computational resources but also sophisticated analytical frameworks 

capable of handling high dimensionality, heterogeneity, and dynamic data 

structures (Wójcik-Gront et al., 2024). Traditional statistical models, which often 

assume linearity and independence, are increasingly inadequate for capturing the 

intricate biological interactions and environmental influences that shape complex 

traits in livestock (Montesinos-López et al., 2021). 

To address these challenges, artificial intelligence (AI) and machine learning 

(ML) techniques have been rapidly adopted in genomic selection pipelines. These 

approaches facilitate enhanced prediction accuracy by uncovering nonlinear 

relationships and complex patterns embedded within large-scale datasets. 

Moreover, AI-driven phenotyping methods enable real-time, high-throughput 

trait measurement, improving the resolution and reliability of phenotype data. 

Integrating big data analytics with scalable learning algorithms also supports the 

development of dynamic decision-support systems that can adapt to evolving 

datasets and breeding goals. This convergence of AI and big data analytics not 

only accelerates genetic gain but also deepens biological understanding, 

ultimately enabling more precise and sustainable livestock breeding strategies 

(Wójcik-Gront et al., 2024). 

 

6.1. The Big Data Ecosystem in Genomic Selection 

The contemporary stage of genomic selection operates within an environment 

where multi-layered biological and sensor-derived data are continuously 

generated. The principal components of this big data infrastructure are outlined 

below. 

 

6.1.1. Genotype Data 

Modern genotyping platforms have revolutionized genetic research by 

enabling the generation of extraordinarily large and diverse datasets. These 

platforms encompass a range of technologies, from low- to high-density single 
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nucleotide polymorphism (SNP) arrays, which provide varying resolutions of 

genetic variation across the genome. Additionally, whole-genome sequencing 

(WGS) techniques produce comprehensive datasets containing 20 to 30 million 

variants per individual, offering an unprecedented depth of genetic information. 

Beyond SNPs and small-scale variants, these datasets also capture complex 

structural variations (SVs) such as copy number variations (CNVs) and 

chromosomal inversions, which play critical roles in genomic diversity and 

disease susceptibility (Cooper et al., 2008; Hou et al., 2011). 

The scale and complexity of these datasets pose significant challenges and 

opportunities for data storage, processing, and analysis. The integration of 

haplotype-based variation further enriches the genetic landscape by allowing 

researchers to study combinations of alleles inherited together, which can be 

crucial for understanding population genetics and linkage disequilibrium 

patterns. Collectively, these advances result in terabyte-scale datasets that 

demand sophisticated computational tools and analytical frameworks to extract 

meaningful biological insights, thereby driving forward precision medicine and 

genomics research (Wójcik-Gront et al., 2024). 

 

6.1.2. Phenotype Data and Digital Phenotyping 

Precision livestock systems have evolved significantly by integrating a wide 

array of sensor technologies that extend beyond traditional phenotypic 

measurements. These systems utilize tools such as RFID tracking to monitor 

animal location and movement patterns, infrared thermography to detect 

temperature variations indicative of health status, and accelerometers coupled 

with IoT-based activity sensors to capture detailed behavioral data. Automated 

feed intake measurement devices provide continuous, precise records of 

consumption, while acoustic sensors enable real-time respiratory monitoring. 

Robotic milking systems further contribute by automating routine tasks and 

collecting data on milk yield and quality. Collectively, these technologies 

produce an immense volume of data points daily, offering granular insights into 

each animal’s physiological and behavioral states (Bailey et al., 2021; Lamanna 

et al., 2025; Tzanidakis et al., 2023). 

The data generated by these advanced sensors exhibit the key characteristics 

of big data: high volume, velocity, and variety. The continuous and rapid stream 

of diverse data types—from spatial movement to physiological signals—requires 

sophisticated data management and analytical approaches to extract meaningful 

information (Neethirajan & Kemp, 2021a). This integration facilitates more 

precise and timely decision-making in livestock management, improving animal 

welfare, productivity, and disease detection. By harnessing such comprehensive 

23



datasets, precision livestock farming moves towards a data-driven paradigm that 

enhances sustainability and operational efficiency within the agricultural sector 

(Halachmi et al., 2020).  

 

6.1.3. Multi-Omics Data 

Crucial high-dimensional omics layers encompass diverse biological data 

types that capture different aspects of cellular and molecular function. RNA 

sequencing (RNA-seq) provides comprehensive profiles of gene expression, 

revealing which genes are active under specific conditions or in particular cell 

types. The methylome reflects epigenetic modifications, such as DNA 

methylation patterns, that regulate gene activity without altering the underlying 

DNA sequence. The microbiome characterizes the composition and dynamics of 

microbial communities inhabiting various environments, including the human 

body, which can influence host physiology and disease states. Proteomics and 

metabolomics analyze the biochemical phenotypes by quantifying proteins and 

metabolites, respectively, offering insights into functional pathways and 

metabolic states (Acharya & Mukhopadhyay, 2024; Wu et al., 2024) 

Integrating these heterogeneous datasets poses significant analytical 

challenges due to their high dimensionality, varying data structures, and complex 

interdependencies. Each omics layer generates vast amounts of data with distinct 

measurement scales, noise profiles, and biological contexts, requiring 

sophisticated computational and statistical methods for effective integration and 

interpretation. Addressing these challenges is essential for uncovering 

comprehensive molecular mechanisms, identifying biomarkers, and advancing 

precision medicine. Multimodal analysis frameworks and advanced machine 

learning approaches are increasingly employed to harness the full potential of 

these layered omics data, enabling a more holistic understanding of biological 

systems (Acharya & Mukhopadhyay, 2024). 

 

6.2. Big Data Analytics Frameworks 

Several computational frameworks have been specifically designed to handle 

the challenges posed by genomics and multi-omics big data, which often involve 

massive datasets requiring scalable and efficient processing. Platforms such as 

Hadoop, Apache Spark, Dask, Delta Lake, and distributed implementations of 

TensorFlow and PyTorch offer robust solutions by enabling parallel processing 

and distributed computation across clusters of machines. These frameworks 

facilitate the management of high-throughput sequencing data and complex 

multi-omics datasets by providing fault tolerance, scalability, and optimized 
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resource utilization, thereby accelerating data analysis workflows in genomics 

research (Liu et al., 2023). 

Among these, Spark-based genomic frameworks like HAIL and ADAM have 

gained significant traction due to their ability to integrate distributed computing 

with domain-specific optimizations. HAIL, for example, is designed to simplify 

the analysis of large-scale genetic data by providing high-level APIs that abstract 

complex distributed operations, while ADAM offers a genomics-focused data 

model and processing pipeline built on Apache Spark. Such tools enable 

researchers to perform variant calling, genotype imputation, and other 

computationally intensive tasks more efficiently, supporting large cohort studies 

and population-scale analyses. Together, these frameworks represent a critical 

infrastructure component for advancing precision medicine and large-scale 

genomic investigations (Xu et al., 2025). 

 

6.3. Artificial Intelligence–Based Genomic Prediction Models 

AI-based genomic prediction models differ from classical linear approaches 

by capturing nonlinear relationships, epistatic effects, and complex multi-

dimensional data structures. 

