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Chapter 1 

Optimizing Tumor Classification with Machine 

Learning and Explainable AI Tools 

ABSTRACT 

Timely and accurate diagnosis of breast cancer is key to improving treatment 

protocols and the survivability of affected patients. In the present study, we 

investigated the performance of various machine learning (ML) algorithms for 

classifying tumors as either benign or malignant, using the Wisconsin Breast Cancer 

dataset, based on the following features: nuclear size, nuclear texture, and nuclear 

symmetry. We explored ten different ML models. Support Vector Machines (SVM) 

attained the highest mean classification accuracy of 98.60%, followed by Random 

Forest (97.90%); both CatBoostClassifier and K-Nearest Neighbors achieved similar 

mean classification accuracy of (97.20%). Additionally, advanced ensemble methods 

"like" XGBoost (96.50%) and LightGBM (95.80%), showed similar abilities with 

superior predictive accuracy. Meanwhile, traditional models, such as Logistic 

Regression (95.10%), and Gaussian Naive Bayes (91.61%) had respectable 

predictive performance, while others like Gradient Boosting (89.51%) and Decision 

Tree (87.41%) produced faster more interpretable results that could be beneficial in 

the clinic setting if time-crunched meaning they may provide benefit in the clinical 

scenario. The results of our study indicate that SVM and tree-based ensemble models 

show promise as ML diagnostic tools. SVM's and tree-based models, if utilized with 

explainable AI (XAI) tools such as SHAP or LIME, can provide excellent accuracy 

and the transparency and interpretability required for clinical acceptance. The 

integration of such techniques may ultimately strengthen trust in AI-assisted 

diagnostic tools and facilitate their adoption in real-world healthcare settings. 
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1. Introduction

Breast cancer, which is defined as uncontrolled breast tissue proliferation 

resulting in lump formation, is the most diagnosed cancer in women around the 

world. It often manifests as a lump in the breast, but early breast cancer may be 

asymptomatic and remain unnoticed in many cases [1]. There are significant 

identified risk factors for breast cancer, including genetic mutations in select 

genes, family history of breast and/or ovarian cancer, age, hormone replacement 

therapy, and some lifestyle-related factors. In fact, genetic mutations in BRCA1 

and BRCA2 would indicate a substantially higher likelihood of developing breast 

cancer [2]. Early detection of breast cancer is probably the most important facet 

of effective management of the disease [3]. Therefore, regular mammographic 

screening, breast self-examinations, combined with a low-fat diet, should be part 

of normal health care prevention routines. Maintaining a balanced diet that also 

promotes healthy body weight, should also assist with risk reduction. Treatment 

depends on the type and stage of cancer at diagnosis and may include one or more 

of the following: surgery, chemotherapy, radiotherapy, hormone therapy, 

targeted agents, etc. [4]. 

Progress in medical research and greater public awareness has led to advances 

in early diagnosis, as well as more effective treatment options. A healthy lifestyle, 

which includes a balanced diet, physical exercise and limited alcohol use has been 

shown to decrease the potential for illness [5]. The growing awareness of research 

and public health knowledge has allowed us to better understand breast cancer 

and how we can manage it. Recently, there has been a substantial increase in 

breast cancer incidence which is a major public health threat as it takes on many 

forms. Cancer is still a public health issue globally, affecting one in six people in 

the world [6]. Although skin cancer is viewed as the most common cancer 

incidence, breast cancer is the leading cause of cancer mortality in females. These 

are indications that we need to do more research and public health interventions 

due to its increasing exposure and severity [7]. Early detection has been shown 
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to increase treatment successfully. To better understand early detection, we need 

to identify good profile and get as quick a change in patient symptoms [8]. 

Numerous machine learning (ML) methods have been utilized to augment 

detection and prediction for any type of cancer [9]. Research has repeatedly 

supported the importance of early diagnosis on treatment effectiveness [10,11]. 

As a result, improving the accuracy and efficiency of breast cancer diagnostic 

tests are two goals. ML technologies are one of the most promising and can find 

weak patterns that traditional means do not recognize [12]. Models have large 

learning capacity with large data, faster diagnosis, and decrease complication risk 

[13]. The advances in technology have brought an accelerated cancer detection 

mechanism which allows for earlier and less complex disease detection and 

reduced invasive procedures. The relationship between personalized treatment 

and AI and ML has created an essential resource and function in this serious 

global health dilemma [14]. 

ML-based diagnostic systems can be useful to at-risk patients through 

screening programs that enroll them when they are identified in national 

diagnostic records, and hence doctors can provide well timed treatment 

interventions and or referrals to specialists when making a diagnosis, in the case 

of a life-threatening disease such as breast cancer [15]. Traditional methods of 

diagnostics in breast cancer screening are recognized as inadequate with some 

studies indicating that the historical model of diagnosis through imaging 

modalities, such as dynamic MRI and X-ray have a profound influence on 

survival, yet (are) often incompetent in their ability to restrict the identification 

of early-stage breast cancer, thereby allowing a rapid disease progression. Akhil 

et al. [16] explained that traditional techniques are limited not only because of 

their methodological incompetence, but because of class imbalance, poor pre-

processing, and inefficient feature selection. Similarly, Law et al. [17] developed 

& focused on meta-heuristic algorithms Gravitational Search Optimization 

(GSA), Emperor Penguin Optimization (EPO) and a hybrid hGSAEPO for 

classification to determine the best differentiator to only select relevant features, 
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discard irrelevant information, whilst minimizing model complexity. Likewise, 

Timothy et al. [18] reclaimed early diagnosis on patients with dense breast tissue 

by demonstrating the model performance benefit of implementing Linear 

Discriminant Analysis (LDA) with the outmost consideration on the model 

reliability indices; accuracy, precision, & F1 score. Using the UCI dataset, Aman 

et al. [19] developed an ensemble model that combined the decision tree, 

AdaBoost, Gaussian Naive Bayes, and multilayer perceptron such that this 

method surpassed previous studies at an accuracy of 97.66% only further 

positioning the accuracy in an ensemble model method. 

Moreover, Iman et al. [20] examined the effectiveness of Extreme Learning 

Machine (ELM) models, noting their capability to avoid overfitting and achieve 

classification performance comparable to SVMs in both binary and multiclass 

problems. Mohammad et al. [21], through a meta-analysis of 310 studies across 

30 datasets, revealed that deep learning models particularly RNNs achieved 

accuracy rates as high as 98.58%, outperforming conventional methods. Serhat 

et al. [22] demonstrated the robust performance of LightGBM and ensemble 

models on clinical and genetic datasets, emphasizing the importance of texture 

and concavity-related features. Mustafa et al. [23] proposed the OSELM 

algorithm, which showed reliable performance on the WBCD and WDBC 

datasets and demonstrated strong potential as a clinical decision support tool. 

Shazzad et al. [24] significantly improved diagnostic accuracy up to 99.82% 

through SHAP-based feature selection, highlighting the importance of selecting 

the right features. Finally, Gani et al. [25] demonstrated that integrating 

dimensionality reduction techniques such as PCA and LDA led to substantial 

improvements in model accuracy. These findings collectively underscore the 

efficacy of ML approaches in diagnosing and classifying breast cancer. 

Conventional diagnostic procedures for breast cancer are commonly 

inefficient and expensive, making treatment more difficult, in comparison, AI 

algorithms are frequently applied in medical data processing and cancer detection 

[26,27]. Stemming from big data and ML-based systems, can now shift the focus 
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from quantity of data to quality of data [28,29]. With widespread accessibility to 

data, ML algorithms are regularly implemented in the healthcare sector to carry 

out several activities, such as predicting disease, diagnosing disease, treatment 

planning, cost-effectiveness, and real-time decisions. In evaluating ten distinct 

classification algorithms Support Vector Machine (SVM), Random Forest, 

CatBoostClassifier, K-Nearest Neighbors (KNN), eXtreme Gradient Boosting 

(XGBoost), LightGBM, Logistic Regression, Gaussian Naive Bayes, Gradient 

Boosting, and Decision Tree the priority is to leverage the innovation that 

investment in cancer research and treatment has yielded. Implementing Artificial 

Neural Network (ANN)-based systems further offers a path towards increasing 

both the effectiveness and efficiency of targeted information and communication 

technologies supporting healthcare innovation [30]. AI's ability to use large 

volumes of patient data and interpret patterns that were never foreseen by the 

responsible clinician, enables a more accurate detection of potential cancers and 

personalized treatment [31,32]. 

