

DEEP LEARNING-BASED

ASSESSMENT OF CRACKS IN

CONCRETE STRUCTURES

Assoc. Prof. Dr. İshak PAÇAL

Asst. Prof. Dr. Fethi ŞERMET

Yiğitcan ÇAKMAK

Deep Learning-Based Assessment of Cracks in Concrete Structures

Assoc. Prof. Dr. İshak PAÇAL, Asst. Prof. Dr. Fethi ŞERMET

Yiğitcan ÇAKMAK

Editor in chief: Berkan Balpetek

Printing : JULY -2025

Publisher Certificate No: 49837

ISBN: 978-625-5885-67-8

© Duvar Yayınları

853 Sokak No:13 P.10 Kemeraltı-Konak/İzmir

Tel: 0 232 484 88 68

www.duvaryayinlari.com

duvarkitabevi@gmail.com

TABLE OF CONTENTS

Abstract ... Vİİ

INTRODUCTION ... 1

MATERIALS AND METHODS .. 6

Dataset ... 6

CRACKS .. 10

Importance of Cracks in Concrete Structures ... 10

Crack Width ... 11

Causes of Crack Formation in Concrete ... 13

How Do Plastic Shrinkage Cracks Form? .. 15

CRACKS IN REINFORCED CONCRETE STRUCTURES 17

Flexural Cracks .. 17

Shear Cracks ... 18

Torsional Cracks .. 20

Data augmentation and data preprocessing ... 21

Transfer Learning .. 22

Model Architectures .. 24

ResNet .. 26

DenseNet .. 28

Efficientnet-V2 ... 31

Vision Transformers ... 32

Swin .. 35

Beit ... 38

RESULTS AND DISCUSSION .. 41

Experimental Setup .. 41

Evaluation Metrics ... 42

Training Protocol .. 44

Experimental Results .. 46

Discussion .. 62

Conclusions .. 66

REFERENCES .. 69

iii

LIST OF FIGURES

Figure 1. Sample images from the dataset for cracked and non-cracked classes

across different concrete structure types (Decks, Pavements, and Walls). ____ 6

Figure 2. Graphical distribution of the dataset showing the number of images

per class and data split for each surface type. __________________________ 9

Figure 3. Schematic representation of classic crack width models, after [12],

(a) The bond-slip approach, proposed in 1936 by Saliger [11], (b) The no-slip

approach proposed in 1965 by Broms [13], (c). The combined model proposed

in 1966 Ferry-Borges [14]. _______________________________________ 12

Figure 4. Settlement cracks in concrete ______________________________ 14

Figure 5. Flexural cracks in a reinforced concrete member [21] ___________ 17

Figure 6. Flexural crack in a beam [15] ______________________________ 18

Figure 7. Shear cracks in a reinforced concrete member [23] _____________ 18

Figure 8. Shear cracks in beams [15] ________________________________ 19

Figure 9. Flexural cracks in reinforced concrete beams [24] _____________ 19

Figure 10. Cracks occurring in the beam-column joint region of reinforced

concrete structures [25] __ 20

Figure 11. Torsional cracks in a reinforced concrete member [22] _________ 20

Figure 12. Basic CNN architecture _________________________________ 25

Figure 13. Architectural diagram of the ResNet-34 model, illustrating its

sequential stages and the structure of its basic residual blocks. ___________ 27

Figure 14. A comparative overview of the architectures for the ResNet variants,

from ResNet-18 to ResNet-152. ___________________________________ 28

Figure 15. High-level architectural representation of a typical DenseNet,

highlighting its densely connected blocks and transition layers. ___________ 29

Figure 16. Comparative architectural specifications of the DenseNet variants

(121, 169, 201, and 264). ___ 30

Figure 17. Detailed architectural diagram of the ViT, illustrating the key

components from image patching and embedding to the inner workings of the

Transformer Encoder and the final classification head. _________________ 34

Figure 18. An overview of the Swin Transformer architecture, illustrating (a)

the general hierarchical structure with four stages and patch merging layers, and

(b) the detailed composition of two successive blocks featuring windowed (W-

MSA) and shifted-window (SW-MSA) self-attention. __________________ 36

Figure 19. Detailed specifications of the Swin Transformer variants (Swin-T,

Swin-S, Swin-B, and Swin-L), showing the hyperparameter configuration at

each hierarchical stage. __ 38

iv

Figure 20. A schematic diagram of the BEiT pre-training framework,

illustrating its core task of Masked Image Modeling (MIM). _____________ 39

Figure 21. Confusion matrices for the two best-performing models on the 'Deck'

binary classification task: Swin Transformer Large (left) and EfficientNet-V2

Large (right). __ 49

Figure 22. Confusion matrices for the two best-performing models on the

'Pavement' binary classification task: ResNet-34 (left)

and ResNet-18 (right). ___ 54

Figure 23. Confusion matrices for the two best-performing models on the 'Wall'

binary classification task: EfficientNet-V2 Small (left) and ResNet-18 (right). 58

Figure 24. Confusion matrices for the two best-performing models on the

unified 6-class classification task: EfficientNet-V2 Small (left) and

ResNet-18 (right). ___ 62

v

LIST OF TABLES

Table 1. Detailed distribution of the image dataset across structural types, classes,

and data splits (Training, Validation, Test). ___________________________ 8

Table 2. Performance comparison of all evaluated architectures on the 'Deck'

dataset for the binary classification task. _____________________________ 47

Table 3. Performance comparison of all evaluated architectures on the 'Pavement'

dataset for the binary classification task. _____________________________ 51

Table 4. Performance comparison of all evaluated architectures on the 'Wall'

dataset for the binary classification task. _____________________________ 55

Table 5. Performance comparison of all evaluated architectures for the 6-class

classification task on the unified dataset. ____________________________ 58

vi

Abstract

Ensuring the structural integrity of concrete infrastructure, a cornerstone of

modern civilization, necessitates the timely and accurate detection of cracks.

Traditional visual inspection methods, however, are fraught with limitations,

including subjectivity, high costs, and significant labor investment. To address

these deficiencies, this investigation presents one of the most extensive

comparative analyses to date, evaluating the performance of dozens of state-of-

the-art deep learning architectures for automated crack detection. Spanning seven

distinct model families including seminal Convolutional Neural Networks

(ResNets, DenseNets, EfficientNet-V2) and paradigm-shifting Transformers

(ViT, Swin, BEiT) the models were rigorously tested on the diverse SDNET2018

dataset. The methodology encompassed a dual-phase experimental design: first,

three independent binary classification tasks for Deck, Pavement, and Wall

surfaces, followed by a more demanding six-class classification task on a unified

dataset to assess both defect detection and contextual identification capabilities.

All architectures were fine-tuned using a standardized training protocol on a

class-balanced dataset to ensure a fair and robust comparison. The experimental

findings reveal a clear performance hierarchy, with CNN-based architectures,

particularly the ResNet and EfficientNet-V2 families, demonstrating more

consistent and superior efficacy than their Transformer-based counterparts across

most tested scenarios. A central and compelling discovery from this study is the

remarkable performance of EfficientNet-V2 Small, a compact model that not

only competed with but frequently surpassed much larger architectures, achieving

the highest F1-score in both the 'Wall' and the complex six-class classification

tasks. Similarly, the classic ResNet-34 architecture proved its enduring relevance

by emerging as the top performer on the visually noisy 'Pavement' dataset.

Among the Transformer models, Swin Transformer, which reincorporates

principles of hierarchy and locality, exhibited the most competitive performance,

whereas standard ViT and BEiT models yielded more modest results. Ultimately,

this research robustly demonstrates that for practical engineering applications like

vii

automated crack detection, computational efficiency is not a trade-off against

performance but rather a potential catalyst for it. The evidence suggests that

compact, well-designed CNNs such as EfficientNet-V2 Small and ResNet-18/34

provide an optimal balance between high accuracy, low computational overhead,

and rapid inference capabilities. These findings furnish a definitive, data-driven

roadmap for the development and deployment of reliable, real-time automated

inspection systems on resource-constrained platforms, including mobile devices

and unmanned aerial vehicles.

viii

INTRODUCTION

Concrete, the cornerstone of modern civilization, stands out as an

indispensable material in the construction of critical infrastructure systems such

as bridges, buildings, dams, and highways. Its superior properties, such as high

compressive strength, cost-effectiveness, and ease of on-site production, have

made it the most widely used construction material on a global scale [1,2].

However, despite this widespread use of concrete, it is inevitable for it to degrade

over time as a result of environmental factors, mechanical loads, and chemical

interactions [3,4]. The most prominent and early harbinger of these degradation

processes is the cracks that occur on the surface and in the internal structure.

These cracks, which are initially at a micro-level, can grow over time, if

necessary, precautions are not taken, becoming a serious threat to the structure's

load-bearing capacity, durability, and service life [5].