 

6.3.1. Deep Learning Approaches 

Deep learning has revolutionized genomic prediction by enabling models to 

automatically learn hierarchical and complex features directly from high-

dimensional genomic data. Various architectures are employed for this purpose, 

including Multilayer Perceptrons (MLPs), Convolutional Neural Networks 

(CNNs), Recurrent Neural Networks (RNNs) such as Long Short-Term Memory 

(LSTM) and Gated Recurrent Units (GRU), Deep Gaussian Processes, and 

Transformer-based models. Each architecture leverages unique strengths: CNNs 

efficiently identify linkage disequilibrium (LD) blocks by capturing local spatial 

patterns; RNNs exploit the sequential nature of genomic data to model 

dependencies along the genome; and Transformers excel at capturing long-range 

interactions, which are critical for understanding complex genomic architectures 

(Liu et al., 2019). 

The advantages of deep learning in genomics include its adaptive learning 

capacity, which allows models to capture nonlinear and intricate interactions 

among genetic variants that traditional linear models might miss. Additionally, 

these methods facilitate the integration of multi-omics data, enabling a more 

holistic understanding of biological systems. However, challenges remain, such 

as the requirement for large labeled datasets to effectively train deep models, 

which can be a limiting factor in many genomic studies. Furthermore, the high 
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computational cost associated with training and tuning deep architectures can be 

prohibitive. Another significant limitation is the limited interpretability of these 

models, which complicates biological insight extraction and hinders trust and 

adoption in clinical settings. Addressing these challenges is crucial for the 

broader application of deep learning in genomic prediction (Abimannan et al., 

2023; Mienye et al., 2024). 

 

6.4. Machine Learning–Based Prediction Models 

Machine learning models have become essential tools in genomic selection 

due to their ability to capture complex nonlinear relationships and epistatic 

interactions among genetic markers that traditional linear models may fail to 

detect. Algorithms such as Random Forest, Gradient Boosting frameworks 

(including XGBoost and LightGBM), Support Vector Machines (SVM/SVR), 

and k-Nearest Neighbors are commonly employed because they can model 

intricate patterns in high-dimensional genomic data. Ensemble learning 

approaches, which combine predictions from multiple models, further enhance 

predictive accuracy by reducing variance and bias, making them particularly 

effective in capturing the multifaceted genetic architecture of traits (Perez et al., 

2022; Wang & Zhang, 2024). 

These machine learning methods often outperform linear models when traits 

are influenced by significant non-additive genetic effects, such as dominance and 

epistasis, which involve interactions between different loci. By leveraging their 

flexibility and capacity to model complex interactions without explicit parametric 

assumptions, ML models provide more accurate genomic predictions, improving 

selection decisions in breeding programs (Li et al., 2024). This advantage is 

supported by studies like Ortuño et al. (2019), which demonstrate superior 

performance of ML models over linear approaches in scenarios where genetic 

effects deviate from additivity, highlighting their growing importance in modern 

genomic selection frameworks.  

 

6.5. AI-Driven Sensor Data Analysis 

The integration of Internet of Things (IoT) sensor data with genomic 

prediction represents a significant advancement in precision livestock breeding 

by enabling environmentally responsive genomic selection. Through the 

deployment of diverse sensor technologies, such as computer vision, 

accelerometers, and behavioral analytics, AI-driven systems can continuously 

monitor key physiological and behavioral traits. For example, automated feed 

intake prediction leverages deep learning applied to visual data, while 

accelerometer-based sensors track rumen activity to provide insights into 
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digestive health. Early detection of heat stress, disease surveillance via cough 

detection and gait analysis, and reproduction monitoring through activity spikes 

further enrich the phenotypic data captured in real time (Cooper & Messina, 

2021; Lamanna et al., 2025). 

Incorporating these dynamic environmental and behavioral indicators directly 

into genomic prediction models enhances the modeling of genotype-by-

environment (G×E) interactions, which are critical for accurate selection 

decisions under variable conditions. By capturing the complex interplay between 

an animal’s genetic potential and its immediate environment, this approach 

improves the precision of breeding value estimates and supports more resilient 

and productive livestock populations. This synergy of AI-analyzed sensor data 

with genomic tools thus offers a powerful framework for optimizing animal 

performance and welfare in diverse production systems (Cooper et al., 2020).  

 

6.8.1. Digital Twin–Enabled Livestock Systems 

Emerging research in precision livestock farming is increasingly centered on 

the full integration of artificial intelligence (AI) to optimize animal management 

and productivity. A key innovation in this domain is the development of digital 

twins—virtual replicas of individual animals that leverage comprehensive 

datasets to simulate and predict performance outcomes. These digital twins 

integrate multiple data layers, including genomic architecture, which provides 

insights into the genetic potential and predispositions of the animal; phenotypic 

history, capturing observable traits and past performance; real-time sensor data, 

offering continuous monitoring of physiological and behavioral parameters; and 

detailed health records, documenting medical history and treatments (Arulmozhi 

et al., 2024; Vallée, 2024). 

By synthesizing this diverse information, digital twins enable the generation 

of accurate virtual simulations that can forecast growth, health status, and 

productivity under varying environmental and management conditions. This 

holistic approach facilitates precision decision-making, allowing farmers to tailor 

interventions such as nutrition, breeding, and healthcare on an individual basis. 

The integration of AI-driven digital twins thus represents a transformative step 

toward sustainable and efficient livestock farming, enhancing animal welfare 

while maximizing resource use and economic returns (Monteiro et al., 2018; 

Neethirajan & Kemp, 2021b). 
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7. SPECIES-SPECIFIC APPLICATIONS OF  

GENOMIC SELECTION 

 

The efficacy of genomic selection in livestock breeding is contingent upon 

several critical factors that are specific to each species. The genetic architecture, 

encompassing the number, effect size, and distribution of genes influencing traits, 

is pivotal in determining the effectiveness of genomic information in predicting 

breeding values. Species characterized by simpler genetic architectures or traits 

governed by fewer genes typically exhibit higher prediction accuracies. 

Furthermore, population size and structure significantly impact the degree of 

linkage disequilibrium (LD) between genetic markers and causal variants, 

thereby influencing the reliability of genomic predictions. Larger, well-

characterized populations with robust LD patterns enable more precise genomic 

evaluations. The availability and quality of phenotyping infrastructure are equally 

crucial, as accurate and consistent trait measurement is fundamental to the 

training of genomic prediction models (Heffner et al., 2011; Liu et al., 2019). 

The economic significance of traits targeted by genomic selection also varies 

across species and production systems, influencing breeding priorities and 

investment in genomic tools. For instance, traits such as milk yield and quality 

are of paramount importance in dairy cattle, whereas growth rate and feed 

efficiency may be prioritized in pigs and poultry. This chapter systematically 

examines how these factors affect implementation strategies, prediction 

accuracies, and realized genetic gains in cattle, sheep, goats, poultry, and pigs. It 

further elucidates species-specific challenges, such as the relatively limited 

genomic resources in small ruminants compared to cattle or the complex breeding 

structures in poultry, emphasizing the necessity for tailored approaches to 

optimize the benefits of genomic selection across diverse livestock species 

(Nayak et al., 2024; Strandén et al., 2019). 

 

7.1. Cattle (Dairy and Beef) 

Cattle have emerged as the leading species for genomic selection in livestock 

breeding, owing to several synergistic factors that have facilitated its rapid and 

effective implementation. A primary enabler is the establishment of extensive 

reference populations, which offer a large and diverse genetic dataset crucial for 

the precise estimation of marker effects. These populations are bolstered by 

robust, standardized phenotypic recording systems that ensure high-quality and 

consistent trait measurements across animals, thereby enhancing the reliability of 

genomic predictions. Moreover, cattle populations exhibit long-range linkage 

disequilibrium (LD), allowing genetic markers to reliably tag causal variants 
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across broader genomic regions, thus augmenting the efficacy of genomic 

selection models (Esrafili Taze Kand Mohammaddiyeh et al., 2023; Strandén et 

al., 2019).  