The research presents various ML algorithms for breast cancer detection. In 

the introduction, the importance of early diagnosis of breast cancer for a better 

prognosis is discussed [33]. Every algorithm is systematically evaluated using 

the breast cancer dataset. The methodology involved a series of activities with 

regards to data; the data preprocessing, model training/testing, and determining 

the most accurate classifier. The results show how beneficial it is for clinics to 

utilize ML as an early diagnosis/identification of breast cancer which allows 

clinicians to earlier diagnose, recommend less invasive treatments, and help with 

improvement in oncology. The results also showed the great promise of 

integrating AI and ML practice in the clinic ultimately changing healthcare to 

achieve more personalized healthcare [34]. 
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2. Materials and Methods 

2.1 Dataset  

The present study utilizes a breast cancer dataset obtained from the University of 

Wisconsin Hospital, comprising 569 instances with 31 features. Each instance 

represents detailed information regarding a patient’s tumor characteristics. The 

primary objective is to classify these tumors as either benign (0) or malignant (1). 

Among the cases, 357 are benign and 212 are malignant. The dataset provides a rich 

and high-dimensional structure, enabling thorough exploration of patterns associated 

with tumor classification. Given that breast cancer remains the second leading cause 

of cancer-related deaths among women, early and accurate diagnosis is of critical 

importance. Effective classification not only enhances treatment outcomes but also 

reduces unnecessary medical interventions. The numerical and percentage 

distribution of benign and malignant cases in the dataset is presented in Figure 1.1 

[35].  

 

 

Figure 1.1 Distribution of benign and malign cases in the dataset, 

represented both as percentages and numerical values. 
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2.2 Characteristics and Classes of The Dataset 

This research delves into key tumor features that play a pivotal role in 

identifying breast cancer. Each characteristic offers insight into specific, 

clinically significant behaviors of tumor cells, helping to form a clearer picture 

of their nature. A detailed breakdown of these features and their associated 

attributes can be found in Table 1.1, serving as a foundation for the subsequent 

analysis and interpretation. 

Table 1.1 Dataset features and descriptions. 

Features Description 

x.radius_mean Mean radius of the tumor cells 

x.texture_mean Mean texture of the tumor cells 

x.perimeter_mean Mean perimeter of the tumor cells 

x.area_mean Mean area of the tumor cells 

x.smoothness_mean Mean smoothness of the tumor cells 

x.compactness_mean Mean compactness of the tumor cells 

x.concavity_mean Mean concavity of the tumor cells 

x.concave_points_mean Mean number of concave portions of the contour of the tumor cells 

x.symmetry_mean Mean symmetry of the tumor cells 

x.fractal_dimension_mean Mean "coastline approximation" of the tumor cells 

x.radius_se Standard error of the radius of the tumor cells 

x.texture_se Standard error of the texture of the tumor cells 

x.perimeter_se Standard error of the perimeter of the tumor cells 

x.area_se Standard error of the area of the tumor cells 

x.smoothness_se Standard error of the smoothness of the tumor cells 

x.compactness_se Standard error of the compactness of the tumor cells 

x.concavity_se Standard error of the concavity of the tumor cells 

x.concave_points_se 
Standard error of the number of concave portions of the contour of 

the tumor cells 

x.symmetry_se Standard error of the symmetry of the tumor cells 

x.fractal_dimension_se Standard error of the "coastline approximation" of the tumor cells 

x.radius_worst Worst (largest) radius of the tumor cells 

x.texture_worst Worst (most severe) texture of the tumor cells 
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x.perimeter_worst Worst (largest) perimeter of the tumor cells 

x.area_worst Worst (largest) area of the tumor cells 

x.smoothness_worst Worst (most severe) smoothness of the tumor cells 

x.compactness_worst Worst (most severe) compactness of the tumor cells 

x.concavity_worst Worst (most severe) concavity of the tumor cells 

x.concave_points_worst 
Worst (most severe) number of concave portions of the contour of 

the tumor cells 

x.symmetry_worst Worst (most severe) symmetry of the tumor cells 

x.fractal_dimension_worst Worst (most severe) "coastline approximation" of the tumor cells 

Y target 

2.3 Data preprocessing steps 

To enhance the quality and efficiency of the training process, the dataset 

underwent several preprocessing steps. Initially, the ID column was removed, as 

it served merely as a unique identifier for each sample and provided no predictive 

value. Retaining this column could have led the model to associate specific IDs 

with outcomes, thereby increasing the risk of overfitting. Next, missing values in 

the dataset were addressed rows containing null entries were either eliminated or 

imputed using statistical techniques such as mean or median replacement. Feature 

scaling was applied to standardize the range of all variables, which is essential 

for maintaining model performance, particularly in distance-based algorithms. If 

categorical variables were present, they were converted into numerical format 

using one-hot or label encoding methods. No logarithmic transformation was 

applied to the target variable, as it was already in a classification-appropriate 

format. Finally, the dataset was split into 75% for training and 25% for testing, 

as illustrated in Figure 1.2. 
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Figure 1.2 Division of the dataset into 75% for training and 25% for testing, 

illustrating the allocation used for model training and evaluation. 

 

2.4 Classification Models 

Table 1.2 provides an overview of the machine learning algorithms 

employed in this study, along with brief explanations of their fundamental 

working principles. These algorithms were selected based on their proven 

effectiveness in prior classification tasks and their ability to handle complex, 

high-dimensional data structures. Given that the Wisconsin Breast Cancer 

Dataset contains 30 features describing tumor cell characteristics, each algorithm 

was chosen for its potential to capture meaningful patterns within such data. The 

selection process prioritized criteria such as predictive accuracy, computational 

efficiency, and the capacity to detect subtle patterns within the dataset. The 

strengths of each algorithm were evaluated in alignment with the overarching 

goal of improving breast cancer diagnosis. The aggregate descriptions in Table 

1.2 highlight how each method contributes to achieving the objectives of this 

research. 
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Table 1.2 Details of algorithms used in this study. 

Algorithms Description 

Support Vector Machines (SVM) 

SVM are supervised learning models that work well 

in high-dimensional spaces by finding the optimal 

hyperplane that separates classes. They are effective 

in complex classification tasks but can be 

computationally intensive, especially with large 

datasets [36]. 

Random Forest (RF) 

Random Forest enhances decision trees by building 

multiple trees using random subsets of data and 

features [37]. This reduces variance and overfitting 

while improving generalization. Interpretability, 

however, can decrease with model complexity [38]. 

CatBoostClassifier 

CatBoost handles categorical variables natively, 

which reduces the need for heavy preprocessing. Its 

ordered boosting method minimizes overfitting 

while maintaining high predictive performance, 

particularly in datasets with many categorical 

features [39] . 

K-Nearest Neighbors (KNN) 

KNN is a simple [40], instance-based learning 

method that classifies samples based on the 

majority class of their k nearest neighbors. While 

intuitive and non-parametric, its performance can 

degrade with high-dimensional or imbalanced data 

[41]. 

Extreme Gradient Boosting (XGBoost) 

XGBoost is an advanced form of gradient boosting 

that offers high performance through regularization, 

parallel processing, and second-order optimization 

[42]. It is particularly effective in large-scale and 

structured datasets [43]. 

Light Gradient Boosting Machine 

(LightGBM) 

LightGBM uses a histogram-based method and 

grows trees leaf-wise rather than level-wise, which 

enhances both speed and memory efficiency. 

Though faster, it can overfit without appropriate 

hyperparameter tuning [44]. 
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Logistic Regression (LR) 

Logistic Regression is a foundational classification 

algorithm that models the probability of a binary 

outcome using a logistic function. Despite its 

simplicity, it is widely used due to its 

interpretability and speed, though it may 

underperform on non-linear data . 

Gaussian Naive Bayes (GNB) 

GNB is a probabilistic model based on Bayes' 

theorem, assuming feature independence and 

Gaussian distribution. It is especially useful for 

high-dimensional data and performs well even with 

small sample sizes . 

Gradient Boosting (GB) 

Gradient Boosting sequentially fits new models to 

the residuals of prior models [45], improving 

predictive performance [46]. It is powerful but 

sensitive to overfitting unless properly regularized 

using techniques like shrinkage or subsampling [47]  

Decision Tree (DT) 

Decision Trees classify data by splitting it based on 

feature values, forming a hierarchical tree [48]. 

Their strengths are simplicity and interpretability, 

though they are prone to overfitting without pruning 

or depth control [49]. 

 

 

3. Results and Discussion 

3.1 Support Vector Machines (SVM) 

The Support Vector Machine (SVM) classifier exhibited excellent and 

consistent performance in distinguishing between benign and malignant breast 

tumors, evidenced by an in general accuracy of 98.6%. The effectiveness of the 

SVM in solving binary classification problems in the medical domain has been 

compellingly illustrated by these findings. The SVM achieved a recall of 100% 

perfectly identifying all benign (non-cancerous) tumors, which resulted in no 

false negatives. Likewise, the SVM achieved precision of 100% for malignant 

locations and an F1-score of 98% for malignant locations, which created a 
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scenario with no false positives. The F1-scores by class were equally impressive, 

achieving 99% for benign and 98% for malignant tumors. Although a slight 

decline in recall (96%) was observed for malignant cases, the model’s aggregate 

performance remains highly valuable from a clinical perspective. The macro and 

weighted average F1-scores were 98% and 99%, respectively, indicating the 

classifier’s robust generalization capability even in the presence of class 

imbalance (91 benign and 52 malignant instances). These findings collectively 

emphasize that the SVM algorithm is a reliable and powerful tool for binary 

classification tasks, particularly in sensitive domains such as medical diagnostics. 

