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Abstract 

Ensuring the structural integrity of concrete infrastructure, a cornerstone of 

modern civilization, necessitates the timely and accurate detection of cracks. 

Traditional visual inspection methods, however, are fraught with limitations, 

including subjectivity, high costs, and significant labor investment. To address 

these deficiencies, this investigation presents one of the most extensive 

comparative analyses to date, evaluating the performance of dozens of state-of-

the-art deep learning architectures for automated crack detection. Spanning seven 

distinct model families including seminal Convolutional Neural Networks 

(ResNets, DenseNets, EfficientNet-V2) and paradigm-shifting Transformers 

(ViT, Swin, BEiT) the models were rigorously tested on the diverse SDNET2018 

dataset. The methodology encompassed a dual-phase experimental design: first, 

three independent binary classification tasks for Deck, Pavement, and Wall 

surfaces, followed by a more demanding six-class classification task on a unified 

dataset to assess both defect detection and contextual identification capabilities. 

All architectures were fine-tuned using a standardized training protocol on a 

class-balanced dataset to ensure a fair and robust comparison. The experimental 

findings reveal a clear performance hierarchy, with CNN-based architectures, 

particularly the ResNet and EfficientNet-V2 families, demonstrating more 

consistent and superior efficacy than their Transformer-based counterparts across 

most tested scenarios. A central and compelling discovery from this study is the 

remarkable performance of EfficientNet-V2 Small, a compact model that not 

only competed with but frequently surpassed much larger architectures, achieving 

the highest F1-score in both the 'Wall' and the complex six-class classification 

tasks. Similarly, the classic ResNet-34 architecture proved its enduring relevance 

by emerging as the top performer on the visually noisy 'Pavement' dataset. 

Among the Transformer models, Swin Transformer, which reincorporates 

principles of hierarchy and locality, exhibited the most competitive performance, 

whereas standard ViT and BEiT models yielded more modest results. Ultimately, 

this research robustly demonstrates that for practical engineering applications like 
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automated crack detection, computational efficiency is not a trade-off against 

performance but rather a potential catalyst for it. The evidence suggests that 

compact, well-designed CNNs such as EfficientNet-V2 Small and ResNet-18/34 

provide an optimal balance between high accuracy, low computational overhead, 

and rapid inference capabilities. These findings furnish a definitive, data-driven 

roadmap for the development and deployment of reliable, real-time automated 

inspection systems on resource-constrained platforms, including mobile devices 

and unmanned aerial vehicles. 

viii



INTRODUCTION 

Concrete, the cornerstone of modern civilization, stands out as an 

indispensable material in the construction of critical infrastructure systems such 

as bridges, buildings, dams, and highways. Its superior properties, such as high 

compressive strength, cost-effectiveness, and ease of on-site production, have 

made it the most widely used construction material on a global scale [1,2]. 

However, despite this widespread use of concrete, it is inevitable for it to degrade 

over time as a result of environmental factors, mechanical loads, and chemical 

interactions [3,4]. The most prominent and early harbinger of these degradation 

processes is the cracks that occur on the surface and in the internal structure. 

These cracks, which are initially at a micro-level, can grow over time, if 

necessary, precautions are not taken, becoming a serious threat to the structure's 

load-bearing capacity, durability, and service life [5]. 

In the field of Structural Health Monitoring (SHM), traditional methods used 

for the detection of concrete cracks are largely based on human observation and 

expert experience. Periodic visual inspections conducted by field engineers or 

inspectors form the basis of this process [6]. However, this traditional approach 

has many significant disadvantages. Primarily, the inspection process is 

extremely time-consuming, labor-intensive, and costly. Second, the accuracy and 

consistency of the detection are directly dependent on subjective and variable 

factors such as the inspector's fatigue, attention, experience, and lighting 

conditions. Furthermore, inspections in high or hard-to-reach areas pose serious 

safety risks for personnel. These limitations reduce the efficiency of traditional 

methods and clearly reveal the need for more objective, fast, and reliable 

alternatives [7]. 

The inadequacies of traditional methods have directed researchers towards 

computer vision and artificial intelligence technologies [8]. Although initial 

image processing-based approaches used algorithms such as edge detection, 

thresholding, and morphological operations, they could not produce robust results 

in the face of the complexity of real-world field conditions (lighting changes, 
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shadows, moisture stains, surface pollution). At this point, deep learning, and 

particularly Convolutional Neural Networks (CNNs), has created a revolution in 

image-based recognition tasks [9]. Unlike traditional machine learning (ML) 

[10,11] approaches, CNNs possess the ability to automatically learn hierarchical 

and meaningful features from raw pixel data [12,13]. Thereby, they have offered 

much more effective and generalizable solutions to the crack detection problem 

by eliminating the need for manual feature engineering [14,15]. These 

achievements have made CNN-based architectures indispensable in the medical 

field; to give some examples of areas where they are used, brain tumors [16–18], 

breast cancer [19], lung cancer [20], dentistry [21,22], and urology [23] are just 

a small fraction. With developing new technologies, artificial intelligence 

continues to demonstrate its success in every field. 

The success of CNN-based approaches has paved the way for the development 

of progressively deeper and more complex architectures. Within this sphere, the 

ResNet (18, 34, 50, 101, 152) family has become an industry standard by using 

residual connections to enable the training of very deep networks. The DenseNet 

(121, 169, 201) architecture has provided high parameter efficiency by 

maximizing feature propagation and reuse through dense connections that link 

each layer to all subsequent layers. Following these two foundational 

architectures, the EfficientNetV2 (small, medium, large) family emerged, which 

systematically scales the model's depth, width, and resolution. This model offered 

the possibility of achieving high performance even with limited resources by 

establishing an optimized balance between accuracy and computational 

efficiency. 

The latest breakthrough in the field of computer vision has been the adaptation 

of the Transformer architecture, which revolutionized the field of natural 

language processing (NLP), to vision. The Vision Transformer (ViT) (with patch 

16/32 variants of tiny, small, base, large), which processes an image as a sequence 

of "patches" and models the global relationships between these patches with a 

self-attention mechanism, has brought a new perspective by overcoming the local 
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receptive field limitation inherent to CNNs. The Swin Transformer (tiny, small, 

base, large), which increases computational efficiency by combining this 

approach with a hierarchical structure and shifted windows, and BEiT (base, 

large), which learns robust representations with less labeled data through self-

supervised pre-training, stand out as the most advanced representatives of this 

new paradigm. 

As the detection of cracks in concrete structures is a critical task for ensuring 

structural integrity and safety, the research community has focused on 

overcoming the inherent limitations of traditional visual inspection methods, such 

as being time-consuming, labor-intensive, and subjective. The consensus in the 

literature is that automation is imperative to address these challenges (Kirthiga 

and Elavenil; Panwar et al.) [24,25]. Accordingly, systems based on ML and 

particularly Deep Learning (DL) have emerged as the dominant paradigm due to 

their potential for high accuracy, efficiency, and reliability. A comprehensive 

review by Pandey and Mishra [26] illustrates the technological evolution in this 

domain, comparing a wide array of approaches from classical ML algorithms like 

Random Forest (RF) to more advanced DL architectures like CNNs. Similarly, 

Arpitha et al. [27], after reviewing works from 1999 to 2023, confirm that ML 

and DL-based methods are increasingly preferred due to their advantages in 

automation and precision. 

In this pursuit of automation, CNNs have become the de facto standard for 

image-based crack detection tasks. The ability of CNNs to automatically learn 

hierarchical and discriminative features from raw pixel data makes them 

significantly superior to traditional ML methods. A comparative analysis by 

Navpreet et al. [28] concretely demonstrates this superiority, showing that a pre-

trained CNN model like VGG16, with an accuracy of 92.14%, vastly outperforms 

the best-performing traditional ML classifier, Random Forest (66.92%). The 

review by Pandey and Mishra corroborates this finding, noting that VGG-16 can 

achieve exceptional accuracy rates as high as 99.83%. Studies such as Usha's [29] 

"DeepCrack" and the novel deep CNN model developed by Abbas and Alghamdi 
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[30] prove the potential of these architectures to create specialized, high-

performance solutions capable of successfully detecting both visible and subtle 

cracks under varying lighting and surface texture conditions. 

Research has extended beyond foundational CNN architectures to encompass 

more sophisticated approaches and practical application scenarios. One of the 

most significant advancements in this area is the adoption of transfer learning, a 

technique that leverages the knowledge from models pre-trained on large datasets 

and applies it to smaller, specific datasets. The work by Bussa and Boppana [31] 

exemplifies this, achieving a 97% F1-score using the ResNet50 architecture with 

transfer learning on the METU dataset and demonstrating its superiority over 

VGG-based models. Similarly, Dai et al. [32] utilized modern architectures like 

ResNet50 and EfficientNetB1 with transfer learning to detect cracks in dams, 

achieving the highest performance with a hybrid model. In addition to these 

theoretical advancements, practical applications, such as the work by Wang et al. 

[33], expand the field's practical potential by integrating technologies like 

Unmanned Aerial Vehicles (UAVs) to automate the data collection process and 

visualizing the results on 3D models. 

A comprehensive analysis of the existing literature unequivocally establishes 

the effectiveness and superiority of deep learning-based methods, especially 

advanced CNN architectures, for concrete crack detection. The use of models like 

ResNet and EfficientNet with transfer learning is recognized as a robust approach 

that delivers high accuracy rates. However, most of these studies tend to focus on 

a single architectural family or compare a limited number of models. A noticeable 

gap exists in the literature for a study that systematically and comprehensively 

compares established CNN architectures like ResNet and DenseNet, the latest 

generation of efficiency-focused CNNs like EfficientNetV2, and models from an 

entirely different paradigm namely Transformers such as ViT, Swin Transformer, 

and BEiT on the same controlled dataset, at a wide scale (e.g., from "tiny" to 

"large"), and analyzes them in terms of performance, efficiency, and 
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generalization capabilities. This study is designed to fill this precise 

methodological gap. 

In light of the aforementioned architectural advancements, the central 

objective of this study is to present a comprehensive and comparative DL analysis 

for the detection and classification of cracks on concrete surfaces, utilizing the 

large-scale, publicly available SDNET2018 dataset. This work seeks to provide 

an original contribution to the literature through the systematic evaluation of a 

diverse array of models representing distinct architectural paradigms. 

Accordingly, the investigation involves the training and comparative assessment 

of selected models from CNN-based families, including ResNet, DenseNet, and 

EfficientNetV2, as well as from Transformer-based families such as ViT, Swin 

Transformer, and BEiT. The performance of these models is quantitatively 

appraised using standard metrics, encompassing accuracy, precision, recall, and 

the F1-score. The resulting analysis serves to elucidate the relative performance 

of these different architectures in the crack detection task. Furthermore, the 

findings are intended to furnish a practical guide for real-world applications and 

to inform the direction of subsequent research in this domain. 
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MATERIALS AND METHODS 

 

Dataset 

The experimental foundation of this investigation is built upon the 

SDNET2018 dataset, a large-scale and publicly accessible collection that is 

widely regarded as a cornerstone in the field. Its selection was predicated not 

merely on the substantial number of images it contains, but on its inherent 

complexity and diversity, which mirror real-world conditions. As a 

comprehensive benchmark, this collection comprises over 56,000 high-resolution 

images meticulously labeled for multi-class crack detection and classification 

across three primary structural categories: concrete pavements, structural walls, 

and bridge decks [34,35]. This composition elevates the problem beyond a simple 

binary (crack/non-crack) decision, presenting a more formidable challenge that 

requires a model to concurrently identify both the type of structural surface and 

the presence of a defect. Figure 1 presents a selection of class-based examples 

randomly drawn from the SDNET2018 dataset, showcasing the richness and 

variety in terms of texture, lighting conditions, and crack morphologies. 