Additionally, the widespread commercial availability and adoption of 

genotyping technologies have reduced costs and increased accessibility for 

producers, expediting the integration of genomic information into breeding 

programs. The economic incentives are also substantial, as production traits in 

cattle—such as milk yield, growth rate, and feed efficiency—possess high 

financial value, motivating investment in genomic tools to enhance these traits 

efficiently. Collectively, these factors have created an optimal environment for 

genomic selection to flourish in cattle, establishing a benchmark for other 

livestock species seeking to leverage genomic advancements for genetic 

improvement (Wiggans et al., 2016; Wiggans & Carrillo, 2022). 

 

7.1.1. Dairy Cattle Genomic Selection 

Since its introduction in North America and Europe around 2008, genomic 

selection in dairy breeds such as Holstein, Jersey, and Brown Swiss has 

significantly transformed breeding programs. This method utilizes dense single 

nucleotide polymorphism (SNP) arrays, typically comprising 50K to 150K 

markers, in conjunction with extensive genomic databases like CDCB and 

EuroGenomics, to estimate breeding values with markedly enhanced accuracy. 

The reported accuracies for genomic estimated breeding values (GEBVs) differ 

by trait category, with milk yield exhibiting the highest accuracy range of 50–

70%, followed by fertility traits at 30–50%, and health and robustness traits at 

25–45% (VanRaden, 2008). These advancements in prediction accuracy facilitate 

more precise selection decisions, thereby accelerating genetic gain across 

economically significant traits (Wiggans et al., 2016). 

The economic impact of genomic selection is substantial, primarily due to a 

significant reduction in the generation interval from the traditional 5–6 years to 

approximately 2 years. This reduction enables a more rapid turnover of superior 

genetics within the population, thereby enhancing overall herd performance more 

swiftly. Furthermore, the widespread adoption of genomic indices by artificial 

insemination (AI) companies has enabled the large-scale dissemination of 

genetically superior sires. Key factors contributing to this success include 

standardized phenotyping protocols that ensure consistent trait measurements, 

high imputation accuracies that facilitate cost-effective genotyping even with 

lower-density arrays, and the integration of comprehensive genomic and 

phenotypic data. Collectively, these elements have established genomic selection 
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as a fundamental component of contemporary dairy cattle breeding strategies 

(Brito et al., 2020a; Mrode et al., 2019). 

 

7.1.2. Beef Cattle Genomic Selection 

Genomic selection in beef cattle breeds, including Angus, Hereford, 

Charolais, and Limousin, has experienced significant growth, albeit at a slower 

pace compared to dairy cattle. This slower advancement is primarily attributed to 

several challenges inherent in beef production systems. Beef breeds display more 

heterogeneous phenotypes than dairy cattle, complicating the capture of 

consistent genetic signals across populations. Furthermore, the recording of key 

traits such as feed efficiency and survival is more complex in extensive or 

pasture-based systems, thereby limiting the availability of high-quality 

phenotypic data. The smaller size of reference populations in beef cattle further 

constrains the accuracy and robustness of genomic predictions, as fewer animals 

with both genotypic and phenotypic data are available for model training (Esrafili 

Taze Kand Mohammaddiyeh et al., 2023). 

Despite these challenges, recent advancements have enhanced the precision 

of genomic predictions for significant traits in beef cattle. Noteworthy progress 

has been achieved in predicting feed efficiency, a critical factor for reducing 

production costs and minimizing environmental impact. Additionally, 

improvements have been realized in carcass quality traits, which directly affect 

meat value and consumer preferences. Furthermore, adaptation to pasture-based 

systems, a crucial element for many beef production environments, has become 

more predictable through genomic tools. These advancements reflect ongoing 

efforts to expand and refine reference populations and integrate diverse data 

sources, thereby enhancing the utility of genomic selection in beef breeds 

(Boichard et al., 2015). 

 

7.2. Sheep 

Genomic selection in sheep has lagged behind cattle primarily due to several 

genetic and practical challenges. One major factor is the substantial variation in 

linkage disequilibrium (LD) patterns across different sheep breeds, which 

complicates the transferability and accuracy of genomic predictions. 

Additionally, sheep populations tend to have highly heterogeneous structures, 

often influenced by diverse breeding practices and geographic isolation, further 

limiting the effectiveness of uniform genomic selection models. Compounding 

these issues are incomplete or inconsistent phenotypic records in many countries, 

which reduce the reliability of training datasets needed for robust genomic 

evaluations (Larkin et al., 2019; Prieur et al., 2017). 
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The introduction of the 50K Sheep HD SNP array (Kijas et al., 2012) 

represented a significant advancement, enabling more precise genotyping and 

facilitating the application of genomic selection in sheep breeding. This 

technology has been successfully applied to improve key traits such as parasite 

resistance (e.g., fecal egg count), wool yield and fiber quality, growth and carcass 

characteristics, and reproductive performance. National breeding programs like 

Australia’s MERINOSelect and New Zealand’s Sheep Improvement Ltd (SIL) 

have incorporated genomic tools into their selection schemes, often employing 

hybrid statistical models such as BayesR and GBLUP to enhance prediction 

accuracy and genetic gain. These developments underscore the growing 

integration of genomic technologies in sheep breeding, despite the earlier 

challenges (Bolormaa et al., 2015; Daetwyler et al., 2010). 

 

7.3. Goats 

Genomic selection in goats has advanced at a slower rate compared to cattle 

and sheep, primarily due to several limiting factors. These factors include the 

limited availability of reference populations, which constrains the accuracy and 

robustness of genomic predictions, as well as inaccuracies in pedigrees that 

undermine the reliability of genetic evaluations. Furthermore, small herd sizes 

and inconsistent phenotyping practices have impeded the accumulation of high-

quality data necessary for effective genomic selection (Carillier-Jacquin et al., 

2018). Despite these challenges, significant advancements have been made in 

dairy goat breeds, particularly in France, where genomic selection programs have 

been successfully implemented for Saanen and Alpine breeds. These programs 

have demonstrated genomic estimated breeding value (GEBV) accuracies 

ranging from 30% to 60% for key milk production traits, indicating promising 

potential for genetic improvement (Boichard et al., 2015; Teissier et al., 2018). 

Despite advancements, the development of genomic tools in goats continues 

to encounter challenges, notably the significant variation in linkage 

disequilibrium (LD) patterns across different breeds, which complicates the 

transferability of genomic information. Additionally, the lack of a centralized 

phenotyping infrastructure restricts the consistency and scale of data collection. 

To mitigate cost-related barriers, the implementation of low-density single 

nucleotide polymorphism (SNP) arrays, in conjunction with imputation 

techniques, has been instrumental in reducing genotyping expenses. This strategy 

has broadened the accessibility of genomic selection programs to a wider array 

of herds, thereby facilitating more extensive implementation. Furthermore, 

genomic models targeting traits such as mastitis resistance have been developed, 

reflecting efforts to enhance animal health alongside production traits. 
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Collectively, these advancements contribute to the gradual yet significant 

integration of genomic selection in goat breeding programs (De Lima et al., 2020; 

Larkin et al., 2019). 