In the field of Structural Health Monitoring (SHM), traditional methods used

for the detection of concrete cracks are largely based on human observation and

expert experience. Periodic visual inspections conducted by field engineers or

inspectors form the basis of this process [6]. However, this traditional approach

has many significant disadvantages. Primarily, the inspection process is

extremely time-consuming, labor-intensive, and costly. Second, the accuracy and

consistency of the detection are directly dependent on subjective and variable

factors such as the inspector's fatigue, attention, experience, and lighting

conditions. Furthermore, inspections in high or hard-to-reach areas pose serious

safety risks for personnel. These limitations reduce the efficiency of traditional

methods and clearly reveal the need for more objective, fast, and reliable

alternatives [7].

The inadequacies of traditional methods have directed researchers towards

computer vision and artificial intelligence technologies [8]. Although initial

image processing-based approaches used algorithms such as edge detection,

thresholding, and morphological operations, they could not produce robust results

in the face of the complexity of real-world field conditions (lighting changes,

1

shadows, moisture stains, surface pollution). At this point, deep learning, and

particularly Convolutional Neural Networks (CNNs), has created a revolution in

image-based recognition tasks [9]. Unlike traditional machine learning (ML)

[10,11] approaches, CNNs possess the ability to automatically learn hierarchical

and meaningful features from raw pixel data [12,13]. Thereby, they have offered

much more effective and generalizable solutions to the crack detection problem

by eliminating the need for manual feature engineering [14,15]. These

achievements have made CNN-based architectures indispensable in the medical

field; to give some examples of areas where they are used, brain tumors [16–18],

breast cancer [19], lung cancer [20], dentistry [21,22], and urology [23] are just

a small fraction. With developing new technologies, artificial intelligence

continues to demonstrate its success in every field.

The success of CNN-based approaches has paved the way for the development

of progressively deeper and more complex architectures. Within this sphere, the

ResNet (18, 34, 50, 101, 152) family has become an industry standard by using

residual connections to enable the training of very deep networks. The DenseNet

(121, 169, 201) architecture has provided high parameter efficiency by

maximizing feature propagation and reuse through dense connections that link

each layer to all subsequent layers. Following these two foundational

architectures, the EfficientNetV2 (small, medium, large) family emerged, which

systematically scales the model's depth, width, and resolution. This model offered

the possibility of achieving high performance even with limited resources by

establishing an optimized balance between accuracy and computational

efficiency.

The latest breakthrough in the field of computer vision has been the adaptation

of the Transformer architecture, which revolutionized the field of natural

language processing (NLP), to vision. The Vision Transformer (ViT) (with patch

16/32 variants of tiny, small, base, large), which processes an image as a sequence

of "patches" and models the global relationships between these patches with a

self-attention mechanism, has brought a new perspective by overcoming the local

2

receptive field limitation inherent to CNNs. The Swin Transformer (tiny, small,

base, large), which increases computational efficiency by combining this

approach with a hierarchical structure and shifted windows, and BEiT (base,

large), which learns robust representations with less labeled data through self-

supervised pre-training, stand out as the most advanced representatives of this

new paradigm.

As the detection of cracks in concrete structures is a critical task for ensuring

structural integrity and safety, the research community has focused on

overcoming the inherent limitations of traditional visual inspection methods, such

as being time-consuming, labor-intensive, and subjective. The consensus in the

literature is that automation is imperative to address these challenges (Kirthiga

and Elavenil; Panwar et al.) [24,25]. Accordingly, systems based on ML and

particularly Deep Learning (DL) have emerged as the dominant paradigm due to

their potential for high accuracy, efficiency, and reliability. A comprehensive

review by Pandey and Mishra [26] illustrates the technological evolution in this

domain, comparing a wide array of approaches from classical ML algorithms like

Random Forest (RF) to more advanced DL architectures like CNNs. Similarly,

Arpitha et al. [27], after reviewing works from 1999 to 2023, confirm that ML

and DL-based methods are increasingly preferred due to their advantages in

automation and precision.

In this pursuit of automation, CNNs have become the de facto standard for

image-based crack detection tasks. The ability of CNNs to automatically learn

hierarchical and discriminative features from raw pixel data makes them

significantly superior to traditional ML methods. A comparative analysis by

Navpreet et al. [28] concretely demonstrates this superiority, showing that a pre-

trained CNN model like VGG16, with an accuracy of 92.14%, vastly outperforms

the best-performing traditional ML classifier, Random Forest (66.92%). The

review by Pandey and Mishra corroborates this finding, noting that VGG-16 can

achieve exceptional accuracy rates as high as 99.83%. Studies such as Usha's [29]

"DeepCrack" and the novel deep CNN model developed by Abbas and Alghamdi

3

[30] prove the potential of these architectures to create specialized, high-

performance solutions capable of successfully detecting both visible and subtle

cracks under varying lighting and surface texture conditions.

Research has extended beyond foundational CNN architectures to encompass

more sophisticated approaches and practical application scenarios. One of the

most significant advancements in this area is the adoption of transfer learning, a

technique that leverages the knowledge from models pre-trained on large datasets

and applies it to smaller, specific datasets. The work by Bussa and Boppana [31]

exemplifies this, achieving a 97% F1-score using the ResNet50 architecture with

transfer learning on the METU dataset and demonstrating its superiority over

VGG-based models. Similarly, Dai et al. [32] utilized modern architectures like

ResNet50 and EfficientNetB1 with transfer learning to detect cracks in dams,

achieving the highest performance with a hybrid model. In addition to these

theoretical advancements, practical applications, such as the work by Wang et al.

[33], expand the field's practical potential by integrating technologies like

Unmanned Aerial Vehicles (UAVs) to automate the data collection process and

visualizing the results on 3D models.

A comprehensive analysis of the existing literature unequivocally establishes

the effectiveness and superiority of deep learning-based methods, especially

advanced CNN architectures, for concrete crack detection. The use of models like

ResNet and EfficientNet with transfer learning is recognized as a robust approach

that delivers high accuracy rates. However, most of these studies tend to focus on

a single architectural family or compare a limited number of models. A noticeable

gap exists in the literature for a study that systematically and comprehensively

compares established CNN architectures like ResNet and DenseNet, the latest

generation of efficiency-focused CNNs like EfficientNetV2, and models from an

entirely different paradigm namely Transformers such as ViT, Swin Transformer,

and BEiT on the same controlled dataset, at a wide scale (e.g., from "tiny" to

"large"), and analyzes them in terms of performance, efficiency, and

4

generalization capabilities. This study is designed to fill this precise

methodological gap.

In light of the aforementioned architectural advancements, the central

objective of this study is to present a comprehensive and comparative DL analysis

for the detection and classification of cracks on concrete surfaces, utilizing the

large-scale, publicly available SDNET2018 dataset. This work seeks to provide

an original contribution to the literature through the systematic evaluation of a

diverse array of models representing distinct architectural paradigms.

Accordingly, the investigation involves the training and comparative assessment

of selected models from CNN-based families, including ResNet, DenseNet, and

EfficientNetV2, as well as from Transformer-based families such as ViT, Swin

Transformer, and BEiT. The performance of these models is quantitatively

appraised using standard metrics, encompassing accuracy, precision, recall, and

the F1-score. The resulting analysis serves to elucidate the relative performance

of these different architectures in the crack detection task. Furthermore, the

findings are intended to furnish a practical guide for real-world applications and

to inform the direction of subsequent research in this domain.

5

MATERIALS AND METHODS

Dataset

The experimental foundation of this investigation is built upon the

SDNET2018 dataset, a large-scale and publicly accessible collection that is

widely regarded as a cornerstone in the field. Its selection was predicated not

merely on the substantial number of images it contains, but on its inherent

complexity and diversity, which mirror real-world conditions. As a

comprehensive benchmark, this collection comprises over 56,000 high-resolution

images meticulously labeled for multi-class crack detection and classification

across three primary structural categories: concrete pavements, structural walls,

and bridge decks [34,35]. This composition elevates the problem beyond a simple

binary (crack/non-crack) decision, presenting a more formidable challenge that

requires a model to concurrently identify both the type of structural surface and

the presence of a defect. Figure 1 presents a selection of class-based examples

randomly drawn from the SDNET2018 dataset, showcasing the richness and

variety in terms of texture, lighting conditions, and crack morphologies.

Figure 1. Sample images from the dataset for cracked and non-cracked classes

across different concrete structure types (Decks, Pavements, and Walls).