 

 

Figure 1. Sample images from the dataset for cracked and non-cracked classes 

across different concrete structure types (Decks, Pavements, and Walls). 
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The dataset is structured into six primary classes, comprising 'cracked' and 'non-

cracked' instances for each of the three structural categories. In its raw form, however, 

the SDNET2018 dataset presents a significant challenge for training DL models due 

to a pronounced class imbalance. The original distribution contains a substantially 

larger number of non-cracked images compared to cracked images within each 

category. Such an imbalance can induce a bias in the model during training, causing 

it to favor the majority (non-cracked) class. A model trained under these conditions 

would tend to predict non-cracked surfaces with high accuracy while potentially 

overlooking or misclassifying the critical minority (cracked) class. To mitigate this 

potential bias and to provide a fair learning environment for the models, a deliberate 

balancing strategy was implemented during the data pre-processing stage. This 

strategy involved random down sampling, where samples from the more populous 

non-cracked class were randomly discarded to match the number of images in the 

cracked class for each category. As a result of this process, the original dataset of over 

56,000 images was reduced to a more manageable and balanced size of 16,968 

images. To further deepen the comparative analysis and to assess the models' 

capabilities beyond defect detection to include contextual classification, an additional 

experimental phase was designed. In this phase, the previously separate 'Deck', 

'Pavement', and 'Wall' categories were consolidated into a single, unified dataset with 

their respective 'cracked' and 'non-cracked' labels. This consolidation resulted in a 

new, more challenging multi-class classification problem with six distinct classes. 

This task requires the models not only to determine the presence of a crack but also 

to simultaneously distinguish the type of structural surface on which it appears. To 

maintain consistency, this unified dataset was also partitioned into training, 

validation, and test sets with a 70%, 15%, and 15% split, respectively. All 

architectures employed in the study were subsequently fine-tuned for this six-class 

task using a transfer learning approach. This methodology facilitates a multi-faceted 

comparison, testing both the defect detection sensitivity and the discriminative power 

of each architecture across environments with different visual textures and patterns. 

A detailed distribution of the dataset is provided in Table 1. 
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Table 1. Detailed distribution of the image dataset across structural types, 

classes, and data splits (Training, Validation, Test). 

Class Train Validation Test Total 

Cracked Non-

cracked 

Cracked Non-

cracked 

Cracked Non-

cracked 

Deck 1417 1417 303 303 305 305 4050 

Pavement 1825 1825 391 391 392 392 5216 

Wall 2695 2695 577 577 579 579 7702 

Total 11874 2542 2552 16968 

 

To facilitate an objective evaluation of model performance, this final, 

balanced dataset was partitioned into three fundamental subsets in accordance 

with standard ML protocols: 70% for training, 15% for validation, and 15% for 

testing. The training set is designated for the model to learn the underlying 

patterns and features from the data, while the validation set serves as a feedback 

mechanism during the training process to optimize hyperparameters and prevent 

overfitting. The test set, which consists of data entirely unseen during the training 

phase, provides the final and unbiased measure of a model's ability to generalize. 

Table 1 offers a granular and numerical breakdown of these 16,968 images, 

detailing their distribution across the three distinct structural domains and the 

aforementioned subsets. An examination of the table reveals the differences in 

the total number of samples among the categories: Bridge Decks (4,050 images), 

Pavements (5,216 images), and Walls (7,702 images). Complementing this 

numerical account, Figure 2 presents the same distribution in a visual format, 

facilitating an intuitive understanding of the proportions within each structural 

category for the training, validation, and test sets. 
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Figure 2. Graphical distribution of the dataset showing the number of images 

per class and data split for each surface type. 
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CRACKS 

 

Importance of Cracks in Concrete Structures 

Cracking is a natural, expected, and accepted characteristic of concrete; 

however, cracks can affect the appearance, functionality, durability, service life, 

or more seriously the structural integrity of concrete. For these reasons, designers, 

concrete producers, and contractors always strive to control or minimize the 

amount and severity of cracking in concrete. Nevertheless, particularly in 

conventionally reinforced or reinforced concrete, crack-free concrete is rarely 

achievable. 

Fundamentally, concrete cracks. Project specifications typically require 

cracks in concrete to be repaired. A crack repair procedure may be pre-specified 

or carried out under the guidance of an engineer. Regardless of specification 

requirements, especially for elevated structures, cracks should be investigated 

before any repairs are designed or implemented. Otherwise, the repairs may fail 

to address the root cause of the cracking, leading to ineffective solutions that fail 

prematurely or do not restore the structure’s original condition. More importantly, 

a proper investigation can determine whether a crack is an early indication of a 

serious issue such as a flaw in design, detailing, or construction that may 

compromise the structure’s load-bearing capacity. 

Crack formation is a fundamental characteristic of structural concrete and a 

central concern in the condition assessment of reinforced concrete structures [36–

39]. Because concrete is a brittle material and its tensile strength is significantly 

lower than its compressive strength, cracking in concrete members subjected to 

tension is inevitable. Structural cracking can only be entirely prevented through 

full prestressing [40]. Reinforcement is designed and detailed to control cracking 

in regions where tensile stresses are expected, thereby promoting the formation 

of distributed and acceptably narrow cracks. Crack patterns depend on the 

diameter, spacing, relative rib area, and surface configuration of the reinforcing 

bars (whether steel or FRP), and cracks generally follow the stress trajectories 
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generated by the load path [41–43]. Cracking due to flexure or tension in 

structural members can influence both structural behavior and durability. From a 

serviceability perspective, cracks have the following impacts: 1) reduction of 

member stiffness, leading to increased deformations; 2) increased permeability, 

resulting in uncontrolled leakage through cracks when water is present; and 3) 

deterioration in the aesthetic appearance of concrete surfaces. Structural cracking 

is also closely associated with corrosion of embedded reinforcement, which has 

long been a key focus of durability research. In terms of reinforcement corrosion, 

permeability quantified by various diffusion coefficients is the most important 

performance parameter of concrete [38]. As crack width increases, both the 

diffusion coefficient of cracked concrete [44] and the associated flow rate [45] 

also increase. 

 

Crack Width 

Crack width is typically measured on the exterior surface of concrete 

structures. Design codes also restrict surface crack widths to mitigate 

serviceability and durability risks. However, crack width varies within the 

concrete cover, and the width along the reinforcement surface differs from that 

observed on the external surface of the member. Therefore, limiting crack width 

requires an understanding of crack geometry inside the concrete cover. Very few 

studies in the technical literature have examined how crack width changes 

through the cover thickness, and to date no reliable relationship between the crack 

width at the reinforcement surface and that at the concrete surface has been fully 

established. 

In modeling structural crack widths, two fundamental assumptions appear in 

the literature: 

1. Bond-slip approach proposed by Saliger in 1936 (Fig. 1a) [46,47], and 

2. No-slip approach proposed by Broms in 1965 (Fig. 1b) [48]. 
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Both assumptions are still used in various design codes. In 1966, Ferry-Borges 

[49,50] combined these concepts into a single model (Fig. 1c), later adopted in 

Eurocode 2 (2004 and 2023 editions) [51,52] and the fib Model Code 2010 and 

2020 [53,54]. 

• Bond-slip approach (Figure 3a): Assumes a constant crack width across 

the concrete cover. 

• No-slip approach (Figure 3b): Assumes zero crack width at the 

reinforcement level, increasing linearly toward the surface. 

 

Neither assumption is fully acceptable, even for engineering-level 

simplification of structural crack widths. The combined model presumes a 

non-zero crack width at the reinforcement and a linear increase through the cover 

(Fig. 1c). While this last assumption can be used within limits for an 

engineering-level description of structural cracks (and is examined further in this 

paper), the real anatomy of cracks includes details that such simplified models 

cannot capture [55]. 

 

Figure 3. Schematic representation of classic crack width models, after [47], (a) 

The bond-slip approach, proposed in 1936 by Saliger [46], (b) The no-slip 

approach proposed in 1965 by Broms [48], (c). The combined model proposed 

in 1966 Ferry-Borges [49]. 
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Causes of Crack Formation in Concrete 

There are multiple causes of cracking in reinforced concrete structures. 

Although many different types of cracks may occur due to various factors, the 

common underlying mechanism behind most commonly observed cracks is 

stress. Concrete has a limited tensile capacity, both in its plastic and hardened 

states. It is not a ductile material; thus, it does not yield when subjected to tensile 

stresses. When these tensile stresses exceed the tensile strength of concrete 

typically around 10% of its compressive strength cracking occurs. Naturally, as 

freshly placed concrete hardens, its tensile strength increases. However, during 

the plastic and early-age stages, the tensile capacity is very low, making concrete 

highly susceptible to cracking during this period. 

 

 Structural Cracks 

These types of cracks arise from stresses that the structure must bear due to its 

intended function. They usually occur in improperly designed buildings or those 

constructed without resolving underlying soil problems, and they are very 

dangerous. These cracks are not related to concrete placement or casting 

conditions. In such cases, authorized bodies (engineering offices, universities, 

etc.) should be consulted. If the structure is properly designed and not subjected 

to overloading, such issues typically do not arise. Structural cracks generally 

develop perpendicular to tensile stresses within reinforced concrete elements. For 

example, cracks that appear at mid-span of a simply supported beam or above the 

support of a cantilever beam are of this type. 

 

 Application-Induced Cracks 

These cracks can occur in either fresh or hardened concrete. 

 

 Cracks in Fresh Concrete 

Fresh concrete cracks typically occur between 30 minutes and 5 hours after 

the concrete has been placed in the formwork, most commonly in slabs or other 
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wide-surface applications. These cracks may reach depths of up to 10 cm, and 

their lengths can range from a few centimeters to as long as 2 meters. Such deep 

and long cracks can be extremely detrimental to the strength and durability of 

concrete. The two most significant causes of cracking in fresh concrete are: 

• Settlement differentials, and 

• Plastic shrinkage. 

  

Settlement Cracks 

These cracks typically form just above the top reinforcement in beams or in 

foundation concrete that has not been adequately compacted and continues to 

settle on its own. In fresh concrete, as the coarse aggregate particles tend to sink, 

water rises toward the surface. In areas directly above the reinforcement, 

settlement becomes more difficult, causing the concrete to move laterally toward 

the sides of the rebar. During this stage, if insufficient tensile strength develops, 

cracks form parallel to the reinforcement (Figure 4). 

To prevent such cracking, it is advisable to: 

• Use plastic concrete with moderate workability (not overly fluid), 

• Thoroughly compact thick foundation concrete using vibrators, and 

• In some cases, apply a second surface finishing (floating) about one to two 

hours after casting, when the surface begins to dry. 

•  

 

Figure 4. Settlement cracks in concrete 
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Plastic Shrinkage Cracks 

The reduction in length and volume of concrete due to physical or chemical 

loss of water is referred to as shrinkage. Volume changes in concrete can be 

examined in three stages: 

• Plastic Shrinkage 

• Drying Shrinkage 

• Chemical Shrinkage 

 

How Do Plastic Shrinkage Cracks Form? 

Plastic shrinkage cracks are randomly distributed surface cracks of various 

lengths and widths that typically appear in concrete cast under hot, dry, and windy 

weather conditions, especially in slabs, pavements, roadways, or airfield 

concrete. These cracks occur within the first few hours after concrete placement 

before the concrete has fully hardened and are confined to the surface layer. The 

term plastic shrinkage refers to the fact that the shrinkage occurs while the 

concrete is still in its plastic (i.e., moldable) state. 

The main cause of plastic shrinkage is rapid evaporation of water from the 

concrete surface. Excess mixing water in concrete rises to the surface due to 

bleeding. If the evaporation rate exceeds the bleeding rate, the surface begins to 

dry and shrink. Meanwhile, the underlying, more plastic concrete cannot shrink 

at the same rate, resulting in tensile stresses on the surface that lead to cracking. 

These cracks are usually: 

• Randomly distributed 

• Surface-level and shallow 

• Less than 1 mm wide 

• Not structurally dangerous 
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They are especially common in hot, dry, windy weather when casting slab-on-

grade concrete or horizontal elements. Evaporation removes water from the top 

surface, and if the rate of evaporation is greater than the rate of bleed water rising 

to the surface, the surface starts drying, shrinking, and cracking. 

Similar cracks may also form when freshly poured concrete is cast over a dry 

base, such as old concrete that hasn’t been pre-wetted, or porous materials like 

hollow blocks in ribbed slab systems, which absorb water from the new concrete. 
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CRACKS IN REINFORCED CONCRETE STRUCTURES 

In seismic zones, it is essential that energy dissipation in structures is achieved 

in a controlled manner. In such cases, cracking is the first expected form of 

damage. The location, shape, width, age (new or old) of cracks, as well as 

deficiencies or defects in the area where they appear, provide valuable insights 

into the potential damage mechanisms. 

Concrete is a material with high compressive strength but low tensile strength, 

which makes the monitoring and control of cracks in reinforced concrete 

members critically important [56]. 

Crack-related damage can be categorized as follows: 

• Flexural cracks 

• Shear cracks 

• Torsional cracks 

 

Flexural Cracks 

Flexural cracks occur in regions where tensile stresses are highest (Figure 5). 