 

7.4. Poultry 

Poultry represents the second most advanced livestock species in the 

implementation of genomic selection, following cattle. This advancement is 

primarily attributed to the commercial poultry industry's integration of genomic 

tools, facilitated by the species' rapid generational turnover and large population 

sizes. The genomic architecture of poultry is characterized by short-range linkage 

disequilibrium (LD), necessitating the employment of higher-density single 

nucleotide polymorphism (SNP) panels to adequately capture genetic variation. 

Furthermore, the complex population structure, shaped by multiple distinct 

breeding lines, presents unique challenges and opportunities for genomic 

selection strategies (Aslam et al., 2012; Dekkers, 2012; Goddard et al., 2010). 

Genomic selection in poultry has successfully improved a variety of 

economically significant traits, including egg production and quality, growth rate, 

feed conversion efficiency, mortality rates, robustness, and health-related traits 

such as tibial dyschondroplasia and heat tolerance. Leading breeding companies, 

such as Hy-Line, Aviagen, and Cobb, intensively utilize genomic selection to 

accelerate genetic gain while effectively managing inbreeding levels. Their use 

of advanced genomic tools facilitates more precise selection decisions, thereby 

enhancing overall productivity and sustainability within the poultry industry (De 

Beukelaer et al., 2017; Liu et al., 2018; Wolc et al., 2015). 

 

7.5. Aquaculture 

In the past decade, genomic selection in aquaculture has undergone substantial 

advancements, driven by the rapid expansion of global aquaculture production 

and the increasing demand for genetically improved stocks. Compared to 

terrestrial livestock, aquaculture species often exhibit higher fecundity, larger 

effective population sizes, and shorter generation intervals, creating an ideal 

environment for the application of genomic-based breeding strategies. However, 

challenges such as high within-family variance, limited pedigree accuracy, and 

the widespread use of mass spawning in hatcheries underscore the need for 

genomic tools to enhance the accuracy of breeding value estimation (Houston et 

al., 2020; Yáñez et al., 2015). The development of species-specific SNP arrays, 

including those for Atlantic salmon, rainbow trout, tilapia, and shrimp, has 

facilitated reliable genome-wide marker coverage, thereby enabling more precise 

genomic predictions (Correa et al., 2015; Palaiokostas et al., 2016). 
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Genomic selection has facilitated significant advancements in various 

economically important aquaculture traits, including disease resistance, growth 

performance, feed efficiency, fillet quality, and stress tolerance. Among these, 

disease resistance has emerged as a primary focus due to the substantial economic 

losses associated with pathogens in farmed fish populations. For instance, 

genomic selection for resistance to Piscirickettsia salmonis in Atlantic salmon has 

achieved prediction accuracies up to twofold higher than those obtained through 

pedigree-based BLUP methods, indicating the considerable genetic gain 

achievable for health traits (Yáñez et al., 2014; Barría et al., 2018). Similarly, 

genomic prediction for sea lice resistance has been successfully integrated into 

breeding programs, contributing to reduced parasite loads and diminishing the 

necessity for chemical treatments (Tsai et al., 2016). In species such as tilapia, 

genomic models have enhanced the accuracy of breeding values for growth and 

carcass traits, despite the complex mating systems and limited pedigree 

information typical of many tilapia hatcheries (Joshi et al., 2020). 

The integration of genomic technologies into aquaculture is steadily 

advancing as the costs associated with sequencing decrease and high-throughput 

phenotyping tools—such as automated imaging, hyperspectral sensors, and 

environmental monitoring platforms—are increasingly utilized. However, 

several challenges persist, including the high cost of genotyping for species with 

low economic value, the requirement for large and diverse reference populations, 

and the complexity of implementing genomic selection in species with polyploid 

genomes, such as sturgeon and certain oyster species. Despite these constraints, 

the growing body of evidence demonstrating enhanced genetic gain, improved 

disease resilience, and increased production efficiency underscores genomic 

selection as a transformative approach poised to drive the next generation of 

breeding advancements in aquaculture (Houston, 2017; Robledo et al., 2018). 
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7.6. Cross-Species Comparative Assessment 

The Table 3, summarizes species-specific differences in genomic selection 

implementation. 

 

Table 3. Species-specific differences in genomic selection implementation 

Species 
Implementatio

n Level 

Reference 

Population 

Size 

LD Pattern Key Challenges 

Cattle Very high Very large Long LD G×E, health traits 

Sheep Moderate Medium 
Highly breed-

dependent 

Pedigree gaps, population 

heterogeneity 

Goats Low–moderate Small Short LD 
Poor phenotyping, small 

herds 

Poultry Very high 
Extremely 

large 
Short LD Between-line variability 

Aquaculture Moderate Very large Short LD 

Mass spawning causing 

pedigree uncertainty; high 

within-family variance; 

limited phenotyping 

infrastructure; polyploidy 

in some species 

 

7.7. Future Directions in Species-Specific Genomic Selection 

The future of livestock genomics is poised to benefit significantly from the 

routine implementation of Whole-Genome Sequencing (WGS). This advanced 

sequencing technique will greatly enhance the identification of genetic variants 

and improve the precision of genomic predictions across diverse species. WGS 

facilitates the accurate detection of genetic markers associated with traits of 

economic and biological significance. In addition to WGS, the integration of 

multi-omics data—including microbiome profiles, metabolomics, and epigenetic 

modifications—will be essential for unraveling the intricate biological pathways 

that govern traits influenced by a combination of genetic and environmental 

factors. This comprehensive approach provides a deeper insight into trait 

architecture and supports the development of more effective selection strategies 

(Liu et al., 2023; Nayak et al., 2024; Xu et al., 2025; Ye et al., 2020). 

Concurrently, advancements in artificial intelligence, particularly through 

convolutional neural networks (CNNs), Transformer architectures, and hybrid 

deep learning models, are poised to revolutionize the identification of causal 

single nucleotide polymorphisms (SNPs) and functional genomic regions by 

capturing intricate patterns within large-scale genomic datasets. The development 

of cross-species genomic models, which leverage shared reference populations 
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and multi-species prediction frameworks, is expected to further reduce costs and 

enhance prediction accuracies by facilitating knowledge transfer across related 

species. Moreover, as climate change intensifies, there will be an increasing focus 

on breeding climate-resilient and heat-tolerant livestock. Genomic research will 

prioritize adaptation traits to ensure sustainable productivity and animal welfare 

under changing environmental conditions, marking a critical shift in breeding 

objectives (Ehret et al., 2015; Haque et al., 2024; Meuwissen et al., 2016; Rasal 

et al., 2024). 
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8. INTEGRATION OF GENE-EDITING TECHNOLOGIES 

(CRISPR, PRIME EDITING) WITH GENOMIC SELECTION 

 

Genomic selection has markedly advanced livestock breeding by facilitating the 

swift identification and propagation of advantageous genetic traits within 

populations. This methodology utilizes extensive genomic data to predict breeding 

values, thereby expediting genetic gain without necessitating phenotypic evaluation 

of each individual. Nevertheless, its efficacy is inherently constrained by the genetic 

variation already present within the breeding pool. Gene-editing technologies address 

this limitation by directly modifying the genome to introduce novel alleles or rectify 

deleterious mutations that are either absent or rare in the population. These 

technologies provide precise, targeted interventions that can augment genomic 

selection by broadening the genetic diversity available for breeding programs 

(Bishop & Van Eenennaam, 2020; Lu et al., 2024). 