6

The dataset is structured into six primary classes, comprising 'cracked' and 'non-

cracked' instances for each of the three structural categories. In its raw form, however,

the SDNET2018 dataset presents a significant challenge for training DL models due

to a pronounced class imbalance. The original distribution contains a substantially

larger number of non-cracked images compared to cracked images within each

category. Such an imbalance can induce a bias in the model during training, causing

it to favor the majority (non-cracked) class. A model trained under these conditions

would tend to predict non-cracked surfaces with high accuracy while potentially

overlooking or misclassifying the critical minority (cracked) class. To mitigate this

potential bias and to provide a fair learning environment for the models, a deliberate

balancing strategy was implemented during the data pre-processing stage. This

strategy involved random down sampling, where samples from the more populous

non-cracked class were randomly discarded to match the number of images in the

cracked class for each category. As a result of this process, the original dataset of over

56,000 images was reduced to a more manageable and balanced size of 16,968

images. To further deepen the comparative analysis and to assess the models'

capabilities beyond defect detection to include contextual classification, an additional

experimental phase was designed. In this phase, the previously separate 'Deck',

'Pavement', and 'Wall' categories were consolidated into a single, unified dataset with

their respective 'cracked' and 'non-cracked' labels. This consolidation resulted in a

new, more challenging multi-class classification problem with six distinct classes.

This task requires the models not only to determine the presence of a crack but also

to simultaneously distinguish the type of structural surface on which it appears. To

maintain consistency, this unified dataset was also partitioned into training,

validation, and test sets with a 70%, 15%, and 15% split, respectively. All

architectures employed in the study were subsequently fine-tuned for this six-class

task using a transfer learning approach. This methodology facilitates a multi-faceted

comparison, testing both the defect detection sensitivity and the discriminative power

of each architecture across environments with different visual textures and patterns.

A detailed distribution of the dataset is provided in Table 1.

7

Table 1. Detailed distribution of the image dataset across structural types,

classes, and data splits (Training, Validation, Test).

Class Train Validation Test Total

Cracked Non-

cracked

Cracked Non-

cracked

Cracked Non-

cracked

Deck 1417 1417 303 303 305 305 4050

Pavement 1825 1825 391 391 392 392 5216

Wall 2695 2695 577 577 579 579 7702

Total 11874 2542 2552 16968

To facilitate an objective evaluation of model performance, this final,

balanced dataset was partitioned into three fundamental subsets in accordance

with standard ML protocols: 70% for training, 15% for validation, and 15% for

testing. The training set is designated for the model to learn the underlying

patterns and features from the data, while the validation set serves as a feedback

mechanism during the training process to optimize hyperparameters and prevent

overfitting. The test set, which consists of data entirely unseen during the training

phase, provides the final and unbiased measure of a model's ability to generalize.

Table 1 offers a granular and numerical breakdown of these 16,968 images,

detailing their distribution across the three distinct structural domains and the

aforementioned subsets. An examination of the table reveals the differences in

the total number of samples among the categories: Bridge Decks (4,050 images),

Pavements (5,216 images), and Walls (7,702 images). Complementing this

numerical account, Figure 2 presents the same distribution in a visual format,

facilitating an intuitive understanding of the proportions within each structural

category for the training, validation, and test sets.

8

Figure 2. Graphical distribution of the dataset showing the number of images

per class and data split for each surface type.

9

CRACKS

Importance of Cracks in Concrete Structures

Cracking is a natural, expected, and accepted characteristic of concrete;

however, cracks can affect the appearance, functionality, durability, service life,

or more seriously the structural integrity of concrete. For these reasons, designers,

concrete producers, and contractors always strive to control or minimize the

amount and severity of cracking in concrete. Nevertheless, particularly in

conventionally reinforced or reinforced concrete, crack-free concrete is rarely

achievable.

Fundamentally, concrete cracks. Project specifications typically require

cracks in concrete to be repaired. A crack repair procedure may be pre-specified

or carried out under the guidance of an engineer. Regardless of specification

requirements, especially for elevated structures, cracks should be investigated

before any repairs are designed or implemented. Otherwise, the repairs may fail

to address the root cause of the cracking, leading to ineffective solutions that fail

prematurely or do not restore the structure’s original condition. More importantly,

a proper investigation can determine whether a crack is an early indication of a

serious issue such as a flaw in design, detailing, or construction that may

compromise the structure’s load-bearing capacity.

Crack formation is a fundamental characteristic of structural concrete and a

central concern in the condition assessment of reinforced concrete structures [36–

39]. Because concrete is a brittle material and its tensile strength is significantly

lower than its compressive strength, cracking in concrete members subjected to

tension is inevitable. Structural cracking can only be entirely prevented through

full prestressing [40]. Reinforcement is designed and detailed to control cracking

in regions where tensile stresses are expected, thereby promoting the formation

of distributed and acceptably narrow cracks. Crack patterns depend on the

diameter, spacing, relative rib area, and surface configuration of the reinforcing

bars (whether steel or FRP), and cracks generally follow the stress trajectories

10

generated by the load path [41–43]. Cracking due to flexure or tension in

structural members can influence both structural behavior and durability. From a

serviceability perspective, cracks have the following impacts: 1) reduction of

member stiffness, leading to increased deformations; 2) increased permeability,

resulting in uncontrolled leakage through cracks when water is present; and 3)

deterioration in the aesthetic appearance of concrete surfaces. Structural cracking

is also closely associated with corrosion of embedded reinforcement, which has

long been a key focus of durability research. In terms of reinforcement corrosion,

permeability quantified by various diffusion coefficients is the most important

performance parameter of concrete [38]. As crack width increases, both the

diffusion coefficient of cracked concrete [44] and the associated flow rate [45]

also increase.

Crack Width

Crack width is typically measured on the exterior surface of concrete

structures. Design codes also restrict surface crack widths to mitigate

serviceability and durability risks. However, crack width varies within the

concrete cover, and the width along the reinforcement surface differs from that

observed on the external surface of the member. Therefore, limiting crack width

requires an understanding of crack geometry inside the concrete cover. Very few

studies in the technical literature have examined how crack width changes

through the cover thickness, and to date no reliable relationship between the crack

width at the reinforcement surface and that at the concrete surface has been fully

established.

In modeling structural crack widths, two fundamental assumptions appear in

the literature:

1. Bond-slip approach proposed by Saliger in 1936 (Fig. 1a) [46,47], and

2. No-slip approach proposed by Broms in 1965 (Fig. 1b) [48].

11

Both assumptions are still used in various design codes. In 1966, Ferry-Borges

[49,50] combined these concepts into a single model (Fig. 1c), later adopted in

Eurocode 2 (2004 and 2023 editions) [51,52] and the fib Model Code 2010 and

2020 [53,54].

• Bond-slip approach (Figure 3a): Assumes a constant crack width across

the concrete cover.

• No-slip approach (Figure 3b): Assumes zero crack width at the

reinforcement level, increasing linearly toward the surface.

Neither assumption is fully acceptable, even for engineering-level

simplification of structural crack widths. The combined model presumes a

non-zero crack width at the reinforcement and a linear increase through the cover

(Fig. 1c). While this last assumption can be used within limits for an

engineering-level description of structural cracks (and is examined further in this

paper), the real anatomy of cracks includes details that such simplified models

cannot capture [55].

Figure 3. Schematic representation of classic crack width models, after [47], (a)

The bond-slip approach, proposed in 1936 by Saliger [46], (b) The no-slip

approach proposed in 1965 by Broms [48], (c). The combined model proposed

in 1966 Ferry-Borges [49].

12

Causes of Crack Formation in Concrete

There are multiple causes of cracking in reinforced concrete structures.

Although many different types of cracks may occur due to various factors, the

common underlying mechanism behind most commonly observed cracks is

stress. Concrete has a limited tensile capacity, both in its plastic and hardened

states. It is not a ductile material; thus, it does not yield when subjected to tensile

stresses. When these tensile stresses exceed the tensile strength of concrete

typically around 10% of its compressive strength cracking occurs. Naturally, as

freshly placed concrete hardens, its tensile strength increases. However, during

the plastic and early-age stages, the tensile capacity is very low, making concrete

highly susceptible to cracking during this period.

 Structural Cracks

These types of cracks arise from stresses that the structure must bear due to its

intended function. They usually occur in improperly designed buildings or those

constructed without resolving underlying soil problems, and they are very

dangerous. These cracks are not related to concrete placement or casting

conditions. In such cases, authorized bodies (engineering offices, universities,

etc.) should be consulted. If the structure is properly designed and not subjected

to overloading, such issues typically do not arise. Structural cracks generally

develop perpendicular to tensile stresses within reinforced concrete elements. For

example, cracks that appear at mid-span of a simply supported beam or above the

support of a cantilever beam are of this type.

 Application-Induced Cracks

These cracks can occur in either fresh or hardened concrete.

 Cracks in Fresh Concrete

Fresh concrete cracks typically occur between 30 minutes and 5 hours after

the concrete has been placed in the formwork, most commonly in slabs or other

13

wide-surface applications. These cracks may reach depths of up to 10 cm, and

their lengths can range from a few centimeters to as long as 2 meters. Such deep

and long cracks can be extremely detrimental to the strength and durability of

concrete. The two most significant causes of cracking in fresh concrete are:

• Settlement differentials, and

• Plastic shrinkage.