A detailed evaluation of the model’s performance is presented in Table 1.3, while 

a visual representation of its classification behavior is illustrated in Figure 1.3. 

 

Table 1.3 Observed data for the SVM algorithm.  

Class Precision % Recall % F1-Score % Support 

Benign 98.0 100.0 99.0 91 

Malign 100.0 96.0 98.0 52 

Macro avg 99.0 98.0 98.0 143 

Weighted avg 99.0 99.0 99.0 143 
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Figure 1.3 The Confusion Matrix of SVM model used in this study. 

 

3.2 Feature Importance 

The generated bar chart illustrates feature importance derived from the SVM 

model, measured by the magnitude of the coefficients. The most influential 

feature is x.symmetry_worst, with an importance score of approximately 53 [50]. 

This is followed by x.concavity_worst (~39), x.radius_mean (~36), 

x.concave_pts_worst (~30), and x.symmetry_mean (~25), all of which 

significantly contribute to the model's predictions. After these top-ranking 

features, a sharp decline in importance scores is observed. In contrast, features 

such as x.area_mean, x.area_worst, x.concavity_se, and x.fractal_dim_mean 

exhibit near-zero importance scores, indicating a minimal impact on the model's 

decision-making process. These results suggest that, for this linear SVM model, 
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a smaller subset of features carries the majority of the predictive power. The 

graphical representation of these findings is provided in Figure 1.4 [51]. 

 

Figure 1.4 Illustrates the feature importance plot for the SVM algorithm, 

highlighting the relative significance of each feature in the model's 

classification process. 

 

4. Conclusion 

Table 1.4 Experimental results of the ML algorithms. 

Rank Models Accuracy% 

1 Support Vector Machines 98.60 

2 Random Forest 97.90 

3 CatBoostClassifier 97.20 

4 K Nearest Neighbors  97.20 

5 XGradient Boosting 96.50 

6 LightGBM 95.80 

7 Logistic Regression 95.10 

8 Gaussian Naive Bayes 91.61 

9 Gradient Boosting  89.51 

10 Decision Tree  87.41 
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This study demonstrates the potential benefits of machine learning (ML) 

algorithms for the early detection of life-threatening diseases such as breast 

cancer using the Wisconsin Breast Cancer Dataset, with the results presented in 

Table 1.4. Several machine learning models were applied based on the 

measurement of cellular nucleus features such as size, texture, and symmetry to 

classify tumors as benign or malignant. Support Vector Machine (SVM) 

performed the best aggregate with an accuracy of 98.6%, followed by Random 

Forest (97.9%), CatBoostClassifier, and K-Nearest Neighbors (KNN) which both 

had the same accuracy of 97.2%. In particular, SVM performed well with the 

complex decision boundaries provided in the data, which suggests great utility as 

a reliable machine learning tool towards reinforcing medical diagnosis tasks. 

Importantly, advanced ensemble methods like XGBoost (96.5%) and LightGBM 

(95.8%) also reported comparable accuracy. On the other hand, traditional 

models, like logistic regression (95.1%) and Gaussian naive bayes (91.61%), still 

provided satisfactory classification accuracy. Although some algorithms, like 

gradient boosting (89.51%) and decision trees (87.41%), demonstrated less 

accuracy, they also add benefits in speed and interpretability in many clinical 

cases. In general, this study demonstrates that ML models can aid in the early 

identification of critical illness, which could fast track early clinical decision 

making, help reduce diagnostic errors, and help support personalized treatment 

plans. Further, if utilized with explainable AI (XAI), the models can further 

support interpretability and provide increased trust and comfort level for 

practitioners.  
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Chapter 2 

 

A Comparative Study of YOLOv9 and YOLOv10 

Architectures for Tumor Detection 

Abstract 

The human brain, a highly complex organ, is critical for all bodily functions; 

neoplastic lesions therein, such as brain tumors, represent a significant source of 

global morbidity and mortality with challenging prognoses. Magnetic Resonance 

Imaging (MRI) is the established gold standard for non-invasive brain tumor 

detection and characterization. Recently, artificial intelligence (AI), particularly deep 

learning (DL) algorithms like Convolutional Neural Networks (CNNs) and "You 

Only Look Once" (YOLO) models, has emerged to augment MRI analysis, aiming 

to improve diagnostic accuracy and efficiency. This study presents a comparative 

performance analysis of contemporary YOLOv9 and YOLOv10 models for 

automated brain tumor detection from MRI scans. Evaluation encompassed standard 

metrics (precision, recall, mAP50, mAP50-95) and considered model architecture, 

parameter count, and computational cost (FLOPs). Our findings indicate that while 

larger model variants generally yield higher precision and recall, performance gains 

exhibit diminishing returns beyond certain architectural complexity. Notably, the 

YOLOv10x model demonstrated a superior balance between high detection accuracy 

excelling in precision and mAP50-95 metrics and model efficiency. Furthermore, 

cost-performance trade-off analysis revealed that computationally intensive models 

(e.g., YOLOv9e) lacked proportional performance advantages over streamlined 

architectures (e.g., YOLOv9m, YOLOv10x). This suggests carefully selected, 

smaller, optimized models can achieve comparable, or more favorable, in total 

performance when factoring in efficiency. Significantly, this study demonstrates that 

appropriately optimized YOLO-based architectures can achieve performance levels 

in brain tumor detection that show considerable promise for clinical applicability.  
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1. Introduction 

Brain tumors, resulting from abnormal cell proliferation in the brain, represent 

a significant group of neurological diseases that can severely impact both 

physiological and cognitive functions [1,2]. Tumors are generally classified as 

benign or malignant, with early diagnosis being a critical factor for treatment 

success. Radiologists largely rely on magnetic resonance imaging (MRI) for brain 

tumor diagnosis, which provides information on spatial localization, size, and 

type of tumor [3]. MRI remains the preferred imaging modality for brain tumor 

diagnosis due to its ability to provide high-quality imaging of brain tissue [4,5]. 

However, despite advanced imaging technologies, the manual analysis of 

brain tumors is a time-consuming, laborious, inherently subjective, and error-

prone process. Difficulties in interpretation can arise, particularly due to irregular 

tumor shapes, indistinct and ill-defined edges, and challenges in distinguishing 

tumor tissue from surrounding healthy tissue [6,7]. With the advent of large 

datasets, the limitations of manual analysis have become even more apparent, 

thereby increasing expectations for automated detection and classification 

systems and intensifying interest in deep learning strategies [8]. 

In recent years, artificial intelligence has been successfully applied to various 

types of cancer and other fields, and it is increasingly becoming a critical area of 

importance [9–14]. Rapid advancements in deep learning have revealed the 

potential of object detection architectures, such as "You Only Look Once" 

(YOLO), for use in medical image analysis. While previous YOLO versions and 

other deep learning models have shown promising results in various medical 

imaging tasks, comprehensive comparative analyses of the latest generation 

architectures, especially in complex scenarios like multi-class brain tumor 

detection and for real-world clinical applications, are limited. Previous work has 

shown the potential for YOLO-based algorithms to succeed in medical imaging 

tasks. For instance, Kang et al. created the BGF-YOLO model based on 

YOLOv8, which they improved to detect brain tumors significantly better than 

before. They stated that YOLOv9 was successful in detecting and localizing 
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tumors with greater accuracy. To improve the model's focus on significant 

features, the BGF-YOLO model introduced Bi-level Routing Attention, 

Generalized Feature Pyramid Networks (GFPN) and a fourth detection head. 

They successfully improved their model over the YOLOv8x model and reported 

a difference of 4.7% on mAP on the Br35H dataset [15]. Elhanashi et al. explored 

brain tumors detection and localization using YOLOv9. They reported better 

accuracy and finding speed compared to previous models. YOLOv9 made 

significant improvement in tumor detection, and localization when trained on a 

brain MRI dataset [16]. 

Pandey and Bhandari combined a YOLOv5-based model with transfer 

learning for early-stage brain tumor detection. The results from the testing 

showed the first proper application for clinical settings. YOLOv5's accuracy was 

superior to existing alternative deep neural networks such as AlexNet, ResNet-

50, GoogleNet, MobileNet, VGG-16, YOLOv3 and YOLOv4. When this study 

performed their experiments on the BraTS21 dataset, YOLOv5 exhibited an 

mAP@0.5 score of 94.7%, which was then improved with morphological 

filtering to 97.2%, confirming the success of this model to detect brain tumors 

[17] . Du and colleagues developed a new model called YOLO-CPC; an 

extension of YOLOv7, that was used to detect and to segment breast tumors. With 

the incorporation of CBAM attention mechanism, PConv, and coordinate 

convolutions, YOLO-CPC improved performance by reaching identification and 

segmentation accuracy, recall, and mean accuracy with rates of 97.01%, 97.98%, 

and 90.78% respectively and exceeded the performance of Faster R-CNN, 

YOLOv3, YOLOv5, and YOLOv6. The advances in accuracy promote the 

potential use of YOLO-CPC for other medical imaging applications [18].   