Contemporary gene-editing technologies, including CRISPR-Cas systems, base 

editors, and prime editors, offer versatile platforms for the precise and efficient 

manipulation of livestock genomes. The CRISPR-Cas system facilitates targeted 

DNA cleavage followed by repair, enabling the insertion, deletion, or replacement of 

specific genetic sequences. Base editing allows for the conversion of individual 

nucleotides without causing double-strand breaks, thereby minimizing off-target 

effects and enhancing safety. Prime editing further refines this capability by 

permitting precise insertions, deletions, and various base substitutions with minimal 

unintended modifications. The integration of these gene-editing techniques with 

genomic selection strategies can expedite the development of livestock exhibiting 

enhanced traits, such as disease resistance, productivity, and environmental 

adaptability. However, the application of these technologies necessitates careful 

consideration of ethical issues, animal welfare, and regulatory frameworks to ensure 

their responsible use in livestock breeding (Rodriguez-Villamil et al., 2024; Wani et 

al., 2022). 

 

8.1. Fundamentals of Gene-Editing Technologies 

Gene editing encompasses a suite of biotechnological tools that enable 

targeted cutting, modification, or replacement of DNA sequences within the 

genome. 

 

8.1.1. CRISPR-CAS9 

CRISPR-Cas9’s versatility stems from its modular design, allowing 

researchers to easily customize the single guide RNA (sgRNA) to target virtually 

any DNA sequence of interest. This adaptability facilitates a wide range of 
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genetic manipulations, including gene knockouts, insertions, and corrections, 

which are invaluable for functional genomics studies and the development of 

gene therapies. Moreover, the system’s ability to introduce multiplexed edits—

simultaneous targeting of multiple genomic sites—enables complex genetic 

modifications that were previously challenging or impossible with earlier 

genome-editing technologies such as zinc finger nucleases (ZFNs) or 

transcription activator-like effector nucleases (TALENs). This capability 

accelerates research workflows and expands the scope of potential applications 

(Ferreira & Choupina, 2022; Naeem et al., 2020). 

CRISPR-Cas9 technology has emerged as a transformative tool in animal 

breeding, offering unprecedented precision and efficiency for modifying genomic 

regions associated with economically important traits. By enabling targeted 

editing of specific loci, CRISPR-Cas9 allows breeders to introduce beneficial 

alleles, eliminate deleterious variants, and accelerate genetic improvement far 

beyond the limits of traditional selection and even genomic selection alone. One 

of the most prominent applications in livestock is the correction or introduction 

of functional variants that confer disease resistance, such as editing the CD163 

gene in pigs to generate complete resistance to Porcine Reproductive and 

Respiratory Syndrome (PRRS), or modifying viral entry receptors in poultry to 

enhance influenza resistance. Similarly, editing the PRNP gene in cattle has 

demonstrated the potential to mitigate the risk of transmissible spongiform 

encephalopathies (Cigan et al., 2024; Islam et al., 2020; Ruan et al., 2017). 

Beyond disease resistance, CRISPR-Cas9 is being deployed to manipulate 

traits linked to productivity, animal welfare, and environmental adaptability. 

Notably, the introduction of the naturally occurring SLICK allele into beef cattle 

has significantly improved heat tolerance, a trait of growing importance under 

global climate change (Harris et al., 2020). Likewise, targeted disruption of the 

MSTN (myostatin) gene in cattle, sheep, and goats has resulted in increased 

muscle mass, offering potential benefits for meat production, although these 

modifications require careful evaluation to avoid unintended physiological 

consequences. Gene editing has also facilitated improvements in reproductive 

efficiency and stress tolerance by fine-tuning endocrine, metabolic, or 

thermoregulatory pathways (Kim et al., 2020; Pozzebon et al., 2024; Zhu et al., 

2020; Carlson et al., 2016). 

Despite these promising advances, several challenges continue to shape the 

responsible implementation of CRISPR-Cas9 in livestock breeding. Potential off-

target effects, mosaicism, variable editing efficiency, and the need for reliable 

delivery systems—particularly in large domestic animals—remain areas of active 

investigation. Ethical and regulatory considerations further influence the 
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deployment of edited animals in commercial production, with global policies 

differing markedly in their treatment of gene-edited livestock. Nevertheless, 

when integrated with genomic selection, multi-omics data, and precision 

phenotyping, CRISPR-Cas9 is poised to redefine the trajectory of animal 

breeding, enabling rapid, targeted genetic progress that aligns with the goals of 

sustainability, animal health, and agricultural resilience (Hennig et al., 2020; 

Salvesen et al., 2024; Zhou et al., 2014). 

CRISPR-Cas9 has rapidly become one of the most influential technologies in 

aquaculture genetics, offering precise manipulation of loci controlling growth, 

disease resistance, sterility, and environmental tolerance. In salmonids, CRISPR-

mediated knockout of the dead end (dnd1) gene has successfully produced 

germline-sterile Atlantic salmon, providing a powerful strategy for preventing 

genetic introgression between farmed and wild stocks and enhancing the 

sustainability of aquaculture systems (Wargelius et al., 2016). Similarly, targeted 

editing of the slc45a2 pigmentation gene in Atlantic salmon and Nile tilapia has 

validated the efficiency and specificity of CRISPR tools for functional genomics 

and trait mapping in teleost species (Edvardsen et al., 2014; Li et al., 2021). A 

major focus of gene-editing research in aquaculture is the improvement of disease 

resistance—an economically critical trait due to high mortality from viral and 

bacterial infections. For example, CRISPR-Cas9 knockout of the pou2f1b gene 

in catfish has conferred enhanced resistance to Edwardsiella ictaluri, while 

editing of immune-related loci such as tnfrsf11b and tlr5 in common carp and 

grass carp has significantly increased resilience against bacterial pathogens 

(Khalil et al., 2017; Wang et al., 2018). In addition to disease resistance, gene 

editing has been effectively used to enhance growth performance, as 

demonstrated by CRISPR-induced mutations in the myostatin (mstn) gene in 

channel catfish and tilapia, which resulted in increased muscle accretion and 

accelerated growth rates (Zhong et al., 2016; Coogan et al., 2022). Beyond 

targeted gene knockouts, CRISPR has become instrumental in developing strains 

with improved thermal tolerance and salinity adaptation by modulating endocrine 

and osmoregulatory pathways central to aquaculture productivity (Dehler et al., 

2016). Despite these achievements, limitations such as mosaicism, variable 

editing efficiency, and ethical constraints regarding the commercial release of 

gene-edited fish continue to shape regulatory and scientific discussions. 

Nevertheless, with expanding genomic resources, improved delivery methods, 

and integration with genomic selection and multi-omic datasets, CRISPR-Cas9 

is expected to become a cornerstone technology for accelerating genetic gain, 

improving animal health, and enhancing sustainability across global aquaculture 

systems. 
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8.2. Applications of Gene Editing in Livestock and Aquaculture 

Gene-editing technologies have been successfully applied across multiple 

livestock species and aquaculture. Advancements in livestock genetic 

engineering have enabled the development of cattle with enhanced disease 

resistance, such as those resistant to Bovine Viral Diarrhea Virus (BVDV). A 

notable example includes the knockout of the PRNP gene, which confers 

resistance to transmissible spongiform encephalopathies, a group of fatal 

neurodegenerative diseases. These genetic modifications hold significant 

promise for improving herd health and reducing economic losses caused by 

infectious diseases (Antos et al., 2021; Brunelle et al., 2007; Kuile et al., 2017). 