These types of cracks often indicate that the reinforcement has yielded. An 

example of a flexural crack in a beam is shown in Figure 6. 

 

 

Figure 5. Flexural cracks in a reinforced concrete member [56] 
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Figure 6. Flexural crack in a beam [50] 

 

Shear Cracks 

Tensile cracks in beams and columns form at an angle to the beam axis (Figure 

7). If the shear reinforcement is insufficient, the crack width increases. Shear cracks 

and the subsequent shear failure are undesirable because they represent a brittle type 

of failure. An example of a shear crack after an earthquake is shown in Figure 8. 

If shear cracks in beams and columns are wide, it indicates severe damage. In 

columns, if the concrete is crushed, shear cracks are present, and the longitudinal 

reinforcement has buckled, the damage is considered severe [57]. Shear cracks in 

beams  (Figure 9) and the crack formed in the reinforced concrete column-beam joint 

area is shown in Figure 10. 

 

 

Figure 7. Shear cracks in a reinforced concrete member [58] 
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Figure 8. Shear cracks in beams [50] 

 

 

Figure 9. Flexural cracks in reinforced concrete beams [59] 
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Figure 10. Cracks occurring in the beam-column joint region of reinforced 

concrete structures [60] 

 

Torsional Cracks 

Under torsional effects, torsional cracks form on three faces of the beam 

perpendicular to the principal tensile stresses (Figure 11). Additionally, crushing 

is observed on the fourth face. The formation of torsional cracks reduces the 

torsional stiffness by approximately one-tenth. As a result of this reduction, the 

section rotates under the nearly constant torsional moment, transferring the forces 

to other structural elements [57]. 

 

 

Figure 11. Torsional cracks in a reinforced concrete member [57] 
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Data augmentation and data preprocessing  

Prior to the training of the DL models, two fundamental challenges arising from 

the structure of the dataset required consideration: class imbalance and the risk of 

overfitting stemming from limited data diversity. The raw version of the 

SDNET2018 dataset used in this study possessed a pronounced class imbalance, 

wherein the number of images belonging to the 'non-cracked' class was substantially 

greater than those belonging to the 'cracked' class. This situation necessitated a pre-

processing step to prevent the model from developing a bias towards the majority 

class during training. The first and most fundamental step taken in this regard was to 

balance the dataset using the random down sampling method. Within this process, 

the number of samples in the 'cracked' class was taken as a reference, and an equal 

number of images were randomly selected from the more populous 'non-cracked' 

class, with the remainder being discarded. Through this one-time balancing 

operation, a fair and unbiased foundational training dataset was created, ensuring the 

model gives equal importance to both classes. 

Although a numerical balance between the classes in the dataset was established, 

this state does not render the model entirely immune to the risk of overfitting. DL 

models possess the potential to memorize even the existing samples in a balanced but 

limited-diversity dataset. To eliminate this risk and to maximize the model's 

generalization capability, meaning its performance on previously unseen data, a 

second strategy of dynamic on-the-fly data augmentation was engaged. The purpose 

of this approach is to artificially enrich the foundational dataset created by the 

balancing process through various transformations applied instantaneously during 

training. Consequently, the model encounters a geometrically or photometrically 

altered version of the same image in each epoch. This continuous variation prevents 

the model from becoming overly reliant on the specific details of particular training 

examples and promotes the learning of more general and robust features. 

This comprehensive data augmentation strategy incorporates both geometric and 

photometric transformations. During training, random geometric transformations 

were applied to each image in the balanced dataset. These transformations consist of 
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"Random Resized Crop," which encourages learning from different regions and 

scales of the image; "Random Horizontal Flip," applied with a 50% probability to 

achieve orientation invariance; and the deliberate exclusion of vertical flipping to 

preserve structural properties. In addition to geometric diversity, the "Color Jitter" 

technique was also employed, which randomly alters properties such as the 

brightness, contrast, and hue of the images to simulate real-world variations in 

lighting conditions. As a result, this two-stage approach, which first establishes a 

static class balance through random down sampling and then provides dynamic 

diversity through on-the-fly data augmentation, was designed to train robust, reliable 

models with high generalization capability [61,62]. 

 

Transfer Learning 

The training of all DL models employed in this study leveraged the Transfer 

Learning approach, a cornerstone of the modern computer vision field. Transfer 

learning is based on the principle of reusing the knowledge and experience gained in 

one domain (the source domain) to solve a problem in a different but related domain 

(the target domain). In the context of deep learning, this typically means transferring 

the rich knowledge learned by a model trained on a large-scale dataset of general-

purpose images, such as ImageNet, to a more specialized task, which in this study is 

the detection of concrete cracks. These pre-trained models have already developed a 

hierarchical visual understanding, extending from low-level visual features like 

edges, corners, and textures to more complex patterns and object parts. By using this 

foundational visual infrastructure as a starting point, transfer learning circumvents 

the challenges, high computational costs, and extensive dataset requirements 

associated with training a model from scratch [63,64]. 

The adoption of the transfer learning method in our project was a deliberate 

decision that provides a series of strategic advantages, rather than being merely a 

matter of convenience. Primarily, this approach significantly accelerates the training 

process and makes it more efficient. Instead of attempting to learn fundamental visual 

features from random weights, the models focus on learning the more complex 
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patterns specific to cracks on top of the general features they already know, which 

allows the model to converge to the targeted performance much more rapidly. 

Secondly, transfer learning substantially enhances model performance and 

generalization capability, especially on limited datasets like ours. The pre-learned 

features act as a powerful regularize, preventing the model from overfitting to the 

training data and helping it to exhibit a more consistent performance on previously 

unseen test data. Lastly, this method facilitates access to the most advanced (state-of-

the-art) architectures with millions of parameters, such as ResNet-152, DenseNet-

201, or large Transformer-based models; training such deep networks from scratch 

on a domain-specific dataset of limited size is practically infeasible [65–67]. 

In this study, transfer learning was meticulously implemented using the "Fine-

Tuning" strategy, which is a widely accepted practice in the literature. This 

methodology begins with loading a model pre-trained on ImageNet. The architecture 

of the loaded model consists of two main parts: the deep convolutional layers that 

extract general features (the feature extractor) and the final layers that predict one of 

the 1000 ImageNet classes (the classifier head). Since our problem is a binary 

classification task ('cracked' and 'non-cracked'), the model's original 1000-class head 

is removed and replaced with a new binary classifier head initiated with random 

weights. During the training process, while the weights of this newly added head are 

learned freely, the weights of the pre-trained feature extractor are also "unfrozen" and 

updated with a much lower learning rate. This delicate process allows the model to 

gently adapt the general texture and edge information learned from ImageNet to the 

specific visual characteristics of concrete cracks [68,69]. 

The efficient, consistent, and reproducible execution of this complex and large-

scale experimental process was made possible in large part by the use of the timm 

(PyTorch Image Models) library. Timm is an exceptionally comprehensive library 

that provides dozens of different and up-to-date computer vision architectures, such 

as ResNet, DenseNet, EfficientNetV2, ViT, Swin Transformer, and BEiT, along with 

their verified pre-trained weights. This library played a critical role in our goal of 

systematically training and comparing the wide array of models that form the basis 
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of this project. Timm offered the ability to load a desired model and easily replace its 

classifier head with a single line of code, and it provided a consistent framework 

across different architectures, thereby increasing the efficiency and scientific validity 

of our experiments. Consequently, this library was an indispensable tool for the scale 

and methodological rigor of our project.  

 

Model Architectures 

A wide array of state-of-the-art DL models, representing different architectural 

paradigms, was employed to solve the problem of concrete crack detection. To 

enhance the scope and power of the comparative analysis, architectures were selected 

from both CNN based approaches, which have dominated the computer vision field 

for over a decade, and Transformer-based architectures, which have ushered in a new 

era in the field. These two approaches are based on fundamentally divergent 

philosophies for processing visual data. CNNs, with designs inspired by the human 

visual cortex, focus on processing patterns in the local neighborhoods of an image in 

a hierarchical fashion; conversely, Transformers, adapted from their successes in 

natural language processing, handle an image in a holistic context, modeling the 

global relationships between all of its parts. This section provides a detailed 

explanation of the working principles, relative advantages, and differences of these 

two foundational architectures, thereby setting forth the strategic rationale behind the 

model selections in this project. 

CNNs have been accepted as the de facto standard in image recognition tasks for 

many years. The foundation of their success lies in their specialized architectural 

structures that effectively utilize the spatial hierarchy and locality inherent in image 

data. The main building block of CNNs is the convolutional layer, which contains 

"convolutional filters" or "kernels." These learnable filters slide across the image to 

detect low-level features such as edges, corners, color gradients, and textures. As the 

layers deepen, these simple features learned in the preceding layers are combined to 

form more complex and semantically rich representations, such as an eye, a wheel, 

or a brick pattern. One of the greatest advantages of CNNs is their possession of 
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strong "inductive biases," such as "parameter sharing" and "translation invariance." 

Parameter sharing, which involves using the same filter across the entire image, 

dramatically reduces the model's parameter count and computational cost. This 

structure also enables the model to recognize an object regardless of its position in 

the image. These built-in biases allow CNNs to be highly efficient and effective, 

particularly on grid-like data such as images, and enable them to achieve strong 

generalization capabilities even with relatively less data. A simple CNN architecture 

is shown in Figure 12. 

 

 

Figure 12. Basic CNN architecture 

 

Conversely, the Transformer architecture, which was initially developed for 

natural language processing tasks and revolutionized that field with its superior 

ability to model long-range dependencies in text, has in recent years been adapted 

for computer vision, challenging the hegemony of CNNs. Models such as the ViT 

do not employ local convolutional operations in the manner of CNNs. Instead, a 

ViT partitions an image into a sequence of fixed-size "patches" and processes 

these patches as a sequence, analogous to the words in a sentence. At the heart of 

this architecture lies the "self-attention mechanism," which dynamically weighs 

the contextual importance and relationship of each patch with every other patch 

in the sequence. This mechanism enables Transformers to form a global 

contextual awareness from the very first layers and to easily model long-range 

relationships, such as a crack extending from one end of an image to the other, or 
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texture similarities between distant regions. The greatest advantage of 

Transformers is that they are unencumbered by the constraints of the local 

receptive fields found in CNNs, thereby allowing them to develop a more flexible 

and holistic visual understanding. This flexibility, however, means that they lack 

the strong built-in biases of CNNs, which generally necessitates their pre-training 

on much larger-scale datasets to learn effectively. Let us now examine the models 

utilized in our study. 

 

ResNet 

Considered a revolution in the history of CNNs, ResNet (Residual Networks) 

was designed to solve a fundamental problem known as "degradation," which 

was encountered in practice despite the theoretical expectation that model 

performance should increase with network depth. Beyond a certain depth, the 

performance of traditional CNNs would not only saturate but, on the contrary, 

would begin to decline rapidly. The primary reason for this issue was the 

difficulty that very deep networks had in learning at least an identity function 

with their newly added layers, thereby struggling even to preserve the 

performance of their shallower counterparts. The ingenious innovation from 

ResNet to overcome this barrier is the architectural unit called the "residual 

block," which contains a "shortcut connection." This shortcut connection 

bypasses one or more layers and directly adds their input to their output. This re-

frames the learning objective: instead of learning a complex transformation 

function H(x) directly, the network focuses on learning a simpler residual 

function, F(x) = H(x) − x. If an added block of layers does not learn a useful 

feature, it becomes much easier for the network to drive the weights of that block 

towards zero, making F(x) zero and passing the input (x) directly to the output. 

This simple yet exceptionally effective mechanism made it possible for networks 

to reach depths of hundreds of layers, setting a new performance standard in the 

field of computer vision. The ResNet-34 Architecture is shown in Figure 13 [70] 

. 
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Figure 13. Architectural diagram of the ResNet-34 model, illustrating its 

sequential stages and the structure of its basic residual blocks. 

 

The less deep members of the ResNet family, ResNet-18 and ResNet-34, are built 

upon a structure known as the "basic block," which reflects the core philosophy of 

the architecture in its purest form. This block consists of two sequential convolutional 

layers, each with a 3x3 filter size. The shortcut connection bypasses this two-layer 

block and merges directly with its output. The fundamental difference between 

ResNet-18 and ResNet-34 is their total depth, which arises from repeating these basic 

blocks a different number of times within the network. ResNet-18, containing fewer 

blocks, is a faster model that requires less computational power, whereas ResNet-34 

is constructed with more blocks and is therefore a deeper network with more 

parameters and a higher learning capacity. The inclusion of these two models in our 

study allows us to analyze the relative performance and efficiency of different depth 

levels of the basic residual block structure on the specific task of recognizing fine-

grained patterns like concrete cracks. Through this, the objective is to gain valuable 

insights into what level of model depth is sufficient or optimal for the complexity of 

the task. 