Addressing the gap, this study aims to comprehensively compare the 

capabilities of state-of-the-art YOLOv9 and YOLOv10 variants in automatically 

detecting and classifying brain tumors on an MRI dataset comprising four distinct 

classes: Glioma, Meningioma, Pituitary, and No Tumor. The research seeks to 

reveal the strengths and weaknesses of these two leading models, particularly by 
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incorporating the "No Tumor" class often overlooked in the literature to 

holistically evaluate model performance on both positive and negative examples 

[19,20]. The anticipated findings are expected to provide significant insights into 

the efficacy of YOLO-based models for brain tumor detection and classification 

within medical image analysis, and to contribute to the development of reliable, 

rapid, and accurate AI-driven decision support systems that can bolster clinical 

workflows [21,22] . 

In this study, contemporary deep learning methodologies, specifically the 

state-of-the-art You Only Look Once (YOLO) versions YOLOv9 and YOLOv10, 

were rigorously applied for the automated detection and classification of brain 

tumors from Magnetic Resonance Imaging (MRI) scans. Recognizing the rapid 

evolution and distinct architectural advancements within the YOLO lineage, this 

research undertook a granular analysis of these two leading models. The diverse 

architectural configurations of these models, systematically scaled from compact 

to larger versions (e.g., -S, -M, -L, -X variants), were a central focus. Each 

configuration was meticulously evaluated based on its parameter count, 

computational footprint (FLOPs), and a comprehensive suite of performance 

metrics, including mean Average Precision (mAP) at various Intersection over 

Union (IoU) thresholds (e.g., mAP50, mAP50-95), precision, recall, and F1-

score. This detailed analysis was conducted on a specific, clinically relevant MRI 

brain tumor dataset to ensure the findings are grounded in a practical application 

context. The comprehensive investigation aimed not only to benchmark the raw 

detection and classification accuracy of each model variant but also to thoroughly 

elucidate their model-specific characteristics. These characteristics include 

architectural nuances, inference speed, and the critical trade-offs between 

detection efficacy and computational resource utilization. Ultimately, this 

multifaceted evaluation seeks to provide critical insights into the operational 

strengths and limitations of YOLOv9 and YOLOv10 variants, thereby offering 

evidence-based guidance for their optimal deployment in AI-assisted brain tumor 

diagnostic workflows. 
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2. Materials and Methods 

2.1 Dataset 

Our dataset is taken from the "Labeled MRI Brain Tumor Dataset" intended 

for brain tumor detection and classification purposes. The source dataset contains 

2,443 labeled MRI images, representing 4 different types of brain tumors, and 

has been split into three structures training, testing, and validation that each play 

a part in the construction of the model. The training structure is comprised of 

many samples that allows the model to learn from, while the test and validation 

structures evaluates the on the whole performance and generalization ability of 

the model. The distribution of the classes and what each class contains is 

referenced in detail in Figures 2.1 and 2.2. To evaluate the model's ability to 

classify brain tumors accurately, it is also pertinent to train the model to evaluate 

non-tumor instances, as understanding this relationship allows for the model to 

be robust. This form of organization aids in a more complete and realistic 

evaluation of the model and improves the model's ability to generalize to unique 

data points [23]. 

 

 

Figure 2.1 Details of dataset divison into 3 parts as train test and validation. 
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Figure 2.2 Number of images per class. 

 

Seven sample images from each class in the dataset is presented in Figure 2.3. 

This figure displays seven distinct images representing each class, offering a 

clearer insight into the visual diversity within each category. The selected images 

highlights the unique features necessary for the model to recognize and 

differentiate between the various classes. These visual examples have been 

carefully chosen to emphasize both the variety of appearances within each class 

and the importance of such diversity in the model's learning process. 
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Figure 2.3 Some randomly selected sample images of dataset classes. 

 

2.2 Brain Tumors 

The uncontrolled proliferation of living and dead cells within the brain is 

fundamentally responsible for the development of brain tumors [24–26]. The 

growth rate of these tumors varies from one individual to another and is also 

influenced by the specific location of the tumor within the brain. Based on this 

distinction, brain tumors can be categorized into two main types: primary and 

secondary. A primary brain tumor arises directly within the brain, while a 

secondary brain tumor originates elsewhere in the body and spreads to the brain 

[27–29] . The human brain is composed of three essential tissue structures: grey 

matter, white matter, and cerebrospinal fluid (CSF), as depicted in Figure 2. 4. 

The process of scanning different MR images relies heavily on the characteristics 

of these three elements within the brain. 
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Figure 2.4 Illustrates the three main tissue structures of the human brain: 

grey matter, white matter, and cerebrospinal fluid (CSF), which are essential 

for MRI imaging analysis. 

 

2.3 YOLOv9 and YOLOv10 Models 

Object detection is extremely important, especially in medical imaging and 

real-time applications, where time and accuracy are crucial. YOLO is a 

commonly used deep learning method in these scenarios due to its speed and 

accuracy of object detection. The YOLO models detect objects by splitting an 

image into an n x n grid of cells, where each cell predicts the class and location 

of any object within the cell. The entire process is a single prediction of the whole 

image which makes YOLO faster and more efficient than other detectors that 

require multiple passes. 

YOLOv9 and YOLOv10 models were used in this research for important 

medical imaging applications, such as brain tumor detection, in various 

MODELS. Each YOLO model is offered in a configured size optimized for 

different computational demands, which positions them in a place of usability 
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across many devices with a level of speed and accuracy. The YOLOv9 and 

YOLOv10 models can be fine-tuned, if we also consider the different 

computational power and parameter numbers each model is optimized for. 

Usually, the bigger the model the more accurate it is; however, the more accurate 

it is, the cost necessarily goes up. 

The YOLOv9 series provides several model variants that cater to various use 

cases. For example, the YOLOv9t fits the requirement for movement and/or 

computer systems that are limited in computing power, thus offering fewer 

parameters and enabling more rapid predictions. The YOLOv9e is larger and 

more capable of achieving higher accuracy; however, it demands more 

computational power. Other YOLOv9 variants provide various trade-offs 

between the YOLOv9e and YOLOv9t for systems with different capabilities. 

In a similar manner, the YOLOv10 series offers a better trade-off between 

speed and accuracy. The YOLOv10n is smaller and has less computational 

requirements than the YOLOv10x which improves accuracy with a higher 

number of parameters; however, it requires more computing capabilities. The 

YOLOv10 models provide decent versatility offering different trade-offs to 

address the performance and efficiency needs of the application. 

The computational costs of these models originate primarily from the number 

of layers, number of parameters, and the computational costs. The larger 

YOLOv9 and YOLOv10 models typically provides better accuracy, but where 

we run them would make it difficult to run them on a limited system. Therefore, 

finding the right model for the application would require deciding on an optimal 

level of speed and accuracy between the models. 

As a aggregate, the YOLOv9 and YOLOv10 family of models provide 

significant improvements in object detection tasks, where each variant might 

provide a different advantage depending upon the use case. Computational costs, 

while intuitive to calculate, may not have a direct relationship with accuracy and 

speed such that it is critical to consider the accuracy, speeds, definitions of speed, 
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etc. for each model. The architecture of the models is shown in Figure 2.5 and 

2.6 [30,31]. 

 

 

 

Figure 2.5 The PGI method and related network architectures are as follows:  

(a) Path Aggregation Network (PAN), (b) Reversible Columns (RevCol),  

(c) traditional deep supervision, and (d) our proposed Programmable Gradient 

Information (PGI). PGI consists of three main components: (1) the primary 

branch, which is the architecture used during inference, (2) the auxiliary 

reversible branch, which generates reliable gradients to support the primary 

branch during backward propagation, and (3) multi-level auxiliary 

information, which enables the main branch to adaptively learn from various 

levels of semantic data [32,33]. 

 

 

 

 

Figure 2.6 Consistent dual assignments for NMS-free training. 
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2.4 Performance measures 

To assess the effectiveness of a model or algorithm, a range of evaluation 

metrics is commonly utilized to determine its reliability and applicability. In the 

field of medical image analysis, these performance indicators are particularly 

crucial for evaluating diagnostic accuracy and consistency. The key metrics used 

in this study are summarized in Table 2.1. These measures not only reflect the 

model's predictive capabilities but also offer insight into the validity of the 

broadly speaking framework and the specific components it employs [34] . 