Settlement Cracks

These cracks typically form just above the top reinforcement in beams or in

foundation concrete that has not been adequately compacted and continues to

settle on its own. In fresh concrete, as the coarse aggregate particles tend to sink,

water rises toward the surface. In areas directly above the reinforcement,

settlement becomes more difficult, causing the concrete to move laterally toward

the sides of the rebar. During this stage, if insufficient tensile strength develops,

cracks form parallel to the reinforcement (Figure 4).

To prevent such cracking, it is advisable to:

• Use plastic concrete with moderate workability (not overly fluid),

• Thoroughly compact thick foundation concrete using vibrators, and

• In some cases, apply a second surface finishing (floating) about one to two

hours after casting, when the surface begins to dry.

•

Figure 4. Settlement cracks in concrete

14

Plastic Shrinkage Cracks

The reduction in length and volume of concrete due to physical or chemical

loss of water is referred to as shrinkage. Volume changes in concrete can be

examined in three stages:

• Plastic Shrinkage

• Drying Shrinkage

• Chemical Shrinkage

How Do Plastic Shrinkage Cracks Form?

Plastic shrinkage cracks are randomly distributed surface cracks of various

lengths and widths that typically appear in concrete cast under hot, dry, and windy

weather conditions, especially in slabs, pavements, roadways, or airfield

concrete. These cracks occur within the first few hours after concrete placement

before the concrete has fully hardened and are confined to the surface layer. The

term plastic shrinkage refers to the fact that the shrinkage occurs while the

concrete is still in its plastic (i.e., moldable) state.

The main cause of plastic shrinkage is rapid evaporation of water from the

concrete surface. Excess mixing water in concrete rises to the surface due to

bleeding. If the evaporation rate exceeds the bleeding rate, the surface begins to

dry and shrink. Meanwhile, the underlying, more plastic concrete cannot shrink

at the same rate, resulting in tensile stresses on the surface that lead to cracking.

These cracks are usually:

• Randomly distributed

• Surface-level and shallow

• Less than 1 mm wide

• Not structurally dangerous

15

They are especially common in hot, dry, windy weather when casting slab-on-

grade concrete or horizontal elements. Evaporation removes water from the top

surface, and if the rate of evaporation is greater than the rate of bleed water rising

to the surface, the surface starts drying, shrinking, and cracking.

Similar cracks may also form when freshly poured concrete is cast over a dry

base, such as old concrete that hasn’t been pre-wetted, or porous materials like

hollow blocks in ribbed slab systems, which absorb water from the new concrete.

16

CRACKS IN REINFORCED CONCRETE STRUCTURES

In seismic zones, it is essential that energy dissipation in structures is achieved

in a controlled manner. In such cases, cracking is the first expected form of

damage. The location, shape, width, age (new or old) of cracks, as well as

deficiencies or defects in the area where they appear, provide valuable insights

into the potential damage mechanisms.

Concrete is a material with high compressive strength but low tensile strength,

which makes the monitoring and control of cracks in reinforced concrete

members critically important [56].

Crack-related damage can be categorized as follows:

• Flexural cracks

• Shear cracks

• Torsional cracks

Flexural Cracks

Flexural cracks occur in regions where tensile stresses are highest (Figure 5).

These types of cracks often indicate that the reinforcement has yielded. An

example of a flexural crack in a beam is shown in Figure 6.

Figure 5. Flexural cracks in a reinforced concrete member [56]

17

Figure 6. Flexural crack in a beam [50]

Shear Cracks

Tensile cracks in beams and columns form at an angle to the beam axis (Figure

7). If the shear reinforcement is insufficient, the crack width increases. Shear cracks

and the subsequent shear failure are undesirable because they represent a brittle type

of failure. An example of a shear crack after an earthquake is shown in Figure 8.

If shear cracks in beams and columns are wide, it indicates severe damage. In

columns, if the concrete is crushed, shear cracks are present, and the longitudinal

reinforcement has buckled, the damage is considered severe [57]. Shear cracks in

beams (Figure 9) and the crack formed in the reinforced concrete column-beam joint

area is shown in Figure 10.

Figure 7. Shear cracks in a reinforced concrete member [58]

18

Figure 8. Shear cracks in beams [50]

Figure 9. Flexural cracks in reinforced concrete beams [59]

19

Figure 10. Cracks occurring in the beam-column joint region of reinforced

concrete structures [60]

Torsional Cracks

Under torsional effects, torsional cracks form on three faces of the beam

perpendicular to the principal tensile stresses (Figure 11). Additionally, crushing

is observed on the fourth face. The formation of torsional cracks reduces the

torsional stiffness by approximately one-tenth. As a result of this reduction, the

section rotates under the nearly constant torsional moment, transferring the forces

to other structural elements [57].

Figure 11. Torsional cracks in a reinforced concrete member [57]

20

Data augmentation and data preprocessing

Prior to the training of the DL models, two fundamental challenges arising from

the structure of the dataset required consideration: class imbalance and the risk of

overfitting stemming from limited data diversity. The raw version of the

SDNET2018 dataset used in this study possessed a pronounced class imbalance,

wherein the number of images belonging to the 'non-cracked' class was substantially

greater than those belonging to the 'cracked' class. This situation necessitated a pre-

processing step to prevent the model from developing a bias towards the majority

class during training. The first and most fundamental step taken in this regard was to

balance the dataset using the random down sampling method. Within this process,

the number of samples in the 'cracked' class was taken as a reference, and an equal

number of images were randomly selected from the more populous 'non-cracked'

class, with the remainder being discarded. Through this one-time balancing

operation, a fair and unbiased foundational training dataset was created, ensuring the

model gives equal importance to both classes.

Although a numerical balance between the classes in the dataset was established,

this state does not render the model entirely immune to the risk of overfitting. DL

models possess the potential to memorize even the existing samples in a balanced but

limited-diversity dataset. To eliminate this risk and to maximize the model's

generalization capability, meaning its performance on previously unseen data, a

second strategy of dynamic on-the-fly data augmentation was engaged. The purpose

of this approach is to artificially enrich the foundational dataset created by the

balancing process through various transformations applied instantaneously during

training. Consequently, the model encounters a geometrically or photometrically

altered version of the same image in each epoch. This continuous variation prevents

the model from becoming overly reliant on the specific details of particular training

examples and promotes the learning of more general and robust features.

This comprehensive data augmentation strategy incorporates both geometric and

photometric transformations. During training, random geometric transformations

were applied to each image in the balanced dataset. These transformations consist of

21

"Random Resized Crop," which encourages learning from different regions and

scales of the image; "Random Horizontal Flip," applied with a 50% probability to

achieve orientation invariance; and the deliberate exclusion of vertical flipping to

preserve structural properties. In addition to geometric diversity, the "Color Jitter"

technique was also employed, which randomly alters properties such as the

brightness, contrast, and hue of the images to simulate real-world variations in

lighting conditions. As a result, this two-stage approach, which first establishes a

static class balance through random down sampling and then provides dynamic

diversity through on-the-fly data augmentation, was designed to train robust, reliable

models with high generalization capability [61,62].

Transfer Learning

The training of all DL models employed in this study leveraged the Transfer

Learning approach, a cornerstone of the modern computer vision field. Transfer

learning is based on the principle of reusing the knowledge and experience gained in

one domain (the source domain) to solve a problem in a different but related domain

(the target domain). In the context of deep learning, this typically means transferring

the rich knowledge learned by a model trained on a large-scale dataset of general-

purpose images, such as ImageNet, to a more specialized task, which in this study is

the detection of concrete cracks. These pre-trained models have already developed a

hierarchical visual understanding, extending from low-level visual features like

edges, corners, and textures to more complex patterns and object parts. By using this

foundational visual infrastructure as a starting point, transfer learning circumvents

the challenges, high computational costs, and extensive dataset requirements

associated with training a model from scratch [63,64].

The adoption of the transfer learning method in our project was a deliberate

decision that provides a series of strategic advantages, rather than being merely a

matter of convenience. Primarily, this approach significantly accelerates the training

process and makes it more efficient. Instead of attempting to learn fundamental visual

features from random weights, the models focus on learning the more complex

22

patterns specific to cracks on top of the general features they already know, which

allows the model to converge to the targeted performance much more rapidly.

Secondly, transfer learning substantially enhances model performance and

generalization capability, especially on limited datasets like ours. The pre-learned

features act as a powerful regularize, preventing the model from overfitting to the

training data and helping it to exhibit a more consistent performance on previously

unseen test data. Lastly, this method facilitates access to the most advanced (state-of-

the-art) architectures with millions of parameters, such as ResNet-152, DenseNet-

201, or large Transformer-based models; training such deep networks from scratch

on a domain-specific dataset of limited size is practically infeasible [65–67].