As network depth increases further, the computational cost and parameter count 

of the basic blocks used in ResNet-34 begin to become inefficient. To solve this 

problem, a much more efficient block design, known as the "bottleneck," was utilized 

in the deeper variants of ResNet: ResNet-50, ResNet-101, and ResNet-152. This 

bottleneck block consists of three convolutional layers instead of two 3x3 layers: the 
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first 1x1 convolution creates a "bottleneck" by reducing the number of channels 

(depth); the middle 3x3 layer learns spatial features in this smaller dimension; and 

the final 1x1 convolution restores the number of channels to its original dimension. 

This design effectively keeps the parameter count and computational load under 

control while the network's depth increases significantly. The difference between 

ResNet-50, 101, and 152 again arises from the number of times these efficient 

bottleneck blocks are repeated throughout the network. ResNet-50 is the entry-level 

for this design, while ResNet-101 and especially ResNet-152 offer immense depth 

and representational power. The role of these three models in our study is to 

investigate the extent to which the increased capacity afforded by extreme depth and 

the bottleneck architecture provides a performance increase on a sensitive task like 

crack detection, or whether it leads to potential issues such as overfitting. The 

information of the layers described above is shown in Figure 14. 

 

 

Figure 14. A comparative overview of the architectures for the ResNet variants, 

from ResNet-18 to ResNet-152. 

DenseNet 

Advancing the philosophy of shortcut connections introduced by ResNet to 

improve information flow within the network, DenseNet (Densely Connected 

Convolutional Networks) presents a radical connectivity strategy to enhance 

network efficiency and performance. Whereas the residual blocks of ResNet add 
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the input to the output of the layers, the core innovation of DenseNet is its redefinition 

of the relationship between layers through a mechanism called "dense connectivity." 

Within this architecture, each layer inside a "dense block" receives the feature maps 

produced by all preceding layers as its input. Instead of being summed, these inputs 

are concatenated along the channel dimension. Subsequently, the layer produces its 

own feature map, which is then passed on to all subsequent layers. This structure 

facilitates maximum "feature reuse" within the network. Even simple features learned 

in the early layers, such as edges, remain directly accessible to the final layers of the 

network, thereby creating a collective body of knowledge. The DenseNet architecture 

can be seen in Figure 15 [71]. 

 

 

Figure 15. High-level architectural representation of a typical DenseNet, 

highlighting its densely connected blocks and transition layers. 

 

The fundamental building blocks of the DenseNet architecture are the "Dense 

Blocks," where the dense connections occur, and the "Transition Layers," which are 

situated between these blocks. The dense blocks implement the aforementioned 

dense connectivity model, allowing for the accumulation of features across layers. A 

crucial hyperparameter of these blocks is the "growth rate" (k), which determines 

how much new information (in the form of feature maps) each layer produces. A low 

growth rate allows the network to be more compact and parameter-efficient. 

However, since the number of channels increases with each layer, this structure could 

lead to a rapid increase in computational cost if left unchecked. This is where 

transition layers become essential. These layers, placed between two dense blocks, 

typically use a 1x1 convolution to reduce the number of channels (acting as a 

bottleneck) and a 2x2 average pooling layer to down sample the spatial dimensions 
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(width and height) of the feature maps. This ensures that the network's general 

structure remains hierarchical and that it is computationally manageable. 

In this study, three different variants of the DenseNet architecture with increasing 

depth and capacity were selected to analyze their effects on crack detection 

performance: DenseNet-121, DenseNet-169, and DenseNet-201. All of these models 

are based on the dense block and transition layer structure described above. The 

fundamental difference among them stems from the number of layers contained 

within each of the four main dense blocks, and the number in the model's name 

signifies the total number of learnable layers in the network. For instance, while 

DenseNet-121 has blocks containing fewer layers, the dense blocks of DenseNet-201 

contain many more layers, which grants it a higher learning capacity and 

representational power. The analysis of these three variants aims to reveal how 

effective the dense connectivity and feature reuse strategy, applied at different depth 

levels, is in the task of recognizing fine and complex textural patterns like concrete 

cracks, and what advantages this might offer compared to the additive approach of 

ResNet. You can see the aforementioned layers in Figure 16. 

 

 

Figure 16. Comparative architectural specifications of the DenseNet variants 

(121, 169, 201, and 264). 
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Efficientnet-V2 

Traditionally, enhancing the performance of CNNs was typically achieved by 

focusing on a single dimension, such as increasing the network's depth (more 

layers), width (more channels), or the resolution of the input image. These 

approaches, however, often yield diminishing returns and disregard the need to 

establish a delicate balance among these three dimensions to achieve optimal 

performance. EfficientNet introduced a revolution by providing a systematic 

solution to this problem with a method it termed "compound scaling." The core 

philosophy of this method is to scale the network's depth, width, and resolution 

not arbitrarily and separately, but simultaneously and in a balanced manner 

through a fixed mathematical relationship. This allows the model to grow in the 

most efficient way possible, both in terms of parameter count and computational 

cost (FLOPs). By using this principle, EfficientNet set a new standard for 

efficiency and performance, achieving similar or higher accuracy than other state-

of-the-art models of its time with significantly fewer parameters [72]. 

Although the first version of EfficientNet was groundbreaking in terms of 

parameter efficiency and accuracy, it presented some practical challenges, such 

as long training times, especially for larger models. EfficientNetV2 is a next-

generation architecture developed to address these training bottlenecks and to 

further advance both training speed and efficiency. One of the primary 

innovations of EfficientNetV2 is the replacement of the standard MBConv blocks 

in the early stages of the architecture with "Fused-MBConv" blocks, which 

operate more efficiently on modern hardware (GPUs/TPUs), thereby increasing 

training speed. Its second and most important innovation is a dynamic training 

strategy called "progressive learning." In this strategy, the model is initially 

trained with smaller image sizes and weaker data augmentation (regularization) 

techniques. As training progresses, both the size of the input image and the 

intensity of the augmentation are gradually increased. This approach allows the 

model to learn simple patterns quickly at the start while enabling it to focus on 
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more complex features in the later stages, consequently shortening the total 

training time considerably. 

In this study, three primary variants of the EfficientNetV2 family were utilized 

to analyze the effect of the efficiency and performance balance it offers at 

different scales: EfficientNetV2-Small (S), EfficientNetV2-Medium (M), and 

EfficientNetV2-Large (L). These models share the same fundamental 

architectural principles and are scaled according to different values of the 

compound scaling coefficient. EfficientNetV2-S is a highly efficient model that 

requires fewer parameters and computational resources, generally presenting an 

ideal balance for resource-constrained situations. EfficientNetV2-M offers a 

significant performance increase over the "Small" version, but it does so with a 

reasonable increase in parameters. EfficientNetV2-L, on the other hand, is the 

member of the family that targets the highest performance and expands the 

architecture on a large scale to achieve state-of-the-art accuracy rates. The 

analysis of these three variants allows for an evaluation of whether the 

computational cost of achieving the highest accuracy is necessary for a specific 

task like concrete crack detection, or if a more efficient model offers a sufficient 

and more suitable solution for practical applications. 

 

Vision Transformers 

The ViT, which represents a fundamental paradigm shift among the 

architectures examined in this study, is predicated on a philosophy radically 

different from the previously discussed convolution-based approaches. ViT 

adapts the powerful Transformer architecture, whose origins lie in 

revolutionizing the field of Natural Language Processing (NLP) for processing 

text data, to computer vision tasks. In contrast to CNNs, which view an image as 

a structure to be processed hierarchically through local neighborhoods of pixels, 

a ViT treats an image as a sequence of "patches," analogous to how a sentence is 

composed of words. This approach discards the inductive biases inherent in 

CNNs, such as locality and translation invariance, which can constrain the 
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model's learning process. Instead, ViT attempts to learn the relationships between 

all parts of an image from scratch, directly from the data. This allows it to offer 

exceptional flexibility and potential for modeling complex and long-range 

contextual relationships, even between distant points in an image. 

The operation of the ViT architecture consists of steps that convert an image 

into a series of vectors and subsequently process this sequence with a 

Transformer encoder. In the first step, the 224x224 input image is divided into a 

non-overlapping, fixed-size grid; each cell of this grid is a "patch." For example, 

in a patch_16 model, the image is partitioned into 196 patches of 16x16 pixels. 

Each patch is then flattened into a one-dimensional vector and passed through a 

learnable linear projection layer to create "patch embeddings" suitable for the 

model's working dimension. Since the Transformer architecture has no inherent 

sense of sequence, "positional embeddings" are added to these vectors to preserve 

the original location information of the patches. The resulting sequence of vectors 

is then fed into a standard Transformer encoder, which is the heart of the 

architecture. This encoder contains "Multi-Head Self-Attention" layers that 

dynamically weigh the importance and relationship of each patch with every 

other patch. This mechanism allows the model to learn a holistic representation 

of the image from the very first layers. The Vision Transformers architecture is 

shown in Figure 17 [73]. 
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Figure 17. Detailed architectural diagram of the ViT, illustrating the key 

components from image patching and embedding to the inner workings of the 

Transformer Encoder and the final classification head. 

 

The ViT models utilized in this study are differentiated according to two 

fundamental hyperparameters: patch size and model scale. The patch size is a 

critical factor that dictates the resolution at which the model processes an image 

and determines the length of the input sequence. In this project, two different 

patch sizes were tested: patch_16 and patch_32. The patch_16 models partition 

the image into smaller pieces, thereby creating a longer vector sequence. This 

enhances the model's potential to capture finer and more detailed features, such 

as narrow cracks; however, since the computational cost of the self-attention 

mechanism is proportional to the square of the sequence length, it slows down 

the training process and requires more memory. On the other hand, patch_32 

models use larger patches, which creates a shorter sequence, making them much 

more efficient and faster in terms of computation. This efficiency, however, 

comes with the risk of processing the image at a coarser resolution and potentially 

losing small details. Testing these two different patch sizes is of critical 
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importance for understanding the trade-off between detail sensitivity and 

computational efficiency for the crack detection task. 

In addition to patch size, ViT architectures can also be scaled to possess 

different levels of capacity and complexity. In this study, various industry-

standard model variants, designated as Tiny, Small, Base, and Large, were used 

for both patch sizes. The fundamental differences among these variants stem from 

the number of Transformer encoder layers (depth), the size of the patch 

embeddings (hidden size/width), and the number of heads in the self-attention 

mechanism. The Tiny and Small models offer lighter and more efficient 

alternatives with fewer layers and a lower parameter count, while the Base model 

is the standard configuration defined in the original ViT paper, providing a strong 

performance baseline. The Large model, conversely, is the highest-capacity 

member of the family with significantly more layers and parameters, and it targets 

state-of-the-art accuracy at the expense of the highest computational cost. This 

wide range of models allows us to comprehensively investigate the capabilities 

of the ViT architecture across different configurations and to determine the most 

suitable model complexity for the task. 

 

Swin 

Although the standard ViT architecture is successful at modeling long-range 

dependencies by virtue of its global self-attention mechanism, it presents a 

significant practical challenge: its computational cost increases quadratically 

with the number of input image patches (quadratic complexity). This 

characteristic renders its use highly expensive for tasks that require high-

resolution images, such as object detection or semantic segmentation. The Swin 

(Shifted Window) Transformer was developed precisely to solve this efficiency 

problem and to establish the Transformer architecture as a more general-purpose 

computer vision backbone. The core innovation of the Swin Transformer is its 

replacement of ViT's costly global attention mechanism with a local attention 

mechanism that is much more computationally efficient and operates within a 
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hierarchical structure. In this approach, self-attention is computed not among all 

patches in the image, but within smaller, non-overlapping local windows. As a 

result, the computational complexity exhibits a linear, rather than quadratic, 

increase with respect to the image size, which allows the architecture to operate 

efficiently with high-resolution inputs [74]. The Swin Transformers architecture 

is shown in Figure 18. 

 

 

Figure 18. An overview of the Swin Transformer architecture, illustrating (a) 

the general hierarchical structure with four stages and patch merging layers, and 

(b) the detailed composition of two successive blocks featuring windowed (W-

MSA) and shifted-window (SW-MSA) self-attention. 