 

Table 2.1 Evaluation metrics. 

Parameter Formula Definition/functionality 

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Represents the proportion of all correct 

predictions both positive and negative 

relative to the total number of instances. 

Sensitivity/Recall 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Indicates the model’s ability to correctly 

identify actual positive cases among all true 

positives. 

Precision 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Reflects the ratio of true positive predictions 

to the total number of instances that were 

predicted as positive. 

Specificity 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 Measures the proportion of actual negative 

cases that were correctly predicted by the 

model. 

F1 

 
2 ×

𝑃𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅ⅇ𝑐𝑎𝑙𝑙

𝑃𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅ⅇ𝑐𝑎𝑙𝑙
 

A harmonic mean of precision and recall, 

providing a balanced metric for assessing 

overall model effectiveness. 

mAP 1

𝑛
∑𝐴𝑃𝑘

𝑛

𝑘=1

 
Used in object detection tasks, it represents 

the average precision across all classes or 

object categories. 

 

2.5 Data Augmentation 

In this study, no custom data augmentation methods were applied manually. 

However, the YOLOv9 and YOLOv10 models used in the experiments inherently 
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employ a variety of default augmentation strategies as part of their standard training 

configuration. These augmentations were automatically applied during training and 

contributed to the models’ performance by increasing the diversity of visual input. 

The argumentations include both color and geometric transformations. Color 

augmentations are performed in the HSV color space, where the hue is adjusted by 

±0.015, saturation by ±0.7, and value (brightness) by ±0.4. These changes help the 

model handle variations in lighting and color conditions. Geometric augmentations 

consist of random translations up to 10% along both axes (translate: 0.1), random 

scaling (scale: 0.5), and horizontal flipping with a probability of 50% (fliplr: 0.5), 

enabling the model to learn from different orientations and spatial arrangements [35]. 

In addition to these, the Mosaic augmentation technique is applied throughout the 

training process (mosaic: 1.0), merging four different images into one to present 

objects in varying contexts. This augmentation is turned off during the last 10 epochs 

(close_mosaic: 10) to allow more stable learning in the final training phase. The Rand 

Augment policy is also used as an Auto Augment strategy, randomly selecting and 

applying augmentation operations to further diversify the training data. Moreover, a 

Random Erasing technique with a 40% probability (erasing: 0.4) is employed to 

simulate partial occlusions by masking random rectangular areas within images. 

Collectively, these default augmentation strategies enhance the model’s ability to 

generalize by exposing it to a wide range of real-world variations, even though no 

manual augmentation was conducted [36]. 

 

2.6 Experimental design 

All experiments in this study were carried out on a Linux-based system running 

Ubuntu 22.04. The machine was equipped with an Intel Core i5-13600K processor, 

32 GB of DDR5 RAM, and an NVIDIA RTX 3090 GPU. PyTorch served as the 

primary deep learning framework, leveraging NVIDIA CUDA for GPU acceleration. 

To ensure consistency and fairness across all models, the same computational 

environment and hyperparameters were used throughout both the training and testing 

phases. 
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3. Results and Discussion 

Table 2.2 summarizes the performance of the YOLOv9 and YOLOv10 models in 

terms of precision, recall, mAP50, and mAP50-95. The given metrics make it easy 

to compare the aggregate performance of the various models and their ability to detect 

tumors across classes. The results show that there are large differences in 

performance depending on the model architecture, layer arrangement and total 

number of parameters. 

 

Table 2.2. The results observed as a result of the experiments in this study  

Model  Layer Params 

(M) 

FLOPs 

(G) 

Precision 

(%) 

Recall 

(%) 

mAP50 

(%) 

mAP50-95 

(%) 

Yolo 9 t 197 1.971 7.6 94.4 93.3 96.1 61 

Yolo 9 s 197 7.168 26.7 94.2 92.1 95.8 62.2 

Yolo 9 m 151 20.015 76.5 96.2 91 97 62.8 

Yolo 9 c 156 25.322 102.3 95.4 91.3 96.2 62.8 

Yolo 9 e 279 57.379 189.1 93.6 90.6 95.3 62 

Yolo 10 n 102 2.265 6.5 93.9 91.5 95.3 60.4 

Yolo 10 s 106  7.219 21.4 91.3 91.1 95 61 

Yolo 10 m 136 15.315 58.9 94.4 87.8 94.4 61.8 

Yolo 10 l 174 24.312 120.0 92.8 90.5 94.5 63.3 

Yolo 10 x 192 29.400 160.0 95.6 89.6 94.9 63 

 

Within the YOLOv9 series, the smallest model, YOLOv9-t, exhibited a 

precision of 94.4%, a recall of 93.3%, and a mean Average Precision (mAP) at a 

50% Intersection over Union (IoU) threshold (mAP50) of 96.1%. However, it 

achieved a more modest score of 61% on the mAP50-95 metric. An increase in 

model size generally correlated with improvements in precision, recall, and mAP 

scores. For instance, the YOLOv9-m model attained an mAP50-95 score of 

62.8%, with 96.2% precision and 91% recall. Conversely, the largest model, 

YOLOv9-e, with 279 million parameters, demonstrated a precision of 93.6% and 

an mAP50-95 value of 62%. This indicates a trade-off between model complexity 
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and performance, where a high computational cost (57.379 G FLOPs) did not 

proportionally translate to performance gains. 

A similar trend was observed in the YOLOv10 models. The smallest variant, 

YOLOv10-n, delivered 93.9% precision, 91.5% recall, and 95.3% mAP50, while 

recording the lowest mAP50-95 score at 60.4%. As model size increased, there 

was a consistent rise in precision and mAP50-95 scores. Notably, the YOLOv10-

x model outperformed others with 95.6% precision, 94.9% mAP50, and an 

mAP50-95 score of 63%, achieving these results with a reasonable number of 

parameters. These high scores, coupled with an acceptable parameter count, 

suggest that the YOLOv10-x model may be the most suitable for tumor detection 

tasks in terms of both accuracy and computational efficiency. 

The results underscore the general trend that models with more parameters 

typically perform better, yet also reveal that performance gains diminish after a 

certain model size. For example, while the YOLOv10-l model achieved an 

mAP50-95 score of 63.3%, the YOLOv10-x model reached an mAP50-95 score 

of 63% but offered better precision and recall values compared to YOLOv10-l. 

Therefore, YOLOv10-x is considered to provide the best performance at a 

reasonable model size, making it an evident choice for real-world tumor detection 

applications. 

The trade-off between performance and computational cost is also apparent 

when examining FLOPs and parameter counts. Although the YOLOv9-e model 

had a significantly higher FLOPs value (57.379 G), its performance increase was 

limited compared to smaller models like YOLOv9-m and YOLOv10-x, which 

achieved very high detection accuracy without an excessive computational 

burden. This suggests that smaller, well-optimized models can often offer 

comparable or better efficiency in daily operational use than larger counterparts. 

Furthermore, while larger models typically enhance detection performance, this 

study has demonstrated that there are diminishing returns from increasing model 

size. Thus, our findings emphasize the importance of weighing the fundamental 

decision points of balancing model complexity and parameter size with 
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computational cost and time. Accurately weighting these trade-offs is crucial in 

determining the most appropriate model for real-world contexts such as tumor 

detection in medical imaging, where both accuracy and efficiency are critical. 

Further research into such trade-offs is necessary to achieve more advancements 

in medical image analysis. 

Figure 2.7 presents examples to visualize the performance of the YOLOv9-m 

model. Subfigures (a) and (c) display the ground truth labels of tumors in the 

input images, whereas subfigures (b) and (d) illustrate the corresponding 

predictions made by the YOLOv9-m model for the same images. This 

comparison allows for a qualitative assessment of the model's detection 

capabilities and potential error margins. 
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(a) (b) 

  

(c) (d) 

Figure 2.7 In subfigure (a) and (c), the ground truth labels for YOLO 9M are 

displayed, whereas subfigure (b) and (d) illustrate the corresponding 

predictions. 

 

Figure 2.8 shows a resultant image obtained using the YOLOv9-m 

algorithm during the experiment. This image provides a practical example of how 

the model detects and marks tumors with bounding boxes in an MRI scan. Such 

visual results are important for understanding the model's applicability and 

performance in real-world scenarios. 

42



 

 

Figure 2.8 Results from the YOLO9M (Best model) model in the 

experiment. 