In addition to disease resistance, genetic improvements targeting 

environmental adaptability and physical traits have been successfully 

implemented. These innovations demonstrate the potential of precise genome 

editing to improve both animal welfare and production efficiency (Proudfoot et 

al., 2014). 

Genome editing has shown significant potential in enhancing disease 

resistance and production traits across various livestock species. For example, 

editing the CD163 receptor in pigs has been demonstrated to confer complete 

resistance to Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), a 

major swine pathogen, thereby improving animal health and reducing economic 

losses (Whitworth et al., 2016). Similarly, knocking out the MSTN (myostatin) 

gene in pigs leads to increased muscle mass, presenting opportunities for 

improved meat yield. In xenotransplantation research, multi-locus genome 

editing has been employed to modify pig genes to reduce immunological 

incompatibility with human recipients, advancing the prospects of using pig 

organs for human transplantation (Wang et al., 2022). 

In small ruminants like sheep and goats, targeted genome editing strategies 

have focused on enhancing muscularity through MSTN knockouts and improving 

disease resistance by editing immune-related genes associated with Ovine 

Progressive Pneumonia Virus (OPPV) and scrapie. In poultry, editing viral entry 

receptors has been explored to confer resistance against avian influenza, a critical 

disease affecting poultry health and production. Additionally, targeted mutations 

aim to improve laying performance and egg quality, supporting both productivity 

and animal welfare in the poultry industry. These examples collectively illustrate 

how precise genetic modifications can address key challenges in animal 

agriculture by enhancing disease resistance and production efficiency (Wang et 

al., 2015; Zhou et al., 2022). 

For example, targeted edits of immune-related genes such as tnfaip8l3 in 

zebrafish have demonstrated enhanced resistance to bacterial infections, 
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supporting the development of genetically resilient strains (Wang et al., 2018; 

Liu et al., 2019). Additionally, gene editing has been applied to modify traits 

associated with environmental adaptability. For instance, altering endocrine 

pathway genes in salmonids has shown potential to improve thermal tolerance, 

an increasingly important trait under climate change pressures (Dehler et al., 

2016). Collectively, these innovations demonstrate that gene-editing technologies 

offer transformative potential in aquaculture by enhancing disease resistance, 

growth performance, environmental resilience, and stock management 

efficiency. 
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9. CHALLENGES, RISKS, AND FUTURE PERSPECTIVES IN 

GENOMIC SELECTION 

 

Genomic selection (GS) has significantly transformed livestock genetics by 

facilitating more rapid and precise breeding decisions. However, it encounters 

substantial limitations that impede its full potential. Biologically, challenges 

include the intricate genetic architecture of traits, genotype-by-environment 

interactions, and the difficulty of capturing rare variants or epistatic effects with 

current models. From a computational perspective, the integration and analysis 

of extensive, heterogeneous datasets necessitate advanced algorithms and 

considerable computational resources. Economically, the expense associated 

with generating high-quality genomic and phenotypic data can be prohibitive for 

numerous breeding programs, particularly in developing regions. Furthermore, 

social acceptance and ethical concerns emerge from the application of genome 

editing and data-driven breeding approaches, encompassing issues related to 

animal welfare, biodiversity loss, and equitable access to technology (Alali & 

Wardat, 2024; Bhat et al., 2023; Elufioye et al., 2024; Mmbando & Ngongolo, 

2024). 

The future of genomic selection (GS) is set to undergo significant 

transformation through the integration of big data analytics, artificial intelligence-

driven prediction systems, multi-omics integration, and genome editing 

technologies. These advancements hold the potential to enhance predictive 

accuracy, expedite genetic gain, and facilitate precision breeding tailored to 

specific environmental conditions and production objectives. However, they also 

introduce new complexities and risks, including concerns related to data privacy, 

algorithmic biases, and unintended ecological consequences. Ethical and socio-

economic considerations must be meticulously addressed to ensure responsible 

implementation, encompassing transparent governance, stakeholder engagement, 

and policies that balance innovation with sustainability. Future research should 

prioritize the development of robust, interpretable models, the improvement of 

data sharing frameworks, and the exploration of the long-term impacts of 

advanced genomic technologies on livestock populations and farming 

communities (Aboelhassan & Abozaid, 2024; Lu et al., 2024; Quteishat, 2024). 

 

9.1. Genetic and Biological Challenges 

9.1.1. Complexity of Polygenic Traits 

Many economically important livestock traits, including fertility, health, 

behavior, and feed efficiency, exhibit a highly polygenic architecture 

characterized by the involvement of numerous genetic loci, each contributing a 
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small effect. This complexity, combined with their typically low heritability, 

poses significant challenges for genetic evaluation and breeding programs. The 

cumulative influence of many small-effect loci makes it difficult to accurately 

capture the genetic variance underlying these traits, which in turn limits the 

predictive accuracy of genomic estimated breeding values (GEBVs). Although 

modern genomic selection (GS) programs utilize high-density single nucleotide 

polymorphism (SNP) markers to capture genetic variation comprehensively, the 

polygenic nature of these traits inherently restricts the performance of prediction 

models (Calus & Veerkamp, 2007; Goddard et al., 2010; Liu et al., 2011). 

Furthermore, environmental factors play a substantial role in shaping the 

phenotypic expression of these traits, adding another layer of complexity to 

prediction efforts. Traits with strong environmental influence tend to exhibit 

greater phenotypic variability that is not attributable to genetic differences, 

thereby diluting the genetic signal available for selection. This environmental 

noise reduces the reliability of GEBVs, especially when the genetic architecture 

is highly polygenic. Consequently, despite technological advances in genotyping 

and statistical modeling, the interplay between polygenicity and environmental 

variation remains a primary bottleneck in achieving high accuracy in genomic 

predictions for these economically critical traits. Addressing these challenges 

requires continued refinement of models that can better integrate genetic and 

environmental data to improve prediction reliability (Habier et al., 2013; 

Jayasinghe et al., 2024). 

 

9.1.2. Genotype–Environment Interaction (G×E) 

In production systems characterized by substantial environmental variation, 

the accuracy of genomic predictions often suffers due to the complex interactions 

between genotype and environment (G×E). For instance, in heat-stressed 

environments, thermoregulatory responses can significantly influence gene 

expression patterns, thereby altering phenotypic outcomes and reducing the 

predictive power of genomic models that do not account for such stressors. 

Similarly, variable feeding regimes can modify metabolic pathways, leading to 

differential gene expression and physiological adaptations that challenge the 

stability of genomic predictions. Extensive production systems with 

heterogeneous management practices further exacerbate this variability, as 

diverse environmental conditions and management inputs create a broad 

spectrum of phenotypic responses that are difficult to capture with standard 

genomic prediction models (Calus et al., 2016; Slater et al., 2022). 

To address these challenges, future genomic selection (GS) frameworks must 

explicitly incorporate G×E interaction models to enhance prediction robustness 
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across diverse and fluctuating environments. Integrating environmental 

covariates and interaction terms into GS models will enable a more accurate 

representation of how genotypes perform under varying conditions, improving 

the reliability of selection decisions. This approach will facilitate the 

development of breeding strategies that are resilient to environmental 

heterogeneity, ultimately optimizing genetic gain in real-world production 

settings. By embracing G×E models, breeders can better predict performance 

stability and adaptability, which are critical for sustainable genetic improvement 

in complex, variable production environments (Morais Júnior et al., 2018; 

Mulder, 2016).  