 

The most ingenious aspect of the Swin Transformer is its ability to increase 

efficiency using local windows without losing global context, which it achieves 

by enabling information flow across windows. This is realized through the 

"shifted window" mechanism. In the first of two successive Transformer blocks 

in the architecture, self-attention is computed within standard, non-overlapping 

windows. In the next block, however, this window grid is shifted by half the 

window size. This simple shifting operation allows patches that were in different 

windows in the preceding layer to be grouped together within the same window 

in the new layer. As this process is repeated throughout the depth of the network, 

information effectively propagates from one window to another, and 

consequently, a global interaction field is achieved through local operations. 

Another significant advantage of this design is its ability to produce hierarchical 
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feature maps at different scales, similar to CNNs. At different stages of the 

network, it reduces the spatial resolution and increases the channel count by 

merging patches. This hierarchical structure makes the Swin Transformer an 

extremely powerful and flexible backbone not only for classification but also for 

various dense prediction tasks. 

In this study, four primary variants of the Swin Transformer family were used 

to evaluate the effect of its efficiency and performance balance at different 

capacity levels: Swin-Tiny (T), Swin-Small (S), Swin-Base (B), and Swin-Large 

(L). All of these variants are based on the shifted-window self-attention 

mechanism and hierarchical design described above. The fundamental difference 

among them arises from the scaling of the core parameters that constitute the 

architecture; these parameters include the number of blocks at each stage (depth), 

the size of the embedding vectors (channel count), and the number of heads in 

the attention mechanism. Swin-T and Swin-S, as the lighter and more efficient 

members of the family, offer the fundamental advantages of the Swin architecture 

at a lower computational cost. Swin-B is the reference model, which establishes 

a strong balance between performance and cost and is often used for direct 

comparison with standard-sized models like ViT-Base. Swin-L, in contrast, is the 

largest model in terms of capacity, targeting the highest accuracy. The analysis 

of these four variants allows us to understand how effective a hierarchical and 

efficient Transformer approach is for a specific task like concrete crack detection 

and the impact of model capacity on performance. The layers and architectural 

variants mentioned above are shown in Figure 19. 
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Figure 19. Detailed specifications of the Swin Transformer variants (Swin-T, 

Swin-S, Swin-B, and Swin-L), showing the hyperparameter configuration at 

each hierarchical stage. 

 

Beit 

Among the Transformer-based models examined in this study is BEiT 

(Bidirectional Encoder representation from Image Transformers), which presents 

not an architectural innovation, but a revolutionary pre-training strategy that 

fundamentally alters how models learn visual representations. Traditionally, 

models like ViT and Swin are pre-trained in a supervised fashion on datasets such 

as ImageNet, which contain millions of human-labeled images. BEiT, 

conversely, adopts a self-supervised learning approach that circumvents the need 

for this costly and labor-intensive labeling process. Drawing inspiration from the 

groundbreaking BERT model in the field of Natural Language Processing (NLP), 

the core idea behind BEiT is for the model to learn visual representations 

autonomously through a "pretext task" known as "Masked Image Modeling" 

(MIM). In this process, an input image is first converted into a sequence of 

patches and, subsequently, into a version composed of discrete "visual tokens." 

During pre-training, a portion of the image patches (e.g., 40%) is randomly 

masked, and the model's task is to predict the original visual tokens of these 

masked regions by using the context of the visible patches. This task compels the 

model to do much more than simple pixel completion; it forces a deep 
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understanding of the semantic and structural integrity of images [75]. The Beit 

Transformers architecture is shown in Figure 20. 

 

 

Figure 20. A schematic diagram of the BEiT pre-training framework, 

illustrating its core task of Masked Image Modeling (MIM). 

 

Since BEiT itself is a pre-training methodology rather than a novel 

architecture, the backbone it is based upon is typically a standard Vision 

Transformer. The BEiT-Base and BEiT-Large variants used in this study denote 

different capacity versions of the underlying ViT architecture, upon which the 

masked image modeling task was applied. BEiT-Base is constructed upon a 

standard "Base" size ViT architecture (e.g., 12 layers, 768 hidden dimension, 12 

attention heads). This model offers a strong baseline for measuring the efficacy 

of the self-supervised pre-training on a standard-sized architecture. BEiT-Large, 

conversely, uses a "Large" size ViT architecture with significantly more layers 

and parameters, aiming to maximize the potential of this learning strategy and 

generally targeting state-of-the-art performance. The primary purpose of 

including these two models in our study is to compare not only architectures but 

also pre-training strategies. The comparison of BEiT models against traditionally 

supervised, ImageNet pre-trained ViT models of the same size is intended to 
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determine whether learning from unlabeled data with a BERT-like approach 

provides a tangible advantage over supervised pre-training for a specific task like 

concrete crack detection, where fine details are important. 
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RESULTS AND DISCUSSION 

 

Experimental Setup 

To ensure that the findings presented in this research adhere strictly to the 

principles of scientific rigor, methodological consistency, and reproducibility, all 

experimental work was conducted on a single, meticulously configured, and 

controlled computing platform. This standardized approach eliminates external 

variables, such as performance fluctuations arising from hardware or software, 

which could otherwise confound the results. Thus, it is guaranteed that any 

observed differences in performance, such as accuracy, training time, and 

efficiency, can be reliably attributed solely to the intrinsic architectural merits 

and structural properties of the DL models under investigation. This 

methodological rigor is an indispensable prerequisite for the primary objective of 

the study: a fair comparison of different architectural paradigms on a level 

playing field. 

The experimental work was conducted on a high-performance workstation 

built upon an ASUS PRIME Z790-A WIFI motherboard. At the heart of the 

system is an NVIDIA GeForce RTX™ 3090 graphics processing unit (GPU), 

which, with its 24 GB of GDDR6X VRAM, undertakes the majority of the DL 

computations and makes the training of large models possible. This extensive 

VRAM capacity, required by high-parameter model variants such as the "Large" 

versions in our study and by large batch sizes, ensured that the model training 

could proceed uninterruptedly and efficiently. Tasks such as data loading, pre-

processing, on-the-fly data augmentation, and general system management were 

handled by a powerful Intel® Core™ i7-14700K central processing unit (CPU), 

which ensures the GPU operates at full efficiency without data bottlenecks. These 

two processors are supported by 64 GB of DDR5 system memory and a 1.0 TB 

high-speed storage unit, which facilitate the fluid operation of the system and the 

efficient management of large data batches in memory. 
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On top of the hardware layer resides the Ubuntu 24.04.2 LTS operating system 

(Linux 6.11.0-28-generic kernel version), which was chosen for its stability and 

strong compatibility with DL tools. All model development, training, and 

evaluation processes were coded in Python using the PyTorch DL framework, a 

popular choice among researchers due to its flexible structure, dynamic 

computational graph, and rich ecosystem. PyTorch's ability to fully leverage the 

parallel computing power of the RTX 3090 was enabled by the CUDA 12.8 

toolkit, which serves as the essential bridge between the hardware and software. 

In effect, this integrated experimental environment, meticulously managed and 

standardized from the operating system down to the lowest-level hardware 

drivers, provides the robust, stable, and verifiable foundation for the 

comprehensive comparative analysis conducted in this research. 

 

Evaluation Metrics  

To quantitatively and comprehensively evaluate the performance of the DL 

models trained in this study, a series of industry-standard metrics were employed. 

All of these metrics are computed based on the Confusion Matrix, which is 

derived from a comparison of the model's predictions on the test set against the 

ground-truth labels. The confusion matrix is a table that visualizes the 

performance of a classification model and is built upon four fundamental 

outcomes. In the context of our project, these outcomes are defined as follows: a 

True Positive (TP) is a 'cracked' image correctly classified by the model as 

'cracked' ; a False Positive (FP) is a 'non-cracked' image erroneously labeled by 

the model as 'cracked' ; a True Negative (TN) is a 'non-cracked' image correctly 

classified as 'non-cracked' ; and finally, a False Negative (FN) is a 'cracked' image 

that was missed by the model and erroneously classified as 'non-cracked'. These 

four foundational outputs form the basis for the more complex and interpretable 

metrics described below. 

Accuracy is the most intuitive and fundamental metric used to measure the 

performance of a classification model. Mathematically, it is calculated by 
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dividing the sum of all correct predictions (both true positives and true negatives) 

by the total number of predictions. In other words, it represents the percentage of 

images in the test set that the model classified correctly. While a high accuracy 

value indicates that the model is performing well in a general sense, it can be 

misleading, particularly on imbalanced datasets. Although the dataset in this 

study was balanced, evaluating the model's performance not just by its accuracy 

rate but also with more sensitive metrics that separately examine its success on 

the positive and negative classes is essential for a deeper and more reliable 

analysis. 

 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(1) 

 

The Precision metric, also known as Positive Predictive Value, quantifies 

what proportion of the predictions labeled as "positive" (i.e., ‘cracked’) by the 

model are genuinely correct. This metric provides an answer to the question, 

"When the model reports that it has found a crack, how much can I trust that 

finding?" A high precision score indicates that the model has a low False Positive 

(FP) rate. In the context of structural health monitoring, this is of critical 

importance because high precision prevents a sound concrete surface from being 

erroneously flagged as ‘cracked’. This, in turn, precludes unnecessary and costly 

on-site inspections, detailed analyses, or repair procedures, promoting the 

efficient allocation of resources. 

 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(2) 

 

This metric, alternatively referred to as Sensitivity, Recall, or True Positive 

Rate, measures the model's ability to correctly identify all actual positive cases 

(i.e., all images that are genuinely ‘cracked’). This metric answers the question, 

"What percentage of the existing cracks was our model able to capture?" 
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Sensitivity is one of the most important metrics, particularly in safety-critical 

applications. A high sensitivity value signifies that the model has a low False 

Negative (FN) rate. In other words, the likelihood of the model overlooking an 

existing crack is low. Since the failure to detect an existing crack in a reinforced 

concrete structure can allow structural damage to grow over time, potentially 

leading to catastrophic consequences, maintaining a high value for this metric is 

of paramount importance for proactive maintenance and safety management. 

 

 
𝑅𝑒𝑐𝑎𝑙𝑙(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(3) 

 

In practice, a trade-off generally exists between the Precision and Sensitivity 

metrics; a modification made to increase one may cause a decrease in the other. 

For instance, a model that labels even the slightest suspicion as ‘cracked’ might 

achieve very high sensitivity, but this situation would lead to numerous false 

positives, thereby reducing its precision. The F1-Score is a powerful metric that 

establishes a balance by combining these two metrics into a single number. 

Calculated as the harmonic mean of Precision and Sensitivity, the F1-Score 

requires both metrics to be high. The harmonic mean, unlike a simple arithmetic 

average, severely penalizes the F1-Score if one of the metrics is very low. For 

this reason, the F1-Score is regarded as one of the most balanced and reliable 

indicators for measuring a model's performance in situations where both false 

positives (low precision) and false negatives (low sensitivity) are significant. 

 

 
𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(4) 

 

Training Protocol 

To ensure a fair and unbiased measurement of the true performance of all 

state-of-the-art architectures compared in this study, all experiments were 

conducted under strictly standardized and identical conditions. This rigorous 
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standardization forms the foundation of our methodology, guaranteeing that any 

observed performance differences are attributable to the architectural merits of 

the models themselves, rather than to variations in the training setup. All models 

were trained and evaluated on the same hardware, using the same balanced 

dataset splits (training, validation, test), the same input image size (224×224), and 

the same batch size. This consistency was further reinforced by initializing each 

architecture with its own standard pre-trained weights and subjecting it to the 

exact same training pipeline. 

Our comprehensive training strategy, applied consistently to all models, 

integrated the principles of transfer learning and data augmentation. The entire 

process was foundationally built on transfer learning. By fine-tuning pre-trained 

models, we leveraged powerful feature extractors that had already learned a rich 

hierarchy of general visual features. The issue of class imbalance was 

fundamentally resolved prior to training by balancing the dataset via down 

sampling. Data augmentation techniques were then used on this balanced dataset 

to enhance the model's generalization capability and to prevent overfitting. On-

the-fly data augmentation techniques such as random rotation, flipping, cropping, 

and color shifting artificially increased the diversity and effective volume of the 

training data, making the models more robust and resilient to variable conditions. 