 

The provided Figure 2.8 illustrates the training and validation performance of an 

object detection model over 300 epochs. The top row of graphs depicts the training 

progress, specifically showing the box loss, classification (cls) loss, and distribution 

focal loss (DFL), alongside precision and recall metrics. These training loss curves 

exhibit a desirable decreasing trend, indicating that the model is effectively learning 

from the training dataset and minimizing errors in localization, classification, and 

bounding box refinement. Concurrently, the training precision and recall metrics 

demonstrate a consistent increase, eventually plateauing, which signifies improved 

accuracy in identifying positive instances and correctly classifying them. The bottom 

row of graphs presents the corresponding validation metrics: validation box loss, 

classification loss, and DFL loss, as well as mean Average Precision at an IoU 

threshold of 0.50 (mAP50) and mean Average Precision over IoU thresholds from 

0.50 to 0.95 (mAP50-95). Similar to the training losses, the validation box and 

classification losses decrease and then stabilize, suggesting good generalization to 

unseen data. While the validation DFL loss initially decreases, a slight upward trend 

is noticeable towards the later epochs, which might hint at the early signs of 

overfitting for that specific loss component. The mAP50 and mAP50-95 curves show 
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a significant improvement in the initial epoch followed by a plateau, indicating that 

the model's as a whole detection and segmentation performance on the validation set 

has stabilized at a high level. 

 

4. Conclusion 

This comparative performance analysis of YOLOv9 and YOLOv10 architectures 

for brain tumor detection underscores that optimal model selection extends beyond 

mere architectural scale, necessitating careful consideration of efficiency alongside 

detection accuracy. While larger models initially demonstrated enhanced precision 

and recall, our findings confirm a clear point of diminishing returns with increasing 

size and parameter count. Notably, YOLOv9m and YOLOv10x variants emerged as 

exemplars of an effective balance between robust detection capabilities and resource 

economy, with YOLOv10-x particularly excelling in precision and mAP50-95 

metrics. Furthermore, this study highlights a critical trade-off between computational 

expenditure and performance gain. For instance, the YOLOv9e model, despite its 

substantially higher FLOP value (57.379 G), did not yield commensurate 

improvements in detection accuracy when compared to the more streamlined 

YOLOv9m and YOLOv10x. This evidence substantiates that smaller, well-

optimized models can achieve comparable, and at times superior, practical 

performance relative to their larger, more resource-intensive counterparts. 

Consequently, these findings advocate holistic evaluation in model selection for real-

world applications. This is particularly crucial within demanding fields such as 

medical imaging for brain tumor diagnostics, where both high accuracy and 

operational efficiency are paramount. A judicious balance between model 

complexity, parameter load, and computational cost against achievable performance 

is essential. Future research focused on the advanced optimization of this 

performance-efficiency nexus is pivotal in advancing the capabilities and clinical 

integration of artificial intelligence in medical image analysis, specifically enhancing 

tools for brain tumor assessment. 
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Chapter 3 

 

Evaluating YOLOv10 and 

YOLOv11 Variants for Efficient Polyp Detection 

 

Abstract 

Colorectal cancer (CRC) is a significant global source of morbidity and mortality; 

however, it is highly preventable through the early detection and removal of pre-

invasive lesions, namely polyps. While colonoscopy is the gold standard for CRC 

screening and polyp detection, human factor-related miss rates have spurred interest 

in artificial intelligence (AI)-based computer-aided detection (CADe) and diagnosis 

(CADx) systems, with deep learning models showing promise. This study conducted 

a comprehensive performance evaluation of various versions of the latest YOLO 

(You Only Look Once) architectures, YOLOv10 and YOLOv11, for polyp detection. 

The models were assessed not only on standard detection metrics precision, recall, 

F1 score, and mean Average Precision (mAP50-95)—but also on structural and 

efficiency characteristics, including model architecture, layer depth, parameter count, 

and computational cost per inference per image. Analyses revealed that larger YOLO 

models generally achieved higher detection accuracy, though diminishing returns in 

performance gains were observed beyond a certain model size. Notably, the 

YOLOv10m, YOLOv11n, and YOLOv11s versions demonstrated an optimal 

balance between detection accuracy and model efficiency. Specifically, the 

YOLOv10m model, with 84.5% precision and 60.0% mAP50-95, emerged as a 

strong candidate for practical clinical applications. Similarly, the YOLOv11n model 

delivered competitive detection performance despite the efficiency advantages of its 

compact structure. These findings indicate that YOLOv10m, YOLOv11n, and -s 

represent different optimization points on the accuracy-computational cost spectrum, 

highlighting the potential for effectively deploying smaller, hyper-optimized models. 
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1. Introduction 

When it comes to total random mortality, cancer is still one of the most 

significant global public health challenges. Although this socially important 

disease has many diagnostic tools and treatment options, sometimes it is still 

challenging to detect cancer early enough to add value to the patient's outcome 

[1]. Each year, millions of new cancer cases are diagnosed, many of which are 

preventable or could be treated promptly if identified early, according to the 

World Health Organization (WHO). Colorectal cancer (CRC) is one of those 

cases with very high incidence and death rates across all societies [2].  

CRC is a sizable health burden to all transitional and developing countries. 

According to cancer statistics, in 2024, there were approximately 152,810 CRC 

diagnoses in the United States and around 53,010 deaths related to this disease 

[3]. Clearly for CRC, it is the third most common cancer in the world and the 

second leading cause of cancer deaths. The worldwide figures continued to 

escalate to nearly 1.9 million new CRC cases and around 900,000 deaths due to 

CRC by 2022 thus advising that society continue to face challenges with the ever-

increasing rates of incidence and mortality in CRC and new and effective 

methods of early detection/early treatment [4]. 

CRC pathogenesis generally follows a stepwise process starting with benign 

polyps in the mucosal layer of the colon or rectum that can, eventually, become 

tumors via malignant transformation. This process, the "adenoma-carcinoma 

sequence", takes 5 to 15 years, which is why there is a window to intervene, 

identify, and intervene. Identifying and removing adenomatous polyps early 

greatly reduces the risk of developing CRC. But such an opportunity depends on 

the existence of real-time, highly sensitive detection. Colonoscopy is considered 

gold standard for diagnosis and prevention of CRC because it can identify polyps 

and remove them at the same time. However, studies have reported that up to 

25% of polyps may go undetected at colonoscopic investigation, especially when 

they are flat or small [5–7]. 
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Through the digital transformation of medicine, AI-based computer-aided 

diagnosis (CADx) systems are emerging as significant platforms to improve early 

cancer diagnosis [8–12]. Deep learning, particularly convolutional neural 

network (CNN)-based architectures, is a game-changer for the analysis of 

medical images, providing unparalleled accuracy at tremendous speed [13,14]. 

The "You Only Look Once" (YOLO) algorithm, in particular, has recently gained 

interest mainly in the field of object detection in real-time which is useful for 

identifying polyps during an endoscopic procedure [15–21]. YOLO models 

perform an analysis by bounding the whole image as a singular pass producing 

high-speed high-precision analysis well suited for a clinical environment [22,23]. 

The current literature suggests deep-learning methods have led to substantial 

improvements in medical research applications and the deeper that endoscopists 

engage with relevant literature and artifical intelligence (AI) based technologies, 

the more likely they are to win over their peers. Hospitals are also investing in 

collecting their own proprietary datasets. For example, Catlow and colleagues 

found that endoscopists with lower polyp detection rates were associated with 

higher CRC incidence and mortality. A study of the UK’s National Endoscopy 

Database (NED) explored the ability of performance feedback based on their 

adjusted mean number of polyps (aMNP) for complexity of case to improve 

endoscopist’s performance [24]. 

Raseena et al. emphasized the global burden of CRC and the significance of 

early diagnosis. They set forth the idea of missed polyps at a 25% rate during 

colonoscopy, and proposed the DeepCPD model, which combined a transformer-

based architecture and a Linear Multi-head Self-Attention (LMSA) mechanism 

with data augmentation. On the four separate datasets that DeepCPD was tested 

on, DeepCPD attained accuracy, precision and recall of above 98%, and a training 

time decreasing by about 1.2 times. The high recall performance reduced false 

negatives, which can ultimately increase clinical diagnostic capabilities [25].  

Wu et al. also developed PATM-YOLO as a modified version of the YOLOv5 

model for the detection of small polyps. Their design included a detection head, 
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a new PATM attention module, and an optimized ASFF function for effective 

feature fusion. Now with the Swin Transformer, their model was even better! 

Inferences on both a proprietary and public dataset showed that PATM-YOLO 

exceeded YOLOv5, with a detection accuracy of 91.3% which was a 8.5% 

improvement from baseline [26]. 

In a different noteworthy study, Sherif et al. compared the performance of 

EndoCuff-assisted colonoscopy (EAC) with standard colonoscopy (SC) for polyp 

detection. During 2018-2020 at Cairo University Hospitals with 214 patients, 

EAC performed best for the detection of small polyps (≤9 mm) with a detection 

rate of 32.24% and SC with a lower detection rate of 26.64% (p < 0.05). The 

adenoma detection rates were also higher with EAC as they reported an 

comprehensive 17.2% versus SC 14.9% (p < 0.05). Minor mucosal erosions were 

noted in % 2.8 of patients [27].  