 

9.2. Modeling Challenges 

Linkage disequilibrium (LD) reflects the non-random association of alleles at 

different loci and varies considerably among breeds, lines, and composite 

populations due to their unique breeding histories, effective population sizes, and 

selection pressures. This variability in LD patterns poses significant challenges 

for genomic prediction models, as models trained on one population often fail to 

generalize effectively to others. The problem is particularly acute in species like 

sheep, goats, and poultry, where populations tend to be highly structured and 

fragmented, with reference datasets typically limited to specific breeds. Such 

population stratification reduces the accuracy of across-breed genomic 

predictions because the underlying LD structure and allele frequencies differ 

substantially between populations (Daetwyler et al., 2012; Ma et al., 2024; Song 

et al., 2019). 

To overcome these limitations, enhancing across-breed prediction accuracy 

requires leveraging more comprehensive genomic information beyond single-

marker effects. Incorporating deeper genomic features such as functional 

annotations—identifying regions of the genome with biological significance—

and haplotype-based models that consider blocks of linked variants can capture 

the shared genetic architecture more effectively across diverse populations. These 

approaches enable models to exploit conserved genomic segments and functional 

elements that transcend breed boundaries, thereby improving the transferability 

of prediction models. Developing methodologies that integrate these richer 

genomic data layers is essential for advancing genomic selection in fragmented 

populations and for achieving robust, cross-population predictive performance 

(Ma et al., 2024). 
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9.3. Capturing Non-linear Genetic Relationships 

Traditional linear models like GBLUP operate under the assumption that 

genetic effects are additive, which limits their capacity to capture more complex 

genetic phenomena such as dominance, epistasis, and higher-order interactions. 

These non-additive genetic effects can contribute significantly to the genetic 

architecture of complex traits, making purely additive models insufficient for 

accurate genomic prediction in many cases. Consequently, there is a growing 

need for more flexible modeling approaches that can accommodate these 

complex relationships to improve predictive performance (Dos Santos et al., 

2016; Duenk et al., 2019). 

Deep learning (DL) models offer a promising alternative due to their ability 

to model nonlinear and intricate patterns in genomic data. However, their 

application in genomic selection (GS) is hindered by several challenges. The 

"black-box" nature of DL algorithms results in limited interpretability, making it 

difficult to trace decision pathways, understand biological relevance, or identify 

causal variants underlying predictions. This opacity complicates error diagnosis 

and reduces user trust. Explainable AI (XAI) methods are therefore critical for 

enhancing transparency and interpretability in DL-based GS. Additionally, DL 

models demand large, diverse training datasets to prevent overfitting and ensure 

generalizability. In livestock species with small or limited reference 

populations—particularly in small ruminants and minor breeds—this data 

requirement restricts the practical utility of DL approaches, underscoring the need 

for strategies to overcome these limitations (Singh et al., 2024; Zhang et al., 

2022). 
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10. CONCLUSION AND GENERAL EVALUATION 

 

Genomic selection has revolutionized livestock breeding by enabling the 

prediction of an animal’s genetic potential with unprecedented precision and 

efficiency. By leveraging dense genome-wide markers, breeders can now capture 

the effects of numerous quantitative trait loci simultaneously, which significantly 

enhances the accuracy of estimated breeding values compared to traditional 

pedigree-based methods. The establishment of large, well-characterized 

reference populations has been critical in calibrating these genomic prediction 

models, allowing for robust estimation of marker effects across diverse breeds 

and populations. Furthermore, advancements in statistical modeling, including 

Bayesian approaches and machine learning algorithms, combined with AI-driven 

frameworks, have facilitated the integration of complex genomic data and 

improved the prediction of economically important traits, such as growth rate, 

disease resistance, and fertility (Chakraborty et al., 2022; Wellmann & 

Bennewitz, 2012) 

Beyond the core genomic data, the integration of multi-omics layers—such as 

transcriptomics, proteomics, and metabolomics—holds great promise for further 

refining selection accuracy and understanding the biological mechanisms 

underlying complex traits. This holistic approach enables breeders to incorporate 

functional genomic information, thereby enhancing the ability to predict 

phenotypes under varying environmental conditions and management practices. 

Economically, genomic selection accelerates genetic gain while reducing 

generation intervals and costs associated with progeny testing, ultimately 

improving productivity and sustainability in livestock systems. Looking ahead, 

continued innovation in data collection technologies, computational methods, 

and the expansion of global genomic resources will drive the evolution of 

genomic selection, fostering precision breeding strategies that address emerging 

challenges in animal agriculture (Choudhary et al., 2024; Li et al., 2024). 

 

10.1. Strengthening of Scientific Foundations 

The success of genomic selection has been propelled by significant 

advancements in molecular genetics that have enhanced the resolution and 

accuracy of genetic analyses. Key developments include a refined understanding 

of genome structure and the delineation of linkage disequilibrium (LD) blocks, 

which enable more precise identification of genomic regions associated with 

traits of interest. The discovery and mapping of quantitative trait loci (QTL) have 

provided critical targets for selection, while the creation of high-density single 

nucleotide polymorphism (SNP) genotyping arrays has allowed for 
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comprehensive and cost-effective genotyping across diverse populations. 

Collectively, these innovations have improved the characterization of genetic 

diversity and the establishment of robust reference populations in economically 

important livestock species such as cattle, sheep, goats, pigs, and poultry, thus 

facilitating more efficient and reliable genomic predictions (Hayes & Goddard, 

2010; Iheshiulor et al., 2016). 

Moreover, the integration of multi-omics datasets—encompassing 

transcriptomics, epigenomics, microbiomics, proteomics, and metabolomics—

has enriched the biological context underlying genomic selection. These multi-

layered data sources reveal complex interactions between gene expression, 

regulatory elements, and phenotypic traits, providing a holistic view of the 

genetic architecture of complex traits. By linking molecular mechanisms to 

observed phenotypes, researchers can better understand gene regulation, 

pleiotropy, and environmental influences, thereby enhancing the predictive 

power and functional interpretation of genomic selection models. This systems-

level approach, as highlighted by Roukos et al. (2021), supports the development 

of more precise breeding strategies that consider not only genetic markers but 

also the dynamic biological pathways influencing trait variation (Hay, 2024; Ma 

et al., 2024). 

 

10.2. Evolution of Statistical Models 

In the early stages of genomic selection, linear models such as GBLUP, 

Bayesian Ridge Regression, and BayesA/B/C were foundational due to their 

simplicity and interpretability. These models assume additive genetic effects and 

linear relationships between markers and traits, which limits their ability to 

capture the complexity inherent in biological systems. As genomic datasets grew 

larger and more complex, researchers recognized the need for more flexible 

modeling approaches capable of representing non-linear and interactive genetic 

architectures (Hay, 2024). 

The advent of machine learning (ML) and deep learning (DL) methods 

marked a significant evolution in genomic prediction. These approaches can 

model complex patterns such as epistatic interactions (interactions between 

genes), gene–environment interactions, and other non-linear genetic relationships 

that linear models cannot adequately capture. Kernel-based methods extend this 

flexibility by implicitly mapping data into higher-dimensional spaces, enhancing 

predictive performance. Additionally, the integration of explainable artificial 

intelligence (XAI) tools has improved the interpretability of these complex 

models, allowing researchers to better understand the biological significance of 

predictions. Collectively, these second-generation genomic prediction methods 
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have substantially increased prediction accuracy for complex traits, enabling 

more effective selection strategies in breeding programs (Montesinos-López et 

al., 2021). 