To update the model weights, the AdamW optimizer was chosen, which is 

known for its stability and effectiveness in training DL architectures, especially 

those that are Transformer-based. AdamW tends to provide better generalization 

performance than the traditional Adam optimizer because it decouples the weight 

decay regularization from the gradient update. A dynamic approach was adopted 

for managing the learning rate. The training process included a "warm-up" period 

for the first 5 epochs, during which the learning rate was gradually increased from 

zero to its target value. This warm-up phase prevents the valuable pre-trained 

weights from being corrupted by large, abrupt updates, which can occur when the 

model is unstable at the beginning of training. Following the warm-up period, a 

Cosine Annealing Scheduler was engaged, which smoothly decays the learning 
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rate according to a cosine curve over the remaining epochs. The initial learning 

rate was set to 1e-5. 

Additional mechanisms were used for managing the training duration and 

controlling for overfitting. In this context, the training of all models was 

conducted for a fixed and standard duration of 100 epochs to ensure a fair 

comparison. Throughout the training process, the model's performance on the 

validation dataset was carefully monitored at the end of each epoch using the F1-

Score metric. Once the 100-epoch training was complete, the model weights 

belonging to the epoch that achieved the highest validation F1-Score were saved 

as the final, best-performing version of the respective architecture. Another 

important part of the regularization strategy was the application of a weight decay 

of 2.0e−05 as a parameter of the AdamW optimizer. This technique penalizes the 

magnitude of the model's parameter weights, thereby discouraging overly 

complex and overfitted solutions. 

The training protocol applied in this study is, therefore, a multi-faceted and 

meticulously controlled set of strategies. The establishment of a standardized 

experimental environment, the creation of a strong foundation with transfer 

learning, the reinforcement of generalization with data augmentation, and the use 

of an advanced learning rate schedule with warm-up and cosine decay, along with 

regularization techniques like weight decay, were all aimed at revealing the 

potential of each architecture under fair and optimal conditions. This holistic 

approach ensures the reliability of the obtained results and the scientific validity 

of the comparative analysis. 

 

Experimental Results 

This section presents the experimental results that reveal the performance of 

the wide range of models examined in this study on the meticulously prepared 

datasets. To deepen the comparative analysis and to measure the capabilities of 

the models at different levels of difficulty, the experiments were conducted in 

two primary phases. In the first phase, each structural category—'Deck', 
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'Pavement', and 'Wall'—was treated as an independent binary classification 

(cracked/non-cracked) problem. This approach allowed us to evaluate in an 

isolated manner the fundamental success of each architecture in learning the 

textural and structural features specific to different surface types. In the second 

phase, to test the performance of the models in a more complex scenario, these 

three main categories were combined to create a single, unified dataset. This 

combination resulted in the definition of a new six-class multi-class classification 

task, comprising the following classes: D_Cracked (Cracked Deck), D_Non-

cracked (Non-cracked Deck), P_Cracked (Cracked Pavement), P_Non-cracked 

(Non-cracked Pavement), W_Cracked (Cracked Wall), and W_Non-cracked 

(Non-cracked Wall). In the subsections that follow, the results obtained from this 

two-phase experiment are presented in detail. First, the results of the binary 

classification tasks are addressed, within which the performance metrics obtained 

for the 'Deck' class are summarized in Table 2. 

Table 2. Performance comparison of all evaluated architectures on the 'Deck' 

dataset for the binary classification task. 

Models 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 
Params GFLOPs 

R
es

N
et

 

18 83.61 83.75 83.61 83.59 11.18 3.6470 

34 83.61 83.98 83.61 83.56 21.29 7.3565 

50 81.48 81.80 81.48 81.43 23.51 8.2634 

101 83.11 84.31 83.11 82.97 42.5 15.7288 

152 83.93 84.72 83.93 83.84 58.15 23.2038 

D
en

se
N

et
 

121 82.30 82.36 82.30 82.29 6.96 5.6667 

169 79.02 80.73 79.02 78.72 12.49 6.7169 

201 78.85 79.05 78.85 78.82 18.1 8.5795 
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E
ff

ic
ie

n
tN

et
-V

2
 Small 83.77 84.27 83.77 83.71 20.18 5.4192 

Medium 82.13 83.29 82.13 81.97 52.86 10.4436 

Large 84.59 85.47 84.59 84.49 117.24 23.9733 

V
is

io
n
 T

ra
n
sf

o
rm

er
s 

P
at

ch
-1

6
 

Tiny 82.30 82.86 82.30 82.22 5.52 2.1493 

Small 80.49 80.77 80.49 80.45 21.67 8.4817 

Base 79.34 79.39 79.34 79.34 85.8 33.6955 

Large 80.66 81.73 80.66 80.49 303.3 119.2923 

P
at

ch
-3

2
 

Small 80.00 80.70 80.00 79.89 22.49 2.2390 

Base 81.80 82.09 81.80 81.76 87.46 8.7247 

Large 80.66 81.37 80.66 80.55 305.51 30.5073 

S
w

in
 T

ra
n
sf

o
rm

er
s 

Tiny 82.95 84.19 82.95 82.80 27.52 8.7422 

Small 83.44 83.75 83.44 83.41 48.84 17.0885 

Base 84.43 84.49 84.43 84.42 86.75 30.3375 

Large 84.59 84.64 84.59 84.58 195.0 68.1649 

B
ei

t 
T

ra
n
sf

o
rm

er
s Base 82.30 82.65 82.30 82.25 85.76 25.3294 

Large 79.84 79.87 79.84 79.83 303.41 89.5463 

 

The results of the binary classification task for the "Deck" class revealed 

significant performance differences and important architectural trends among the 

examined model families. According to the metrics presented in Table 2, the Swin 
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Transformer and EfficientNet-V2 families generally exhibited the highest 

performance, while the classic ResNet architectures also yielded highly 

competitive and stable results. The highest F1-Score (84.58%) was achieved by 

the Swin Transformer Large model, followed very closely by the EfficientNet-

V2 Large model with a score of 84.49%. These two models stand out as the most 

successful approaches for the classification of "Deck" class images, which are 

characterized by homogeneous surface textures and sharp shadows. The 

confusion matrices for the models that yielded the top performance for the 'Deck' 

class are illustrated in Figure 21. 

 

  

Figure 21. Confusion matrices for the two best-performing models on the 

'Deck' binary classification task: Swin Transformer Large (left) and 

EfficientNet-V2 Large (right). 

 

When examining the CNN-based architectures, the ResNet family is seen to 

offer reliable and stable performance, with F1-scores generally above 83%. The 

best result within the family was achieved by ResNet-152 (83.84% F1); however, 

a noteworthy point is that ResNet-50 exhibited a lower performance than the 

smaller ResNet-34. This situation is an indicator that model depth does not 

always bring a linear performance increase. In contrast, the DenseNet family 

underperformed compared to other architectures in this task. The best DenseNet 

model was the smallest in the family, DenseNet-121 (82.29% F1), while 

performance decreased as model depth increased (DenseNet-169 and 201), 
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showing that the dense connectivity strategy did not scale effectively for this 

specific task. Among the CNNs, the most striking success was demonstrated by 

the EfficientNet-V2 family. While EfficientNet-V2 Large achieved one of the 

highest scores, the EfficientNet-V2 Small model proved what a powerful 

alternative it is in terms of efficiency by reaching a very high F1-score of 83.71% 

with an extremely low computational cost (5.4 GFLOPs). 

When considering the Transformer-based architectures, the differences 

between the architectural designs become clearly apparent. The standard ViT 

models obtained more modest results in general. Particularly in the ViT-Patch-16 

family, the fact that the largest model, ViT-Large (80.49% F1), performed lower 

than the smallest model, ViT-Tiny (82.22% F1), demonstrates that simply 

increasing the parameter count is not an effective strategy for this task. In 

contrast, the Swin Transformer family, which uses a hierarchical structure and a 

windowed attention mechanism, was by far the most successful among the 

Transformers. In this family, where performance consistently increased with 

model size, Swin-Base (84.42% F1) and Swin-Large (84.58% F1) were among 

the top-performing models. Finally, although the BEiT models had a reasonable 

start (BEiT-Base 82.25% F1), the performance drop in the BEiT-Large model 

indicates that self-supervised pre-training did not provide the expected advantage 

for large models in this task. 

Evaluating the results not only based on absolute performance but also along 

the axis of efficiency (parameter count and GFLOPs) offers important takeaways 

for practical applications. Although Swin-Large and EfficientNet-V2 Large stand 

out as the best options in scenarios where maximum accuracy is targeted, the 

efficiency champions are different. Specifically, EfficientNet-V2 Small and 

ResNet-34 achieve F1-scores only marginally lower than the top-tier models, but 

they do so at one-fifth or less of the computational cost. This situation clearly 

demonstrates that in real-world applications where resources are limited or fast 

inference time is important, lighter and more efficient models represent a much 

more practical and sensible alternative. 
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Table 3. Performance comparison of all evaluated architectures on the 

'Pavement' dataset for the binary classification task. 

Models 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 
Params GFLOPs 

R
es

N
et

 

18 90.43 90.47 90.43 90.43 11.18 3.6470 

34 90.94 90.96 90.94 90.94 21.29 7.3565 

50 90.82 90.82 90.82 90.82 23.51 8.2634 

101 90.43 90.55 90.43 90.43 42.5 15.7288 

152 90.05 90.09 90.05 90.05 58.15 23.2038 

D
en

se
N

et
 

121 89.92 89.93 89.92 89.92 6.96 5.6667 

169 86.48 86.83 86.48 86.45 12.49 6.7169 

201 85.08 85.13 85.08 85.07 18.1 8.5795 

E
ff

ic
ie

n
tN

et
-V

2
 Small 89.80 89.82 89.80 89.79 20.18 5.4192 

Medium 89.92 90.09 89.92 89.91 52.86 10.4436 

Large 90.05 90.06 90.05 90.05 117.24 23.9733 

V
is

io
n
 T

ra
n
sf

o
rm

er
s 

P
at

ch
-1

6
 

Tiny 88.27 88.27 88.27 88.26 5.52 2.1493 

Small 89.67 90.15 89.67 89.64 21.67 8.4817 

Base 88.14 88.16 88.14 88.14 85.8 33.6955 

Large 88.65 89.12 88.65 88.61 303.3 119.2923 

P
at

ch
-3

2
 

Small 87.12 87.66 87.12 87.07 22.49 2.2390 

Base 87.37 87.43 87.37 87.37 87.46 8.7247 

Large 87.24 87.53 87.24 87.22 305.51 30.5073 
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S
w

in
 T

ra
n
sf

o
rm

er
s 

Tiny 87.12 87.17 87.12 87.11 27.52 8.7422 

Small 88.27 88.46 88.27 88.25 48.84 17.0885 

Base 90.43 90.51 90.43 90.43 86.75 30.3375 

Large 89.16 89.44 89.16 89.14 195.0 68.1649 

B
ei

t 
T

ra
n
sf

o
rm

er
s 

Base 89.41 89.49 89.41 89.41 85.76 25.3294 

Large 75.38 76.57 75.38 75.10 303.41 89.5463 

 

The results of the binary classification task conducted on the 'Pavement' dataset, 

presented in detail in Table 3, reveal a performance distribution that is different from 

the 'Deck' class and quite remarkable. The most successful results in this category 

were surprisingly achieved by the classic ResNet family, which surpassed many more 

modern and structurally complex architectures. It is noteworthy that the general 

performance scores are higher compared to the 'Deck' class and are clustered more 

closely around a 90% F1-Score. This situation indicates that the crack features in the 

pavement dataset, despite the high visual noise it contains, could be learned more 

clearly and distinctively by the models. The absolute winner of this category was 

ResNet-34, with an impressive F1-Score of 90.94%. This result is of considerable 

importance as it underscores the fact that the newest or largest model is not always 

the best solution for a given task, and that a well-established, medium-depth 

architecture can also deliver top-tier performance. 

When the performance within the CNN-based architectures is examined, the clear 

superiority of the ResNet family in this category is plainly visible. The top-

performing ResNet-34 was followed very closely by other members of the family 

such as ResNet-50, ResNet-18, and ResNet-101, which also achieved F1-scores 
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above 90%. This suggests that medium-depth ResNet architectures create a "sweet 

spot" of performance for the detection of pavement cracks, and that extreme depth, 

as in ResNet-152, results in a marginal performance decrease compared to this peak. 