Finally, Sushama and Menon highlighted the increasing incidence of CRC in 

India emphasizing the necessity for early detection in the proposed patients. They 

introduced a CNN-based model to minimize glare influences in colonoscopic 

images while minimizing selection bias. Trained on the PolypGen dataset, the 

model was well-trained and able to generalize due to being trained on polyp and 

normal images. The assessment of the model on multiple datasets, including the 

Gastrointestinal Atlas-Colon Polyp, Gastrolab-Polyp, and ETIS-LARIB datasets, 

we observed the model scored precision, recall, F1 and F2 all above 75% [28]. 

In recent years, the increasing use of machine learning and deep learning 

algorithms in the medical field has drawn significant attention [29,30]. This 

research examines the relative performance of the various YOLOv10 and 

YOLOv11 model variants nano, small, medium, large, and xlarge in polyp 

detection [31,32]. We utilize some popular datasets, namely CVC-ClinicDB, 

CVC-ColonDB, Kvasir-SEG, and ETIS-LARIB. We held out a subset known as 

CVC-ColonDB as the validation set and merged them to create training data from 

the CVC-ClinicDB, Kvasir-SEG, ETIS-LARIB datasets. This merging of 

datasets to create the training data was intended to increase the model’s ability to 
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learn on a pooled dataset allowing greater transferability of the model to other 

diverse datasets [33,34].  

 

2. Materials and Methods 

2.1 Datasets 

Timely identification and therapy of gastrointestinal polyps is essential in the 

prevention of colorectal cancer. For this purpose, researchers at the intersection 

of medical imaging and computer vision have invested considerable time and 

effort developing complex algorithms for the automatic detection and 

segmentation of polyps. The success of these efforts largely rests on the quality 

and correct annotation of the datasets used. In our study, we combined four well-

known datasets CVC-ClinicDB, CVC-ColonDB, ETIS-LARIB Polyp DB, and 

Kvasir-SEG to create a combined framework for polyp detection. These 

collections include multiple endoscopic medical images and the corresponding 

annotated segmentation masks upon which to train deep learning models. 

The combined dataset includes 2,188 images in total, with 1,808 images 

entered the training split and 380 into the validation split. These datasets include 

polyps that are quite different in size, shape, and texture. The ambiguity in both 

features allows researchers to develop models that are more robust and more 

generalizable. For instance, images from CVC-ClinicDB and CVC-ColonDB are 

from colonoscopies, whereas ETIS-LARIB includes images of polyps that have 

more varying characteristics and tissue diversity. Kvasir-SEG provides validated 

segmentation masks for 1,000 polyps, with gastroenterology experts validating 

each segmentation mask to increase the quality of automated assessment. Putting 

together these datasets provides models that can be more realistically aligned with 

clinical reality and likely improves performance in a variety of scenarios. All of 

these datasets together provide a strong foothold for future research related to 

polyp detection. The distribution of each of the datasets presented in the training 

and validation splits related to both CVC-ClinicDB and Kvasir-SEG can be found 
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in Table 3.1. Example images from the combined datasets are shown in Figure 

3.1 [35–38]. 

 

Table 3.1 Distribution of images by dataset and assigned tasks. 

Dataset Task Images 

CVC-ClinicDB Train 612 

CVC-ColonDB Test 380 

Kvasir-SEG Train 1000 

ETIS-LARIB Train 196 

Total  2188 

 

 

Figure 3.1 Sample polyp images from different datasets. 

 

2.2 Data preprocessing steps 

In this study, various YOLO algorithm variants were employed to detect 

polyps, making full use of the built-in data augmentation techniques these models 

offer by default. Data augmentation plays a pivotal role in enhancing a model’s 

ability to generalize, as it helps the system learn to recognize objects under 

diverse conditions such as varying lighting, scales, positions, and orientations. 

The augmentation strategies automatically implemented by YOLO encompass a 

range of transformations, including adjustments in color space (notably HSV 
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modifications), geometric manipulations, mosaic augmentation, Auto Augment, 

and random erasing [39]. 

Specifically, the HSV adjustments involved subtle shifts in hue, saturation, 

and brightness by factors of 0.015, 0.7, and 0.4 respectively, fine-tuning the color 

properties of the images to reflect natural variations. Geometrically, images were 

translated by up to 10%, scaled by as much as 50%, and randomly flipped 

horizontally with a 50% chance, thus diversifying the spatial presentation of 

polyps. Mosaic augmentation applied with full intensity combined four distinct 

images into one, thereby exposing the model to a broader spectrum of 

backgrounds and spatial arrangements. Complementing this, the Auto Augment 

technique (specifically Rand Augment) randomly applies various transformations 

to increase data variety and effectively curb overfitting. Meanwhile, Random 

Erasing, activated with a 40% probability, randomly obscures parts of the images, 

simulating scenarios where visual data might be partially missing or corrupted, 

which in turn bolsters the model’s resilience. 

By integrating these augmentation methods, the training process encourages 

the development of models that are more robust and adaptable to real-world 

challenges such as fluctuations in illumination, changes in scale and orientation, 

partial occlusions, and diverse environmental conditions. This holistic approach 

not only improves training efficiency but also yields models with stronger 

generalization capabilities, ensuring their performance remains reliable when 

applied beyond controlled datasets [40]. 

 

2.3 Yolo Algorithms 

Detecting polyps, especially in medical imaging techniques like colonoscopy, 

are critical for early detection and actionable solutions. In this case polyps, YOLO 

algorithms represent one of the best types of models available as they can process 

input in real time, which is imperative in clinical scenarios. This is enabled by 

methodologically balancing speed and accuracy. YOLO models use a grid-based 

approach, splitting the image into an n-by-n grid, predicting the locations and 
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classes of objects in each cell. YOLO does this with a single pass over the image, 

unlike some detection methods, more efficiently with faster results.  

In this paper, we used the YOLOv10 and YOLOv11 families of models 

specifically for detecting polyps in colonoscope images. Both families of models 

are available in multiple configurations to leverage all levels of computational 

capacity of the hardware platform. For example, the YOLOv10 series offers a 

number of models of varying sizes, ranging from very small networks like 

YOLOv10n with 2.69 million parameters and 8.2 GFLOPs of required compute, 

to larger, more accurate networks like YOLOv10x with 31.58 million parameters 

and 169.8 GFLOPs. There are also intermediate sizes YOLOv10-s, m, l, and b, 

providing relatively the same detection performance for various computational 

costs, which allow researchers or developers to select based on the application 

they are deploying and resources available. 

Likewise, the YOLOv11 series was examined with respect to the possible use 

for polyp detection and followed with an examination of accuracy metrics. The 

YOLOv11n model, for the most efficient resource consumption, is only 2.58 

million parameters, and 6.3 GFLOPs. Clearly, if hardware is limited then this 

would be a reasonable option. YOLOv11x, on the other hand, uses 56.82 million 

parameters, and 194.4 GFLOPs and would be used if it were essential to have as 

accurate a classified detection are possible. YOLOv11s, m, and l represent 

different compromises achieved between processing time and accuracy which 

would allow disclosure of YOLOv11 into almost any context, clinical or 

otherwise. 

The computing requirements of these models are influenced, mostly by other 

parameters of the neural network, including how many layers and total 

parameters, and the floating-point operations per second (FLOPs). As mentioned 

in this discussion, while larger and deeper models have more capacity and 

generally have better accuracy, they almost universally have higher computing 

demands. Therefore, the choice of a model in clinical-application polyp detection 

requires finding the best model from a hardware-capacity standpoint that also 
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provides as much diagnostic accuracy level possible. Detailed architectures of 

these models can be found in Figures 3.2 and 3.3 [33,34]. 

 

Figure 3.2 Key architectural modules in YOLO11. 

 

 

Figure 3.3 Consistent dual assignments for NMS-free training. 

 

2.4 Evaluation Metrics 

In this study, the performance of YOLOv9 and YOLOv10 model variants for 

polyp detection was examined through a set of well-established evaluation 

metrics commonly employed in object detection tasks. Among these, Precision 

stands out as a measure of the proportion of correctly identified objects among 

all predictions made by the model, effectively highlighting how well the model 

avoids false positives. On the other hand, Recall quantifies the fraction of actual 

objects that the model successfully detects, with higher values indicating a 
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reduced likelihood of missing true positives. Together, these two metrics provide 

a balanced perspective on the model’s ability to accurately and comprehensively 

identify relevant objects. 

In addition to Precision and Recall, the Mean Average Precision (mAP) metric 

was also critically examined. mAP is a more inclusive measure of detection 

quality. mAP @50 demonstrates how well the predicted bounding boxes overlap 

with ground truth annotations when the Intersection over Union (IoU) is set to 

50%. Here we see our mAP scores are mostly above 0.97, which shows excellent 

performance within a relatively wide window for overlap. mAP @50-95 gives us 

an in general picture of performance across the different IoU thresholds (50%-

95%). mAP @50-95 shows us how accurately predicted bounding boxes 

delineate the ground truth annotations across different degrees of tolerated 

overlap presented by the various thresholds. The IoU metric allows for an 

objective and quantitative measure of accuracy, where higher values reflect 

greater precision regarding where the predicted bounding boxes and true 

bounding boxes overlap. 