 

10.3. Role of Digital Phenotyping and Sensor Technologies 

Modern livestock production increasingly leverages IoT-based sensor 

technologies to gather continuous, high-resolution data on various animal traits 

such as activity levels, feed consumption, rumination behavior, health indicators, 

and other behavioral characteristics. These sensors enable the collection of 

dynamic phenotypic data in real time, providing a detailed and nuanced 

understanding of individual animal status and performance. When this wealth of 

phenotypic information is combined with AI-driven analytical frameworks, it 

substantially improves the precision of predictive models, especially for traits 

related to health, behavior, and welfare. This enhanced predictive capability 

supports more timely and informed decision-making in livestock management, 

allowing for early detection of health issues, optimization of feeding strategies, 

and overall improvement of animal well-being (Lamanna et al., 2025; 

Neethirajan, 2023). 

The integration of continuous phenotypic monitoring with genomic selection 

marks a significant evolution in breeding and farm management practices. 

Traditionally, genomic selection has been a static process focused on genetic 

evaluation based on historical data. However, by incorporating real-time sensor 

data analyzed through AI models, genomic selection transforms into a dynamic 

decision support system. This system can adapt to changing conditions on the 

farm, providing actionable insights that guide management interventions and 

breeding decisions in near real time. Such a shift not only enhances the accuracy 

of genetic evaluations but also bridges the gap between genetic potential and 

actual animal performance, ultimately contributing to more sustainable, efficient, 

and welfare-conscious livestock production (Fatoki et al., 2024; Vlaicu et al., 

2024). 

 

10.4. Economic and Sustainability Benefits 

Genomic selection drives economic gains primarily by shortening the 

generation interval, which accelerates genetic progress across livestock 

populations. Enhanced prediction accuracy allows breeders to identify superior 

animals more reliably, leading to improved traits such as feed efficiency and 

disease resistance. These improvements reduce production losses and lower 

overall costs, directly benefiting profitability. For example, in dairy cattle, the 

implementation of genomic selection has been quantified to yield an annual 
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economic advantage of approximately 50–100 USD per cow, reflecting 

significant returns on investment in breeding programs (Wiggans et al., 2011). 

From a sustainability standpoint, genomic selection contributes to climate-

positive livestock production by mitigating environmental impacts and 

promoting animal health. Reduced methane emissions and decreased reliance on 

antibiotics help address key concerns related to greenhouse gases and 

antimicrobial resistance. Additionally, the development of heat-tolerant and 

climate-resilient breeds supports adaptation to changing environmental 

conditions, while efforts to preserve genetic diversity ensure long-term 

population viability. Together, these factors position genomic selection as a 

strategic tool for advancing both economic and ecological goals in modern animal 

agriculture (Sachdeva et al., 2025; Strandén et al., 2019). 

 

10.5. Challenges and Areas Requiring Further Development 

Despite its transformative potential, genomic selection faces several 

significant challenges that hinder its widespread and effective application in 

breeding programs. One major limitation is the generally low accuracy of across-

population predictions, which restricts the transferability of genomic prediction 

models between different genetic backgrounds or environments. This issue is 

exacerbated for traits with low heritability, where the genetic signal is weak and 

difficult to capture accurately. Additionally, the scarcity of large, high-quality 

phenotypic and genotypic datasets, often compounded by sensor errors and 

inconsistencies in data collection, limits the robustness and reliability of genomic 

predictions. The high costs associated with genotyping and maintaining the 

necessary data infrastructure also pose substantial barriers, particularly for 

breeding programs with limited resources (Barwant et al., 2024; Demircioglu, 

2024). 

Beyond technical and economic constraints, genomic selection raises ethical 

and regulatory concerns, including the risk of genetic erosion and increased 

inbreeding as selection intensifies within narrower genetic pools. These 

challenges underscore the need for sustainable breeding strategies that not only 

aim for genetic gain but also preserve long-term population resilience. 

Addressing these issues will require concerted efforts to develop larger and more 

genetically diverse reference populations, facilitated by international data-

sharing initiatives that enhance the breadth and depth of available data. 

Furthermore, breeding programs must integrate practices that balance short-term 

improvements with the conservation of genetic diversity to mitigate risks 

associated with inbreeding and maintain adaptability to future environmental 

changes (Clark et al., 2013; De Beukelaer et al., 2017). 
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10.6. The Future Selection Paradigm 

Over the past decade, genomic selection has evolved through the integration 

of diverse biological data types and advanced computational methods, 

significantly enhancing the precision and scope of breeding programs. Multi-

omics data fusion now enables the simultaneous analysis of genomic, 

epigenomic, transcriptomic, microbiome, and metabolomic information, 

providing a holistic view of the biological systems that underpin traits of interest. 

This integrative approach, combined with AI-driven predictive frameworks, 

facilitates more accurate and robust predictions of complex traits by capturing 

interactions across multiple biological layers. Hybrid models that merge deep 

learning with explainable AI (XAI) techniques further advance this field by not 

only improving predictive accuracy but also offering biological interpretability, 

which is crucial for understanding the underlying genetic mechanisms and 

ensuring trust in AI-assisted decisions (Hu et al., 2019; Xu et al., 2025). 

In parallel, technological innovations in phenotyping and genome editing are 

transforming breeding strategies. Autonomous phenotyping platforms employ 

automated camera systems, RFID sensors, thermal imaging, and behavioral 

classifiers to collect high-resolution, real-time data on animal traits and 

behaviors, vastly increasing throughput and reducing human error. The 

integration of genome editing tools such as CRISPR and prime editing into 

breeding programs allows for precise genetic modifications that complement 

genomic selection, accelerating genetic gains while maintaining genetic 

diversity. Additionally, the concept of digital twin livestock—virtual replicas that 

integrate genomic, phenotypic, and environmental data—enables simulation-

driven optimization of breeding decisions under varying scenarios. Collectively, 

these advancements herald the era of Precision Breeding, characterized by data-

rich, sustainable, and AI-assisted genetic improvement systems that promise to 

revolutionize animal breeding with unprecedented accuracy and efficiency (Brito 

et al., 2020b; Klingström et al., 2024). 

 

10.7. General Conclusion 

Genomic selection has revolutionized livestock breeding by enabling the use 

of comprehensive genetic information to predict the breeding value of animals 

with unprecedented accuracy. This approach leverages large-scale genomic data 

and advanced computational models to accelerate genetic gain far beyond what 

traditional selection methods could achieve. The integration of data-intensive 

techniques allows breeders to make rapid, informed decisions, optimizing traits 

that enhance productivity, disease resistance, and environmental adaptability. 
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Consequently, genomic selection not only improves economic returns by 

increasing efficiency and output but also supports sustainability by promoting 

traits that reduce the environmental footprint of livestock production. 

Moreover, the convergence of genomic technologies with artificial 

intelligence further amplifies the potential of livestock improvement programs. 

AI-driven analytics can uncover complex genetic interactions and predict 

outcomes under diverse environmental conditions, facilitating more precise and 

adaptive breeding strategies. This synergy is critical in addressing global 

challenges such as food security and climate change, as it enables the 

development of resilient livestock populations tailored to evolving production 

systems. Ultimately, genomic selection forms the cornerstone of a future 

livestock industry that is integrated, intelligent, and sustainable, ensuring long-

term viability and responsiveness to societal needs. 
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