In this study, transfer learning was meticulously implemented using the "Fine-

Tuning" strategy, which is a widely accepted practice in the literature. This

methodology begins with loading a model pre-trained on ImageNet. The architecture

of the loaded model consists of two main parts: the deep convolutional layers that

extract general features (the feature extractor) and the final layers that predict one of

the 1000 ImageNet classes (the classifier head). Since our problem is a binary

classification task ('cracked' and 'non-cracked'), the model's original 1000-class head

is removed and replaced with a new binary classifier head initiated with random

weights. During the training process, while the weights of this newly added head are

learned freely, the weights of the pre-trained feature extractor are also "unfrozen" and

updated with a much lower learning rate. This delicate process allows the model to

gently adapt the general texture and edge information learned from ImageNet to the

specific visual characteristics of concrete cracks [68,69].

The efficient, consistent, and reproducible execution of this complex and large-

scale experimental process was made possible in large part by the use of the timm

(PyTorch Image Models) library. Timm is an exceptionally comprehensive library

that provides dozens of different and up-to-date computer vision architectures, such

as ResNet, DenseNet, EfficientNetV2, ViT, Swin Transformer, and BEiT, along with

their verified pre-trained weights. This library played a critical role in our goal of

systematically training and comparing the wide array of models that form the basis

23

of this project. Timm offered the ability to load a desired model and easily replace its

classifier head with a single line of code, and it provided a consistent framework

across different architectures, thereby increasing the efficiency and scientific validity

of our experiments. Consequently, this library was an indispensable tool for the scale

and methodological rigor of our project.

Model Architectures

A wide array of state-of-the-art DL models, representing different architectural

paradigms, was employed to solve the problem of concrete crack detection. To

enhance the scope and power of the comparative analysis, architectures were selected

from both CNN based approaches, which have dominated the computer vision field

for over a decade, and Transformer-based architectures, which have ushered in a new

era in the field. These two approaches are based on fundamentally divergent

philosophies for processing visual data. CNNs, with designs inspired by the human

visual cortex, focus on processing patterns in the local neighborhoods of an image in

a hierarchical fashion; conversely, Transformers, adapted from their successes in

natural language processing, handle an image in a holistic context, modeling the

global relationships between all of its parts. This section provides a detailed

explanation of the working principles, relative advantages, and differences of these

two foundational architectures, thereby setting forth the strategic rationale behind the

model selections in this project.

CNNs have been accepted as the de facto standard in image recognition tasks for

many years. The foundation of their success lies in their specialized architectural

structures that effectively utilize the spatial hierarchy and locality inherent in image

data. The main building block of CNNs is the convolutional layer, which contains

"convolutional filters" or "kernels." These learnable filters slide across the image to

detect low-level features such as edges, corners, color gradients, and textures. As the

layers deepen, these simple features learned in the preceding layers are combined to

form more complex and semantically rich representations, such as an eye, a wheel,

or a brick pattern. One of the greatest advantages of CNNs is their possession of

24

strong "inductive biases," such as "parameter sharing" and "translation invariance."

Parameter sharing, which involves using the same filter across the entire image,

dramatically reduces the model's parameter count and computational cost. This

structure also enables the model to recognize an object regardless of its position in

the image. These built-in biases allow CNNs to be highly efficient and effective,

particularly on grid-like data such as images, and enable them to achieve strong

generalization capabilities even with relatively less data. A simple CNN architecture

is shown in Figure 12.

Figure 12. Basic CNN architecture

Conversely, the Transformer architecture, which was initially developed for

natural language processing tasks and revolutionized that field with its superior

ability to model long-range dependencies in text, has in recent years been adapted

for computer vision, challenging the hegemony of CNNs. Models such as the ViT

do not employ local convolutional operations in the manner of CNNs. Instead, a

ViT partitions an image into a sequence of fixed-size "patches" and processes

these patches as a sequence, analogous to the words in a sentence. At the heart of

this architecture lies the "self-attention mechanism," which dynamically weighs

the contextual importance and relationship of each patch with every other patch

in the sequence. This mechanism enables Transformers to form a global

contextual awareness from the very first layers and to easily model long-range

relationships, such as a crack extending from one end of an image to the other, or

25

texture similarities between distant regions. The greatest advantage of

Transformers is that they are unencumbered by the constraints of the local

receptive fields found in CNNs, thereby allowing them to develop a more flexible

and holistic visual understanding. This flexibility, however, means that they lack

the strong built-in biases of CNNs, which generally necessitates their pre-training

on much larger-scale datasets to learn effectively. Let us now examine the models

utilized in our study.

ResNet

Considered a revolution in the history of CNNs, ResNet (Residual Networks)

was designed to solve a fundamental problem known as "degradation," which

was encountered in practice despite the theoretical expectation that model

performance should increase with network depth. Beyond a certain depth, the

performance of traditional CNNs would not only saturate but, on the contrary,

would begin to decline rapidly. The primary reason for this issue was the

difficulty that very deep networks had in learning at least an identity function

with their newly added layers, thereby struggling even to preserve the

performance of their shallower counterparts. The ingenious innovation from

ResNet to overcome this barrier is the architectural unit called the "residual

block," which contains a "shortcut connection." This shortcut connection

bypasses one or more layers and directly adds their input to their output. This re-

frames the learning objective: instead of learning a complex transformation

function H(x) directly, the network focuses on learning a simpler residual

function, F(x) = H(x) − x. If an added block of layers does not learn a useful

feature, it becomes much easier for the network to drive the weights of that block

towards zero, making F(x) zero and passing the input (x) directly to the output.

This simple yet exceptionally effective mechanism made it possible for networks

to reach depths of hundreds of layers, setting a new performance standard in the

field of computer vision. The ResNet-34 Architecture is shown in Figure 13 [70]

.

26

Figure 13. Architectural diagram of the ResNet-34 model, illustrating its

sequential stages and the structure of its basic residual blocks.

The less deep members of the ResNet family, ResNet-18 and ResNet-34, are built

upon a structure known as the "basic block," which reflects the core philosophy of

the architecture in its purest form. This block consists of two sequential convolutional

layers, each with a 3x3 filter size. The shortcut connection bypasses this two-layer

block and merges directly with its output. The fundamental difference between

ResNet-18 and ResNet-34 is their total depth, which arises from repeating these basic

blocks a different number of times within the network. ResNet-18, containing fewer

blocks, is a faster model that requires less computational power, whereas ResNet-34

is constructed with more blocks and is therefore a deeper network with more

parameters and a higher learning capacity. The inclusion of these two models in our

study allows us to analyze the relative performance and efficiency of different depth

levels of the basic residual block structure on the specific task of recognizing fine-

grained patterns like concrete cracks. Through this, the objective is to gain valuable

insights into what level of model depth is sufficient or optimal for the complexity of

the task.

As network depth increases further, the computational cost and parameter count

of the basic blocks used in ResNet-34 begin to become inefficient. To solve this

problem, a much more efficient block design, known as the "bottleneck," was utilized

in the deeper variants of ResNet: ResNet-50, ResNet-101, and ResNet-152. This

bottleneck block consists of three convolutional layers instead of two 3x3 layers: the

27

first 1x1 convolution creates a "bottleneck" by reducing the number of channels

(depth); the middle 3x3 layer learns spatial features in this smaller dimension; and

the final 1x1 convolution restores the number of channels to its original dimension.

This design effectively keeps the parameter count and computational load under

control while the network's depth increases significantly. The difference between

ResNet-50, 101, and 152 again arises from the number of times these efficient

bottleneck blocks are repeated throughout the network. ResNet-50 is the entry-level

for this design, while ResNet-101 and especially ResNet-152 offer immense depth

and representational power. The role of these three models in our study is to

investigate the extent to which the increased capacity afforded by extreme depth and

the bottleneck architecture provides a performance increase on a sensitive task like

crack detection, or whether it leads to potential issues such as overfitting. The

information of the layers described above is shown in Figure 14.

Figure 14. A comparative overview of the architectures for the ResNet variants,

from ResNet-18 to ResNet-152.

DenseNet

Advancing the philosophy of shortcut connections introduced by ResNet to

improve information flow within the network, DenseNet (Densely Connected

Convolutional Networks) presents a radical connectivity strategy to enhance

network efficiency and performance. Whereas the residual blocks of ResNet add

28

the input to the output of the layers, the core innovation of DenseNet is its redefinition

of the relationship between layers through a mechanism called "dense connectivity."

Within this architecture, each layer inside a "dense block" receives the feature maps

produced by all preceding layers as its input. Instead of being summed, these inputs

are concatenated along the channel dimension. Subsequently, the layer produces its

own feature map, which is then passed on to all subsequent layers. This structure

facilitates maximum "feature reuse" within the network. Even simple features learned

in the early layers, such as edges, remain directly accessible to the final layers of the

network, thereby creating a collective body of knowledge. The DenseNet architecture

can be seen in Figure 15 [71].

Figure 15. High-level architectural representation of a typical DenseNet,

highlighting its densely connected blocks and transition layers.