In contrast, the DenseNet family, showing a similar trend to the 'Deck' results, could 

not demonstrate top performance in this category either. The fact that the best result 

was again obtained by the smallest model, DenseNet-121, and that performance 

declined in deeper models, has strengthened the evidence that the dense connectivity 

strategy does not provide a scalable advantage for the tasks in this project. The 

EfficientNet-V2 family, however, exhibited highly consistent and successful results, 

with all variants achieving very similar F1-scores (in the range of 89.8% - 90.05%). 

The most important finding here is that the lightest model, EfficientNet-V2 Small, 

demonstrated exceptional efficiency by delivering nearly the same performance as 

its much larger Large version. 

When considering the Transformer-based architectures, interesting results also 

emerged in this category. The standard ViT models performed at a tier below the top 

CNNs, showing moderate performance. The Swin Transformer family, which offers 

a hierarchical structure, was again the most successful among the Transformers, and 

the Swin-Base model ranked among the top performers alongside the best ResNets 

with an F1-Score of 90.43%. However, unlike in the 'Deck' class, the performance of 

the Swin-Large model decreased slightly compared to the Base model. The most 

striking result in this category belongs to the BEiT family. While the BEiT-Base 

model achieved a competitive result, the BEiT-Large model exhibited the worst 

performance among all models with a very low F1-Score of 75.10%. This dramatic 

drop demonstrates that the self-supervised pre-training strategy of BEiT, when 

combined with a large model capacity, failed to generalize on the visual 

characteristics of the 'Pavement' dataset and was entirely unsuccessful. 

Evaluating the results not only based on absolute performance but also along the 

axis of efficiency reveals a very clear picture for the 'Pavement' class. The undisputed 

champions of this category, for both absolute performance and efficiency, are the 

ResNet-18 and ResNet-34 models. While ResNet-34 achieved the highest F1-Score, 
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ResNet-18 also presents an exceptional cost-performance profile by delivering nearly 

the same performance as the top models despite being one of the most efficient 

models. These findings strongly demonstrate that for practical applications involving 

crack detection on visually noisy and complex surfaces like pavements, the most 

sensible and optimal solution is to use proven, efficient, and medium-depth 

architectures like ResNet-18 or ResNet-34, rather than resorting to extremely large 

and complex models. The confusion matrices for the ResNet-34 and ResNet-18 

models, which were the top performers for the 'Pavement' class, are presented in 

Figure 22. 

 

Figure 22. Confusion matrices for the two best-performing models on the 

'Pavement' binary classification task: ResNet-34 (left) and ResNet-18 (right). 
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Table 4. Performance comparison of all evaluated architectures on the 'Wall' 

dataset for the binary classification task. 

Models 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 
Params GFLOPs 

R
es

N
et

 

18 88.51 88.58 88.51 88.51 11.18 3.6470 

34 87.22 87.27 87.22 87.21 21.29 7.3565 

50 88.51 88.54 88.51 88.51 23.51 8.2634 

101 88.60 88.69 88.60 88.59 42.5 15.7288 

152 87.91 87.95 87.91 87.91 58.15 23.2038 

D
en

se
N

et
 

121 87.31 87.39 87.31 87.30 6.96 5.6667 

169 84.89 85.10 84.89 84.86 12.49 6.7169 

201 83.85 84.01 83.85 83.83 18.1 8.5795 

E
ff

ic
ie

n
tN

et
-V

2
 Small 88.95 89.01 88.95 88.94 20.18 5.4192 

Medium 87.39 87. 51 87.39 87.38 52.86 10.4436 

Large 87.74 87.77 87.74 87.74 117.24 23.9733 

V
is

io
n
 T

ra
n
sf

o
rm

er
s 

P
at

ch
-1

6
 

Tiny 84.28       84.32 84.28       84.28       5.52 2.1493 

Small 84.37 84.60 84.37 84.37 21.67 8.4817 

Base 84.80 85.02 84.80 84.78 85.8 33.6955 

Large 83.68 85.11 83.68 83.51 303.3 119.2923 

P
at

ch
-3

2
 

Small 80.57 80.68 80.57 80.55 22.49 2.2390 

Base 83.85 84.23 83.85 83.81 87.46 8.7247 

Large 83.85 84.04 83.85 83.83 305.51 30.5073 
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s Tiny 86.96 87.08 86.96 86.95 27.52 8.7422 

Small 86.36 87.03 86.36 86.29 48.84 17.0885 

Base 87.13 87.27 87.13 87.12 86.75 30.3375 

Large 87.31 87.40 87.31 87.30 195.0 68.1649 

 

 

 

B
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t 
T

ra
n
sf

o
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s 

Base 77.55 78.78 77.55 77.30 85.76 25.3294 

Large 86.70 86.80 86.70 86.69 303.41 89.5463 

 

The results of the binary classification task conducted on the 'Wall' dataset, 

presented in detail in Table 4, depict a performance landscape that is distinct and 

unique from the other two categories. The most remarkable and important finding 

in this task is that the EfficientNet-V2 Small model, one of the most efficient 

members of the EfficientNet-V2 family, exhibited the highest performance 

among all tested architectures with an F1-Score of 88.94%. This result is strong 

evidence underscoring that the highest accuracy does not always come from the 

largest or most complex model. The ResNet family also demonstrated highly 

competitive and stable performance, with variants such as ResNet-101 and 

ResNet-18/50 achieving F1-scores above 88.5%. The most successful results for 

the "Wall" class appear to be obtained by modern and efficiency-focused CNN 

architectures. 

When the performance within the CNN-based architectures is examined more 

deeply, it is clear that the winner of this category is the EfficientNet-V2 family. 

The fact that the higher-performing EfficientNet-V2 Small model was not 

surpassed by its larger Medium and Large variants suggests that the capacity and 

architectural design of the Small model are optimal for learning the visual 

features of 'Wall' surfaces (e.g., formwork lines, water stains). The ResNet family 

once again delivered very strong and reliable results. The performance of all 
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variants within the family being very close (in the 87.2% - 88.6% F1 range) 

confirms that the ResNet architecture provides a stable foundation for this task, 

even at different depths. In contrast, the DenseNet family, in a consistent trend 

observed in the previous two categories, exhibited weaker performance compared 

to other CNNs in this task as well, and its performance decreased as model depth 

increased. This situation reinforces the finding that scaling DenseNet did not 

provide an advantage for any of the three surface types in our project. 

The Transformer-based architectures lagged slightly behind the top-

performing members of the CNNs in the "Wall" category. The ViT and Swin 

Transformer families delivered upper-mid-range performance with F1-scores 

generally below 87%. In the Swin Transformer family, it is noteworthy that the 

performance gain from scaling the model size from Tiny to Large was quite 

marginal. One of the most interesting results in this category was observed in the 

BEiT family. In contrast to the failure of the BEiT-Large model on the other two 

datasets, in this task, BEiT-Large (86.69% F1) demonstrated a much superior 

performance compared to the BEiT-Base model (77.30% F1). Although this 

situation indicates that the features learned via BEiT's self-supervised pre-

training strategy interacted better with a larger model capacity on the unique 

visual patterns of the 'Wall' dataset, this performance still did not reach the level 

of the best CNNs. 

The result of this comprehensive analysis for the "Wall" class presents an 

exceptionally clear picture of the relationship between performance and 

efficiency. The undisputed winner of this category is the EfficientNet-V2 Small 

model, which not only achieved the highest F1-Score in terms of absolute 

performance but also accomplished this as one of the most efficient models. This 

model exhibits an outstanding cost-performance balance by delivering the highest 

accuracy at one of the lowest computational costs. Similarly, ResNet-18 also 

proved to be an excellent alternative for practical applications by achieving a 

result very close to the highest performance levels at a very low cost. In effect, 

for the detection of cracks on wall surfaces, this study has shown that using a 
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modern, efficient, and compact CNN architecture like EfficientNet-V2 Small 

offers the most optimal and effective solution, rather than resorting to extremely 

large and costly models. A detailed breakdown of the prediction distributions and 

error types for the two most successful architectures in this category, 

EfficientNet-V2 Small and ResNet-18, is illustrated by their respective confusion 

matrices in Figure 23. 

 

Figure 23. Confusion matrices for the two best-performing models on the 'Wall' 

binary classification task: EfficientNet-V2 Small (left) and ResNet-18 (right). 

 

Table 5. Performance comparison of all evaluated architectures for the 6-

class classification task on the unified dataset. 

Models 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 
Params GFLOPs 

R
es

N
et

 

18 86.56 86.69 86.23 86.22 11.18 3.6470 

34 86.36 86.01 86.82 85.85 21.29 7.3565 

50 86.09 85.95 85.56 85.63 23.51 8.2634 

101 86.64 86.25 86.18 86.20 42.5 15.7288 

152 85.97 85.59 85.44 85.45 58.15 23.2038 
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121 84.44 83.98 83.89 83.86 6.96 5.6667 

169 82.76 82.89 82.19 82.12 12.49 6.7169 

201 82.48 82.29 81.66 81.73 18.1 8.5795 

E
ff

ic
ie

n
tN

et
-V

2
 

Small 87.11 86.60 86.45 86.42 20.18 5.4192 

Medium 86.72 86.51 86.24 86.24 52.86 10.4436 

Large 86.91 86.43 86.20 86.24 117.24 23.9733 

V
is

io
n
 T

ra
n
sf

o
rm

er
s 

P
at

ch
-1

6
 

Tiny 84.21 84.04 83.70 83.72 5.52 2.1493 

Small 83.70 83.49 83.21 83.20 21.67 8.4817 

Base 83.86 83.76 83.68 83.71 85.8 33.6955 

Large 84.84 85.20 84.58 84.48 303.3 119.2923 

P
at

ch
-3

2
 

Small 82.48 82.31 82.09 82.05 22.49 2.2390 

Base 83.07 84.09 82.68 82.62 87.46 8.7247 

Large 83.46 83.86 83.34 83.37 305.51 30.5073 

S
w

in
 T

ra
n
sf

o
rm

er
s 

Tiny 85.38 84.86 84.75 84.77 27.52 8.7422 

Small 85.34 84.65 84.79 84.68 48.84 17.0885 

Base 84.95 84.88 84.25 84.28 86.75 30.3375 

Large 86.13 86.10 85.62 85.63 195.0 68.1649 

B
ei

t 
T

ra
n
sf

o
rm

er
s 

Base 83.89 83.66 83.49 83.40 85.76 25.3294 

Large 84.56 84.46 83.98 83.95 303.41 89.5463 
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The results of the second and most challenging phase of the experimental 

study, the six-class multi-class classification task, measure not only the models' 

ability to detect the presence of a defect but also their capacity to understand the 

structural context (Deck, Pavement, or Wall) in which it appears. The findings 

presented in Table 5 demonstrate that in this complex task, the EfficientNet-V2 

and ResNet families established a clear superiority over the Transformer-based 

architectures. The most remarkable and important result of this experiment is that 

the model achieving the highest F1-Score (86.42%) among all tested architectures 

was EfficientNet-V2 Small, one of the most efficient members of its family. This 

finding strongly proves that the largest model is not always the best solution, even 

for the most complex tasks, and that a well-designed and more compact 

architecture can deliver superior performance. 

The performance within the CNN-based architectures clearly reveals the 

winner of this task. The EfficientNet-V2 family, with all its variants scoring 

above an 86% F1-score, demonstrated that it is the most suitable architecture for 

this challenging task. Notably, the fact that the smallest member of the family, 

the Small model, achieved a marginally better result than its much larger Medium 

and Large versions confirms that the balance of capacity and efficiency in this 

model is optimal for this task. The ResNet family also, once again, delivered 

extremely stable and strong performance. While all ResNet variants achieved 

very similar results (in the 85.4% - 86.2% F1 range), the fact that the most 

efficient member, ResNet-18, was among the top models demonstrates how 

powerful and reliable this classic architecture remains. As in the previous 

experiments, the DenseNet family delivered lower performance in this task 

compared to other CNNs, reinforcing the observation that it is not a suitable 

option for the tasks within the scope of this study. 

The Transformer-based architectures could not reach the performance level of 

the top CNNs in this multi-class classification task. The most successful family 

among the Transformers was the Swin Transformer, where performance 

consistently increased with model size. The largest member of the family, Swin-
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Large, ranked at the top among Transformer models with an F1-Score of 85.63%. 