Together, these measurements allowed us to achieve a comprehensive 

understanding of not only the accuracy of the models, but the robustness and 

generalizability of the models for various labels. The results presented in a 

quantitative manner provide immensely valuable management-based evidence to 

assess the most suitable model for the careful selection and implementation of 

accurate detection for clinical applications such as polyp detection, where both 

precision and recall are necessary to reliably support clinical judgements. 

 

2.5 Experimental design 

All experiments conducted as part of this study were performed on a Linux-

based system running Ubuntu 22.04. The hardware configuration included an 

Intel Core i5-13600K CPU, 32 GB of DDR5 RAM, and an NVIDIA RTX 3090 

GPU, which collectively provided a robust environment for deep learning tasks. 

PyTorch was used as the primary framework, with GPU acceleration enabled 
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through NVIDIA's CUDA toolkit. To maintain consistency and ensure a fair 

comparison between different models, the same computing setup and identical 

hyperparameter settings were applied throughout the entire training and 

evaluation processes. 

 

3. Results and Discussion 

Table 3.2 provides a complete aggregate of the results for the different 

YOLOv10 and YOLOv11 model types from the trials.  The analysis utilized 

mainly the primary metrics of precision, recall, mAP50, and mAP50-95 in 

combination to provide a well-rounded understanding of how these models 

perform in polyp detection.  These metrics provide a clear framework for 

assessing the models' aggregate accuracy, sensitivity, and generalizability across 

classes. 

 

Table 3.2 Summary of key architectural details and performance metrics for 

YOLOv10 and YOLOv11 models, highlighting parameter size, computational 

cost, and detection accuracy. 

Models  Layer Params 

(M) 

FLOPs (G) Precision 

(%) 

Recall 

(%) 

mAP50 

(%) 

mAP50-95 

(%) 

Yolo 10 n 125 2.69 8.2 89.2 68.1 80.3 56.9 

Yolo 10 s 129 8.03 24.4 90.9 71.4 82.8 57.8 

Yolo 10 m 159 16.45 63.4 84.5 68.8 81.5 60.0 

Yolo 10 l 197 25.71 126.3 89.9 69.2 82.5 58.9 

Yolo 10 b 165 20.41 97.9 85.5 70.6 81.5 57.4 

Yolo 10 x 215 31.58 169.8 86.7 69.1 81.5 59.4 

Yolo 11 n 100 2.58 6.3 91.1 73.6 84.9 59.3 

Yolo 11 s 100 9.41 21.3 83.5 74.4 83.1 59.1 

Yolo 11 m 125 20.03 67.6 83.1 74.2 82.8 57.6 

Yolo 11 l 190 25.28 86.6 88.1 70.4 82.3 55.9 

Yolo 11 x 190 56.82 194.4 86.3 72.1 83.7 58.4 
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The data presented in Table 3.2 reveals a clear correlation between model 

complexity, defined by parameter count and computational cost (FLOPs), and 

object detection performance. However, this trend is not linear and demonstrates 

diminishing returns beyond a certain threshold. Critically, the largest models do 

not uniformly yield the best results. For instance, the YOLOv10x, despite being 

the most computationally demanding model in its series with 31.58M parameters 

and 169.8 GFLOPs, achieves a lower mAP50-95 (59.4%) than the more 

streamlined YOLOv10m model (60.0%). A similar pattern is observed in the 

YOLOv11 series, where the largest variant, YOLOv11x, offers only marginal 

performance gains over its more compact counterparts. 

This analysis underscores a crucial trade-off between detection accuracy and 

computational efficiency. For practical applications such as real-time polyp 

detection, models like YOLOv10m, YOLOv11n, and YOLOv11s emerge as 

superior candidates. The YOLOv11n model, for example, achieves a robust 

59.3% mAP50-95 with a minimal footprint of 2.58M parameters and 6.3 

GFLOPs, showcasing exceptional efficiency. Likewise, the YOLOv10m 

provides the highest mAP50-95 in its series while maintaining a moderate 

computational load. To visualize its practical efficacy, Figure 3.4 presents 

experimental results from the YOLOv10m model, displaying its predictions 

against the ground truth labels on images from the CVC-ColonDB dataset. 

Ultimately, the empirical evidence suggests that merely increasing model size 

is a suboptimal strategy for enhancing detection accuracy. The primary challenge 

in domains such as medical imaging is to identify architectures that strike an 

optimal balance between diagnostic precision and computational feasibility. 

Future research should therefore focus on developing lightweight, optimized 

models that build upon these insights. By refining the accuracy-efficiency 

equilibrium, subsequent work can advance the development of more effective and 

reliable automated diagnostic tools. Figure 3.4 presents experimental results for 

the YOLOv10m model on images from the CVC-ColonDB dataset. Subfigure (a) 
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displays the ground truth labels for polyps, while subfigure (b) illustrates the 

corresponding polyp predictions made by the model. 

 

  

(a) (b) 

Figure 3.4 In subfigure (a), the ground truth labels for YOLOv10m are 

displayed, whereas subfigure (b) illustrates the corresponding predictions. 

 

Figure 3.4 offers a qualitative validation of the quantitative results by 

juxtaposing the manual annotations in subfigure (a) with the YOLOv10m 

detections in subfigure (b). Across the sampled frames, the predicted bounding 

boxes are almost perfectly congruent with the reference outlines, and the 

associated confidence scores frequently reach one, reflecting a decisive classifier 

response. Minor spatial offsets appear only rarely and never lead to missed 

lesions or extraneous markings, underscoring the detector’s capacity to preserve 

lesion localization under substantial intra-procedural variability. Notably, the 

model maintains accurate delineation despite luminance fluctuations, specular 

highlights, and variations in mucosal texture, which attests to the effectiveness of 

its multi scale feature aggregation in capturing illumination-invariant cues. This 

visual concordance reinforces the numerical performance metrics reported earlier 

and confirms that the proposed system delivers both precision and robustness—

qualities that are essential for reliable integration into computer-aided 

colonoscopy workflows. Figure 3.5 presents the visualization of various metrics, 
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including loss functions and performance measures, obtained during the training 

and validation phases of the YOLOv10m model. 

 

Figure 3.5 The results of YOLOv10m (best model) algorithm in the 

experiments. 

 

The training and validation curves depicted in Figure 3.5 illustrate dynamics 

and model performance throughout 300 epochs. The training losses, including 

box regression, classification, and distribution focal loss, exhibit a consistent and 

steady decline, indicating effective optimization and improved model fitting over 

time. Correspondingly, the precision and recall metrics on the training set show 

progressive increases, plateauing near 0.85 and 0.7 respectively, which suggest 

balanced improvements in both sensitivity and specificity. However, the 

validation losses, especially for classification and distribution focal loss, 

demonstrate a notable plateau and slight fluctuations after initial rapid decreases, 

signaling potential overfitting or dataset complexity challenges. Despite this, 

validation precision, recall, and mean average precision metrics continue to 

improve gradually, reaching respectable levels above 0.75 for mAP50 and above 

0.55 for mAP50-95. This pattern underscores the model’s strong generalization 

capability while highlighting areas for further tuning, such as potential 

regularization or data augmentation strategies, to enhance stability and mitigate 
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validation loss variability. Aggregate, these results confirm that the model 

achieves robust and reliable polyp detection performance across both training and 

validation datasets. 

 

4. Conclusion 

The comprehensive evaluation of YOLOv10 and YOLOv11 architectures for 

polyp detection performance presented in this study highlights a nuanced balance 

between model complexity and efficiency. Our key findings indicate that while 

larger architecture generally offers improvements in raw detection metrics, 

performance gains are subject to diminishing returns when considering 

computational cost and parameter count. Specifically, more compact models such 

as YOLOv10m (Precision: 84.5%, mAP50-95: 60.0%) and YOLOv11n were 

found to exhibit a noteworthy balance between detection accuracy and 

operational efficiency. These optimized smaller models, while requiring 

significantly fewer computational resources, can in some cases offer competitive 

or even superior performance compared to their larger counterparts. These results 

strongly suggest that in resource-constrained and rapid-inference demanding 

fields, such as medical imaging, priority should be given to architectural 

efficiency and performance optimization rather than merely increasing model 

size. Consequently, this study affirms the importance of seeking an optimal 

compromise between model complexity, parameter burden, and detection 

efficacy in practical applications. Future research should focus on the further 

refinement and hyper-optimization of such efficient models for reliable 

deployment in clinical settings where precision is critical. 
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