The fundamental building blocks of the DenseNet architecture are the "Dense

Blocks," where the dense connections occur, and the "Transition Layers," which are

situated between these blocks. The dense blocks implement the aforementioned

dense connectivity model, allowing for the accumulation of features across layers. A

crucial hyperparameter of these blocks is the "growth rate" (k), which determines

how much new information (in the form of feature maps) each layer produces. A low

growth rate allows the network to be more compact and parameter-efficient.

However, since the number of channels increases with each layer, this structure could

lead to a rapid increase in computational cost if left unchecked. This is where

transition layers become essential. These layers, placed between two dense blocks,

typically use a 1x1 convolution to reduce the number of channels (acting as a

bottleneck) and a 2x2 average pooling layer to down sample the spatial dimensions

29

(width and height) of the feature maps. This ensures that the network's general

structure remains hierarchical and that it is computationally manageable.

In this study, three different variants of the DenseNet architecture with increasing

depth and capacity were selected to analyze their effects on crack detection

performance: DenseNet-121, DenseNet-169, and DenseNet-201. All of these models

are based on the dense block and transition layer structure described above. The

fundamental difference among them stems from the number of layers contained

within each of the four main dense blocks, and the number in the model's name

signifies the total number of learnable layers in the network. For instance, while

DenseNet-121 has blocks containing fewer layers, the dense blocks of DenseNet-201

contain many more layers, which grants it a higher learning capacity and

representational power. The analysis of these three variants aims to reveal how

effective the dense connectivity and feature reuse strategy, applied at different depth

levels, is in the task of recognizing fine and complex textural patterns like concrete

cracks, and what advantages this might offer compared to the additive approach of

ResNet. You can see the aforementioned layers in Figure 16.

Figure 16. Comparative architectural specifications of the DenseNet variants

(121, 169, 201, and 264).

30

Efficientnet-V2

Traditionally, enhancing the performance of CNNs was typically achieved by

focusing on a single dimension, such as increasing the network's depth (more

layers), width (more channels), or the resolution of the input image. These

approaches, however, often yield diminishing returns and disregard the need to

establish a delicate balance among these three dimensions to achieve optimal

performance. EfficientNet introduced a revolution by providing a systematic

solution to this problem with a method it termed "compound scaling." The core

philosophy of this method is to scale the network's depth, width, and resolution

not arbitrarily and separately, but simultaneously and in a balanced manner

through a fixed mathematical relationship. This allows the model to grow in the

most efficient way possible, both in terms of parameter count and computational

cost (FLOPs). By using this principle, EfficientNet set a new standard for

efficiency and performance, achieving similar or higher accuracy than other state-

of-the-art models of its time with significantly fewer parameters [72].

Although the first version of EfficientNet was groundbreaking in terms of

parameter efficiency and accuracy, it presented some practical challenges, such

as long training times, especially for larger models. EfficientNetV2 is a next-

generation architecture developed to address these training bottlenecks and to

further advance both training speed and efficiency. One of the primary

innovations of EfficientNetV2 is the replacement of the standard MBConv blocks

in the early stages of the architecture with "Fused-MBConv" blocks, which

operate more efficiently on modern hardware (GPUs/TPUs), thereby increasing

training speed. Its second and most important innovation is a dynamic training

strategy called "progressive learning." In this strategy, the model is initially

trained with smaller image sizes and weaker data augmentation (regularization)

techniques. As training progresses, both the size of the input image and the

intensity of the augmentation are gradually increased. This approach allows the

model to learn simple patterns quickly at the start while enabling it to focus on

31

more complex features in the later stages, consequently shortening the total

training time considerably.

In this study, three primary variants of the EfficientNetV2 family were utilized

to analyze the effect of the efficiency and performance balance it offers at

different scales: EfficientNetV2-Small (S), EfficientNetV2-Medium (M), and

EfficientNetV2-Large (L). These models share the same fundamental

architectural principles and are scaled according to different values of the

compound scaling coefficient. EfficientNetV2-S is a highly efficient model that

requires fewer parameters and computational resources, generally presenting an

ideal balance for resource-constrained situations. EfficientNetV2-M offers a

significant performance increase over the "Small" version, but it does so with a

reasonable increase in parameters. EfficientNetV2-L, on the other hand, is the

member of the family that targets the highest performance and expands the

architecture on a large scale to achieve state-of-the-art accuracy rates. The

analysis of these three variants allows for an evaluation of whether the

computational cost of achieving the highest accuracy is necessary for a specific

task like concrete crack detection, or if a more efficient model offers a sufficient

and more suitable solution for practical applications.

Vision Transformers

The ViT, which represents a fundamental paradigm shift among the

architectures examined in this study, is predicated on a philosophy radically

different from the previously discussed convolution-based approaches. ViT

adapts the powerful Transformer architecture, whose origins lie in

revolutionizing the field of Natural Language Processing (NLP) for processing

text data, to computer vision tasks. In contrast to CNNs, which view an image as

a structure to be processed hierarchically through local neighborhoods of pixels,

a ViT treats an image as a sequence of "patches," analogous to how a sentence is

composed of words. This approach discards the inductive biases inherent in

CNNs, such as locality and translation invariance, which can constrain the

32

model's learning process. Instead, ViT attempts to learn the relationships between

all parts of an image from scratch, directly from the data. This allows it to offer

exceptional flexibility and potential for modeling complex and long-range

contextual relationships, even between distant points in an image.

The operation of the ViT architecture consists of steps that convert an image

into a series of vectors and subsequently process this sequence with a

Transformer encoder. In the first step, the 224x224 input image is divided into a

non-overlapping, fixed-size grid; each cell of this grid is a "patch." For example,

in a patch_16 model, the image is partitioned into 196 patches of 16x16 pixels.

Each patch is then flattened into a one-dimensional vector and passed through a

learnable linear projection layer to create "patch embeddings" suitable for the

model's working dimension. Since the Transformer architecture has no inherent

sense of sequence, "positional embeddings" are added to these vectors to preserve

the original location information of the patches. The resulting sequence of vectors

is then fed into a standard Transformer encoder, which is the heart of the

architecture. This encoder contains "Multi-Head Self-Attention" layers that

dynamically weigh the importance and relationship of each patch with every

other patch. This mechanism allows the model to learn a holistic representation

of the image from the very first layers. The Vision Transformers architecture is

shown in Figure 17 [73].

33

Figure 17. Detailed architectural diagram of the ViT, illustrating the key

components from image patching and embedding to the inner workings of the

Transformer Encoder and the final classification head.

The ViT models utilized in this study are differentiated according to two

fundamental hyperparameters: patch size and model scale. The patch size is a

critical factor that dictates the resolution at which the model processes an image

and determines the length of the input sequence. In this project, two different

patch sizes were tested: patch_16 and patch_32. The patch_16 models partition

the image into smaller pieces, thereby creating a longer vector sequence. This

enhances the model's potential to capture finer and more detailed features, such

as narrow cracks; however, since the computational cost of the self-attention

mechanism is proportional to the square of the sequence length, it slows down

the training process and requires more memory. On the other hand, patch_32

models use larger patches, which creates a shorter sequence, making them much

more efficient and faster in terms of computation. This efficiency, however,

comes with the risk of processing the image at a coarser resolution and potentially

losing small details. Testing these two different patch sizes is of critical

34

importance for understanding the trade-off between detail sensitivity and

computational efficiency for the crack detection task.

In addition to patch size, ViT architectures can also be scaled to possess

different levels of capacity and complexity. In this study, various industry-

standard model variants, designated as Tiny, Small, Base, and Large, were used

for both patch sizes. The fundamental differences among these variants stem from

the number of Transformer encoder layers (depth), the size of the patch

embeddings (hidden size/width), and the number of heads in the self-attention

mechanism. The Tiny and Small models offer lighter and more efficient

alternatives with fewer layers and a lower parameter count, while the Base model

is the standard configuration defined in the original ViT paper, providing a strong

performance baseline. The Large model, conversely, is the highest-capacity

member of the family with significantly more layers and parameters, and it targets

state-of-the-art accuracy at the expense of the highest computational cost. This

wide range of models allows us to comprehensively investigate the capabilities

of the ViT architecture across different configurations and to determine the most

suitable model complexity for the task.

Swin

Although the standard ViT architecture is successful at modeling long-range

dependencies by virtue of its global self-attention mechanism, it presents a

significant practical challenge: its computational cost increases quadratically

with the number of input image patches (quadratic complexity). This

characteristic renders its use highly expensive for tasks that require high-

resolution images, such as object detection or semantic segmentation. The Swin

(Shifted Window) Transformer was developed precisely to solve this efficiency

problem and to establish the Transformer architecture as a more general-purpose

computer vision backbone. The core innovation of the Swin Transformer is its

replacement of ViT's costly global attention mechanism with a local attention

mechanism that is much more computationally efficient and operates within a

35

hierarchical structure. In this approach, self-attention is computed not among all

patches in the image, but within smaller, non-overlapping local windows. As a

result, the computational complexity exhibits a linear, rather than quadratic,

increase with respect to the image size, which allows the architecture to operate

efficiently with high-resolution inputs [74]. The Swin Transformers architecture

is shown in Figure 18.