The standard ViT and BEiT families, on the other hand, achieved more modest 

results, recording F1-scores around 83%. In contrast to what was observed in 

some of the binary classification tasks, it is noteworthy that for this more complex 

multi-class task, the Large variants in both the ViT and BEiT families performed 

better than their Base counterparts. This indicates that the increased number of 

classes and complexity allowed these models to benefit somewhat from their 

higher capacity, but this benefit was still not sufficient to compete with the best 

CNNs. 

The results obtained from this most comprehensive experiment of the study 

offer an extremely important takeaway for practical applications: efficiency does 

not mean sacrificing performance, even in complex tasks. The undisputed 

champions of this task are the EfficientNet-V2 Small and ResNet-18 models, 

which not only ranked among the top in absolute performance but also did so 

with exceptional computational efficiency. These two models achieved a higher 

accuracy rate than the largest Transformer models, which have hundreds of 

millions of parameters, but at one-tenth or less of the parameter and 

computational cost. This finding clearly demonstrates that for a multifaceted and 

realistic problem involving both crack detection and contextual surface 

recognition, modern and efficiency-focused CNN architectures, in their current 

form, offer a much more effective, practical, and optimal solution compared to 

Transformer-based approaches. For a more detailed view of the class-specific 

prediction accuracy and inter-class confusion for the two most successful 

architectures, the confusion matrices for EfficientNet-V2 Small and ResNet-18 

are illustrated in Figure 24. 
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Figure 24. Confusion matrices for the two best-performing models on the unified 

6-class classification task: EfficientNet-V2 Small (left) and ResNet-18 (right). 

 

Discussion 

The primary objective of this study was to conduct a comprehensive 

comparison of the performance of modern CNN and Transformer-based DL 

architectures in scenarios involving different surface types and task complexities 

for concrete crack detection. The experimental findings present a rich and multi-

layered picture, revealing that no single architecture is universally superior across 

all tasks, but that certain architectural philosophies are more advantageous for 

specific tasks. The most fundamental and general finding is that efficiency-

focused modern CNNs, namely EfficientNet-V2 and the classic ResNet family, 

exhibited more stable and generally higher performance compared to 

Transformer-based approaches in most of the tested tasks. Notably, one of the 

most remarkable results of this study is that smaller and more efficient models 

competed head-to-head with, and even surpassed, their counterparts that were 

many times larger and more complex. 

The ResNet family, representing classic CNN architectures, depicted a highly 

reliable, stable, and high-performance profile throughout all experiments. The 

fact that the ResNet-34 model achieved the highest F1-Score among all tested 

architectures in the visually noisiest and most challenging category, "Pavement", 
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reveals the fundamental strength of this architecture. The success of ResNet lies 

in the ability to effectively train even very deep networks thanks to residual 

connections, and in the strong inductive bias afforded by its convolutional layers. 

This natural tendency to learn local spatial relationships (edges, textures) is 

perfectly suited for a task based on texture and pattern recognition like crack 

detection. Nevertheless, the observation that the deepest ResNet-152 model did 

not yield a better result than the medium-depth variants in the "Pavement" and 

"Deck" categories suggests that beyond a certain level of complexity, extreme 

depth may provide only a marginal contribution to performance or even be 

detrimental by starting to learn task-irrelevant noisy features. 

In contrast to ResNet, another CNN family, DenseNet, underperformed 

without exception in all tasks within the scope of this study. In theory, the 

maximum feature reuse and strengthened gradient flow provided by dense 

connectivity have the potential to create highly efficient and powerful models. 

Indeed, in all three binary classification tasks, the best DenseNet performance 

was achieved by the smallest member of the family, DenseNet-121. However, the 

consistent drop in performance as model depth increased (DenseNet-169 and 

201) indicates that there is an issue with the scalability of this architecture. A 

possible reason for this situation is that the concatenation of feature maps from 

all preceding layers in extremely deep DenseNet models might create a massive 

feature stack, causing the model to become confused about which features to 

focus on and complicating the optimization process. For the detection of fine 

details like cracks, this "feature inflation" may have brought more harm than 

good. 

The star of the CNN wing in this study is undoubtedly the EfficientNet-V2 

family. This architecture stood out not only for its high performance but also for 

delivering this performance with exceptional efficiency. The "compound scaling" 

philosophy at the core of EfficientNet, which is a strategy of increasing the 

network's depth, width, and resolution in a balanced manner, proved to be more 

intelligent and effective than brute-force approaches based solely on adding more 
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layers. The most striking result is that the EfficientNet-V2 Small model achieved 

the highest F1-Score in both the "Wall" and the most challenging unified six-

class tasks. This is strong evidence that the highest accuracy does not always 

come from the largest model and that an efficiency-focused, intelligent design 

can be more important than raw computational power. The success of 

EfficientNet-V2 is a testament to how successful innovations like Fused-

MBConv blocks, optimized for modern hardware, and progressive learning are at 

combining theoretical accuracy with practical efficiency. 

Turning to the Transformer-based architectures, it was observed that the 

standard  ViT generally could not reach the performance of the top CNNs. ViT's 

core philosophy of completely eliminating convolutional operations, and thus the 

locality bias, appears to be a disadvantage for this task. Since crack detection is 

by its nature based on the analysis of local texture and edge features, the built-in 

advantage that CNNs have in this regard outweighed ViT's ability to model global 

context. The fact that Patch-16 variants generally yielded better results than 

Patch-32 indicates that a higher-resolution view is necessary to capture the fine 

details of cracks, but even this was not enough to close the performance gap with 

the CNNs. The observation that the ViT-Large model performed worse than ViT-

Tiny in the "Deck" task revealed that simply increasing the size of the ViT 

architecture is not an effective strategy for this task. 

In contrast to the challenges faced by ViT, the Swin Transformer architecture 

stood out as the most successful member of the Transformer family. The secret 

to Swin's success is its intelligent reintroduction of two important CNN concepts 

that ViT abandoned: hierarchy and locality. By computing self-attention within 

local windows, which both increases computational efficiency (linear 

complexity), and by enabling inter-window communication through the shifted 

window mechanism, Swin effectively serves as a bridge between CNNs and 

Transformers. This hybrid approach allowed Swin to compete head-to-head with 

the best ResNet and EfficientNet models in tasks like "Deck" and "Pavement". 

The fact that Swin-Large showed the best performance in the "Deck" task, while 
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Swin-Base was a top performer in the "Pavement" task and the Large model could 

not surpass it, suggests that the optimal Swin size may vary depending on the 

visual characteristics of the task. 

The BEiT models, which highlight the importance of pre-training strategies, 

yielded the most interesting and inconsistent results in this study. The complete 

failure of the BEiT-Large model on the "Pavement" dataset with a very low F1-

Score of 75%, yet its significantly better performance than BEiT-Base on the 

"Wall" dataset, shows that the features obtained through self-supervised learning 

are extremely sensitive to the data distribution and visual nature of the fine-tuning 

task. The representations learned via Masked Image Modeling (MIM) might not 

have been generalizable to the weathered and noisy textures of "Pavement" 

surfaces, while they may have found a better match with the more structured and 

patterned features of "Wall" surfaces. This situation is an important finding that 

reveals how decisive not only the model architecture but also the type of data and 

task used in pre-training is on the final performance. 

The two-phase structure of the experiments (binary vs. multi-class) also offers 

an important takeaway. As expected, when the task complexity increased, that is, 

in the six-class unified task, there was a drop in the absolute F1-scores of all 

models. However, the relative ranking of the model families was largely 

preserved: the EfficientNet-V2 and ResNet families were again at the top, while 

Swin Transformer followed them, and the other Transformers lagged further 

behind. This demonstrates that the models that are successful in the fundamental 

binary classification task also learn more powerful and discriminative features 

that allow them to handle the more complex task of contextual surface 

recognition. The fact that the EfficientNet-V2 Small model showed the highest 

performance even in this most challenging task is the ultimate proof of how 

superior its balance of efficiency and power is. 

When all these results are brought together, an extremely clear roadmap for 

practical applications emerges. If the sole purpose in an application is to achieve 

the absolute highest accuracy and computational resources are not a constraint, 
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models like Swin-Large or EfficientNet-V2 Large could be preferred. However, 

the marginal performance increase provided by these models comes at the cost of 

a much higher parameter count and slow inference times. In contrast, this study 

demonstrates with overwhelming evidence that for almost all practical scenarios, 

the most optimal solution is efficient models. Specifically, models like 

EfficientNet-V2 Small and ResNet-18/34 delivered better performance than the 

top-performing models, at one-fifth or less of the computational cost. This 

situation clearly reveals that in real-world applications where resources are 

limited, fast inference times are necessary, and energy efficiency is important, 

these light and efficient CNN architectures are much more sensible and effective 

alternatives. 

Lastly, it is important to acknowledge some limitations of this study and to 

indicate potential paths for future research. Although SDNET2018 is a 

comprehensive dataset, it would be beneficial to test these models on other 

datasets collected from different geographical regions and different types of 

concrete to verify the generalizability of the findings. This study focused on the 

task of classification; in future work, the best-performing backbone architectures 

(e.g., EfficientNet-V2 Small) could be combined with decoder structures like U-

Net or DeepLab and be evaluated for semantic segmentation tasks, which 

determine the exact location and width of cracks. In addition, the effects of newer 

self-supervised learning methods or different pre-training strategies on this task 

could be investigated. Finally, further optimizing even the most efficient models 

with techniques such as model quantization and pruning so that they can run on 

mobile or embedded systems could be a practical extension of this research. 

 

Conclusions 

This comprehensive investigation aimed to present a comparative analysis of 

modern DL architectures, spanning both CNNs and Transformer-based models, 

to determine which architectural philosophies are most suitable for the specific 

and practical engineering problem of concrete crack detection. For this purpose, 
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a wide array of models from seven distinct architectural families (ResNet, 

DenseNet, EfficientNet-V2, ViT, Swin, BEiT) was meticulously tested on the 

SDNET2018 dataset across three different structural categories (Deck, Pavement, 

Wall) in both binary and multi-class classification tasks. The obtained 

experimental results present a rich and multi-layered picture, revealing that while 

no single model was universally superior across all scenarios, the general trend 

indicates that efficiency-focused modern CNNs, particularly EfficientNet-V2 and 

the classic ResNet family, exhibited more stable, reliable, and generally higher 

performance compared to Transformer-based approaches. The most fundamental 

finding of this study is the fact that achieving the highest accuracy does not 

always require the largest or most complex model; on the contrary, intelligently 

designed, more compact architectures can deliver the best results even in the most 

challenging tasks. In this context, the classic ResNet family once again proved 

the power and durability of the fundamental residual connection concept, with 

the medium-depth ResNet-34 variant achieving the highest performance in the 

visually noisiest and most challenging "Pavement" category. On the other hand, 

the consistent observation across all experiments of performance degradation 

with increasing model depth in the DenseNet architecture was a significant 

finding, indicating an issue with the scalability of this architecture for these tasks. 

The undisputed star on the CNN side was the EfficientNet-V2 family, which 

combines efficiency and performance through its "compound scaling" 

philosophy. The most striking result of our work is that the smallest member of 

the family, the EfficientNet-V2 Small model, achieved the highest F1-Score in 

both the "Wall" binary classification task and the most demanding six-class task, 

which required the models to recognize both the crack and the surface type 

simultaneously. This situation underscores that an architecture that intelligently 

balances parameter count and computational cost can be more effective than raw 

processing power. On the Transformer front, it was observed that Swin 

Transformer, which offers a hierarchical structure and a local attention 

mechanism similar to CNNs, was the most successful among the Transformers. 
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The standard ViT, lacking a strong locality bias, lagged behind the CNNs in this 

task, which is critical for texture and edge analysis. The inconsistent performance 

exhibited by the BEiT models across different datasets demonstrated how 

sensitive the features obtained through self-supervised learning are to the visual 

nature of the fine-tuning task. Ultimately, the clearest message this study offers 

for practical engineering applications is the following: in real-world scenarios 

where a balance between reliability, speed, and accuracy is required, the most 

optimal solution is compact CNN architectures with proven efficiency. Models 

like EfficientNet-V2 Small and ResNet-18 delivered higher performance metrics 

than the largest Transformer models with hundreds of millions of parameters, 

achieving this at one-tenth or less of the computational cost and thus offering an 

exceptional cost-performance ratio. This finding provides a concrete and 

applicable roadmap for the development of fast and reliable crack detection 

systems that can be integrated into autonomous inspection systems, drones, or 

mobile devices. Future work holds the potential to further advance success in this 

area by adapting these most successful architectures to segmentation tasks and by 

developing more task-specific pre-training strategies. 
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