Figure 18. An overview of the Swin Transformer architecture, illustrating (a)

the general hierarchical structure with four stages and patch merging layers, and

(b) the detailed composition of two successive blocks featuring windowed (W-

MSA) and shifted-window (SW-MSA) self-attention.

The most ingenious aspect of the Swin Transformer is its ability to increase

efficiency using local windows without losing global context, which it achieves

by enabling information flow across windows. This is realized through the

"shifted window" mechanism. In the first of two successive Transformer blocks

in the architecture, self-attention is computed within standard, non-overlapping

windows. In the next block, however, this window grid is shifted by half the

window size. This simple shifting operation allows patches that were in different

windows in the preceding layer to be grouped together within the same window

in the new layer. As this process is repeated throughout the depth of the network,

information effectively propagates from one window to another, and

consequently, a global interaction field is achieved through local operations.

Another significant advantage of this design is its ability to produce hierarchical

36

feature maps at different scales, similar to CNNs. At different stages of the

network, it reduces the spatial resolution and increases the channel count by

merging patches. This hierarchical structure makes the Swin Transformer an

extremely powerful and flexible backbone not only for classification but also for

various dense prediction tasks.

In this study, four primary variants of the Swin Transformer family were used

to evaluate the effect of its efficiency and performance balance at different

capacity levels: Swin-Tiny (T), Swin-Small (S), Swin-Base (B), and Swin-Large

(L). All of these variants are based on the shifted-window self-attention

mechanism and hierarchical design described above. The fundamental difference

among them arises from the scaling of the core parameters that constitute the

architecture; these parameters include the number of blocks at each stage (depth),

the size of the embedding vectors (channel count), and the number of heads in

the attention mechanism. Swin-T and Swin-S, as the lighter and more efficient

members of the family, offer the fundamental advantages of the Swin architecture

at a lower computational cost. Swin-B is the reference model, which establishes

a strong balance between performance and cost and is often used for direct

comparison with standard-sized models like ViT-Base. Swin-L, in contrast, is the

largest model in terms of capacity, targeting the highest accuracy. The analysis

of these four variants allows us to understand how effective a hierarchical and

efficient Transformer approach is for a specific task like concrete crack detection

and the impact of model capacity on performance. The layers and architectural

variants mentioned above are shown in Figure 19.

37

Figure 19. Detailed specifications of the Swin Transformer variants (Swin-T,

Swin-S, Swin-B, and Swin-L), showing the hyperparameter configuration at

each hierarchical stage.

Beit

Among the Transformer-based models examined in this study is BEiT

(Bidirectional Encoder representation from Image Transformers), which presents

not an architectural innovation, but a revolutionary pre-training strategy that

fundamentally alters how models learn visual representations. Traditionally,

models like ViT and Swin are pre-trained in a supervised fashion on datasets such

as ImageNet, which contain millions of human-labeled images. BEiT,

conversely, adopts a self-supervised learning approach that circumvents the need

for this costly and labor-intensive labeling process. Drawing inspiration from the

groundbreaking BERT model in the field of Natural Language Processing (NLP),

the core idea behind BEiT is for the model to learn visual representations

autonomously through a "pretext task" known as "Masked Image Modeling"

(MIM). In this process, an input image is first converted into a sequence of

patches and, subsequently, into a version composed of discrete "visual tokens."

During pre-training, a portion of the image patches (e.g., 40%) is randomly

masked, and the model's task is to predict the original visual tokens of these

masked regions by using the context of the visible patches. This task compels the

model to do much more than simple pixel completion; it forces a deep

38

understanding of the semantic and structural integrity of images [75]. The Beit

Transformers architecture is shown in Figure 20.

Figure 20. A schematic diagram of the BEiT pre-training framework,

illustrating its core task of Masked Image Modeling (MIM).

Since BEiT itself is a pre-training methodology rather than a novel

architecture, the backbone it is based upon is typically a standard Vision

Transformer. The BEiT-Base and BEiT-Large variants used in this study denote

different capacity versions of the underlying ViT architecture, upon which the

masked image modeling task was applied. BEiT-Base is constructed upon a

standard "Base" size ViT architecture (e.g., 12 layers, 768 hidden dimension, 12

attention heads). This model offers a strong baseline for measuring the efficacy

of the self-supervised pre-training on a standard-sized architecture. BEiT-Large,

conversely, uses a "Large" size ViT architecture with significantly more layers

and parameters, aiming to maximize the potential of this learning strategy and

generally targeting state-of-the-art performance. The primary purpose of

including these two models in our study is to compare not only architectures but

also pre-training strategies. The comparison of BEiT models against traditionally

supervised, ImageNet pre-trained ViT models of the same size is intended to

39

determine whether learning from unlabeled data with a BERT-like approach

provides a tangible advantage over supervised pre-training for a specific task like

concrete crack detection, where fine details are important.

40

RESULTS AND DISCUSSION

Experimental Setup

To ensure that the findings presented in this research adhere strictly to the

principles of scientific rigor, methodological consistency, and reproducibility, all

experimental work was conducted on a single, meticulously configured, and

controlled computing platform. This standardized approach eliminates external

variables, such as performance fluctuations arising from hardware or software,

which could otherwise confound the results. Thus, it is guaranteed that any

observed differences in performance, such as accuracy, training time, and

efficiency, can be reliably attributed solely to the intrinsic architectural merits

and structural properties of the DL models under investigation. This

methodological rigor is an indispensable prerequisite for the primary objective of

the study: a fair comparison of different architectural paradigms on a level

playing field.

The experimental work was conducted on a high-performance workstation

built upon an ASUS PRIME Z790-A WIFI motherboard. At the heart of the

system is an NVIDIA GeForce RTX™ 3090 graphics processing unit (GPU),

which, with its 24 GB of GDDR6X VRAM, undertakes the majority of the DL

computations and makes the training of large models possible. This extensive

VRAM capacity, required by high-parameter model variants such as the "Large"

versions in our study and by large batch sizes, ensured that the model training

could proceed uninterruptedly and efficiently. Tasks such as data loading, pre-

processing, on-the-fly data augmentation, and general system management were

handled by a powerful Intel® Core™ i7-14700K central processing unit (CPU),

which ensures the GPU operates at full efficiency without data bottlenecks. These

two processors are supported by 64 GB of DDR5 system memory and a 1.0 TB

high-speed storage unit, which facilitate the fluid operation of the system and the

efficient management of large data batches in memory.

41

On top of the hardware layer resides the Ubuntu 24.04.2 LTS operating system

(Linux 6.11.0-28-generic kernel version), which was chosen for its stability and

strong compatibility with DL tools. All model development, training, and

evaluation processes were coded in Python using the PyTorch DL framework, a

popular choice among researchers due to its flexible structure, dynamic

computational graph, and rich ecosystem. PyTorch's ability to fully leverage the

parallel computing power of the RTX 3090 was enabled by the CUDA 12.8

toolkit, which serves as the essential bridge between the hardware and software.

In effect, this integrated experimental environment, meticulously managed and

standardized from the operating system down to the lowest-level hardware

drivers, provides the robust, stable, and verifiable foundation for the

comprehensive comparative analysis conducted in this research.

Evaluation Metrics

To quantitatively and comprehensively evaluate the performance of the DL

models trained in this study, a series of industry-standard metrics were employed.

All of these metrics are computed based on the Confusion Matrix, which is

derived from a comparison of the model's predictions on the test set against the

ground-truth labels. The confusion matrix is a table that visualizes the

performance of a classification model and is built upon four fundamental

outcomes. In the context of our project, these outcomes are defined as follows: a

True Positive (TP) is a 'cracked' image correctly classified by the model as

'cracked' ; a False Positive (FP) is a 'non-cracked' image erroneously labeled by

the model as 'cracked' ; a True Negative (TN) is a 'non-cracked' image correctly

classified as 'non-cracked' ; and finally, a False Negative (FN) is a 'cracked' image

that was missed by the model and erroneously classified as 'non-cracked'. These

four foundational outputs form the basis for the more complex and interpretable

metrics described below.

Accuracy is the most intuitive and fundamental metric used to measure the

performance of a classification model. Mathematically, it is calculated by

42

dividing the sum of all correct predictions (both true positives and true negatives)

by the total number of predictions. In other words, it represents the percentage of

images in the test set that the model classified correctly. While a high accuracy

value indicates that the model is performing well in a general sense, it can be

misleading, particularly on imbalanced datasets. Although the dataset in this

study was balanced, evaluating the model's performance not just by its accuracy

rate but also with more sensitive metrics that separately examine its success on

the positive and negative classes is essential for a deeper and more reliable

analysis.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(1)

The Precision metric, also known as Positive Predictive Value, quantifies

what proportion of the predictions labeled as "positive" (i.e., ‘cracked’) by the

model are genuinely correct. This metric provides an answer to the question,

"When the model reports that it has found a crack, how much can I trust that

finding?" A high precision score indicates that the model has a low False Positive

(FP) rate. In the context of structural health monitoring, this is of critical

importance because high precision prevents a sound concrete surface from being

erroneously flagged as ‘cracked’. This, in turn, precludes unnecessary and costly

on-site inspections, detailed analyses, or repair procedures, promoting the

efficient allocation of resources.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(2)

This metric, alternatively referred to as Sensitivity, Recall, or True Positive

Rate, measures the model's ability to correctly identify all actual positive cases

(i.e., all images that are genuinely ‘cracked’). This metric answers the question,

"What percentage of the existing cracks was our model able to capture?"

43

Sensitivity is one of the most important metrics, particularly in safety-critical

applications. A high sensitivity value signifies that the model has a low False

Negative (FN) rate. In other words, the likelihood of the model overlooking an

existing crack is low. Since the failure to detect an existing crack in a reinforced

concrete structure can allow structural damage to grow over time, potentially

leading to catastrophic consequences, maintaining a high value for this metric is

of paramount importance for proactive maintenance and safety management.

𝑅𝑒𝑐𝑎𝑙𝑙(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(3)

In practice, a trade-off generally exists between the Precision and Sensitivity

metrics; a modification made to increase one may cause a decrease in the other.

For instance, a model that labels even the slightest suspicion as ‘cracked’ might

achieve very high sensitivity, but this situation would lead to numerous false

positives, thereby reducing its precision. The F1-Score is a powerful metric that

establishes a balance by combining these two metrics into a single number.

Calculated as the harmonic mean of Precision and Sensitivity, the F1-Score

requires both metrics to be high. The harmonic mean, unlike a simple arithmetic

average, severely penalizes the F1-Score if one of the metrics is very low. For

this reason, the F1-Score is regarded as one of the most balanced and reliable

indicators for measuring a model's performance in situations where both false

positives (low precision) and false negatives (low sensitivity) are significant.

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(4)

Training Protocol

To ensure a fair and unbiased measurement of the true performance of all

state-of-the-art architectures compared in this study, all experiments were

conducted under strictly standardized and identical conditions. This rigorous

44

standardization forms the foundation of our methodology, guaranteeing that any

observed performance differences are attributable to the architectural merits of

the models themselves, rather than to variations in the training setup. All models

were trained and evaluated on the same hardware, using the same balanced

dataset splits (training, validation, test), the same input image size (224×224), and

the same batch size. This consistency was further reinforced by initializing each

architecture with its own standard pre-trained weights and subjecting it to the

exact same training pipeline.

Our comprehensive training strategy, applied consistently to all models,

integrated the principles of transfer learning and data augmentation. The entire

process was foundationally built on transfer learning. By fine-tuning pre-trained

models, we leveraged powerful feature extractors that had already learned a rich

hierarchy of general visual features. The issue of class imbalance was

fundamentally resolved prior to training by balancing the dataset via down

sampling. Data augmentation techniques were then used on this balanced dataset

to enhance the model's generalization capability and to prevent overfitting. On-

the-fly data augmentation techniques such as random rotation, flipping, cropping,

and color shifting artificially increased the diversity and effective volume of the

training data, making the models more robust and resilient to variable conditions.

To update the model weights, the AdamW optimizer was chosen, which is

known for its stability and effectiveness in training DL architectures, especially

those that are Transformer-based. AdamW tends to provide better generalization

performance than the traditional Adam optimizer because it decouples the weight

decay regularization from the gradient update. A dynamic approach was adopted

for managing the learning rate. The training process included a "warm-up" period

for the first 5 epochs, during which the learning rate was gradually increased from

zero to its target value. This warm-up phase prevents the valuable pre-trained

weights from being corrupted by large, abrupt updates, which can occur when the

model is unstable at the beginning of training. Following the warm-up period, a

Cosine Annealing Scheduler was engaged, which smoothly decays the learning

45

rate according to a cosine curve over the remaining epochs. The initial learning

rate was set to 1e-5.

Additional mechanisms were used for managing the training duration and

controlling for overfitting. In this context, the training of all models was

conducted for a fixed and standard duration of 100 epochs to ensure a fair

comparison. Throughout the training process, the model's performance on the

validation dataset was carefully monitored at the end of each epoch using the F1-

Score metric. Once the 100-epoch training was complete, the model weights

belonging to the epoch that achieved the highest validation F1-Score were saved

as the final, best-performing version of the respective architecture. Another

important part of the regularization strategy was the application of a weight decay

of 2.0e−05 as a parameter of the AdamW optimizer. This technique penalizes the

magnitude of the model's parameter weights, thereby discouraging overly

complex and overfitted solutions.

The training protocol applied in this study is, therefore, a multi-faceted and

meticulously controlled set of strategies. The establishment of a standardized

experimental environment, the creation of a strong foundation with transfer

learning, the reinforcement of generalization with data augmentation, and the use

of an advanced learning rate schedule with warm-up and cosine decay, along with

regularization techniques like weight decay, were all aimed at revealing the

potential of each architecture under fair and optimal conditions. This holistic

approach ensures the reliability of the obtained results and the scientific validity

of the comparative analysis.

Experimental Results

This section presents the experimental results that reveal the performance of

the wide range of models examined in this study on the meticulously prepared

datasets. To deepen the comparative analysis and to measure the capabilities of

the models at different levels of difficulty, the experiments were conducted in

two primary phases. In the first phase, each structural category—'Deck',

46

'Pavement', and 'Wall'—was treated as an independent binary classification

(cracked/non-cracked) problem. This approach allowed us to evaluate in an

isolated manner the fundamental success of each architecture in learning the

textural and structural features specific to different surface types. In the second

phase, to test the performance of the models in a more complex scenario, these

three main categories were combined to create a single, unified dataset. This

combination resulted in the definition of a new six-class multi-class classification

task, comprising the following classes: D_Cracked (Cracked Deck), D_Non-

cracked (Non-cracked Deck), P_Cracked (Cracked Pavement), P_Non-cracked

(Non-cracked Pavement), W_Cracked (Cracked Wall), and W_Non-cracked

(Non-cracked Wall). In the subsections that follow, the results obtained from this

two-phase experiment are presented in detail. First, the results of the binary

classification tasks are addressed, within which the performance metrics obtained

for the 'Deck' class are summarized in Table 2.

Table 2. Performance comparison of all evaluated architectures on the 'Deck'

dataset for the binary classification task.

Models
Accuracy

(%)

Precision

(%)

Recall

(%)

F1-score

(%)
Params GFLOPs

R
es

N
et

18 83.61 83.75 83.61 83.59 11.18 3.6470

34 83.61 83.98 83.61 83.56 21.29 7.3565

50 81.48 81.80 81.48 81.43 23.51 8.2634

101 83.11 84.31 83.11 82.97 42.5 15.7288

152 83.93 84.72 83.93 83.84 58.15 23.2038

D
en

se
N

et

121 82.30 82.36 82.30 82.29 6.96 5.6667

169 79.02 80.73 79.02 78.72 12.49 6.7169

201 78.85 79.05 78.85 78.82 18.1 8.5795

47

E
ff

ic
ie

n
tN

et
-V

2
 Small 83.77 84.27 83.77 83.71 20.18 5.4192

Medium 82.13 83.29 82.13 81.97 52.86 10.4436

Large 84.59 85.47 84.59 84.49 117.24 23.9733

V
is

io
n
 T

ra
n
sf

o
rm

er
s

P
at

ch
-1

6

Tiny 82.30 82.86 82.30 82.22 5.52 2.1493

Small 80.49 80.77 80.49 80.45 21.67 8.4817

Base 79.34 79.39 79.34 79.34 85.8 33.6955

Large 80.66 81.73 80.66 80.49 303.3 119.2923

P
at

ch
-3

2

Small 80.00 80.70 80.00 79.89 22.49 2.2390

Base 81.80 82.09 81.80 81.76 87.46 8.7247

Large 80.66 81.37 80.66 80.55 305.51 30.5073

S
w

in
 T

ra
n
sf

o
rm

er
s

Tiny 82.95 84.19 82.95 82.80 27.52 8.7422

Small 83.44 83.75 83.44 83.41 48.84 17.0885

Base 84.43 84.49 84.43 84.42 86.75 30.3375

Large 84.59 84.64 84.59 84.58 195.0 68.1649

B
ei

t
T

ra
n
sf

o
rm

er
s Base 82.30 82.65 82.30 82.25 85.76 25.3294

Large 79.84 79.87 79.84 79.83 303.41 89.5463

The results of the binary classification task for the "Deck" class revealed

significant performance differences and important architectural trends among the

examined model families. According to the metrics presented in Table 2, the Swin

48

Transformer and EfficientNet-V2 families generally exhibited the highest

performance, while the classic ResNet architectures also yielded highly

competitive and stable results. The highest F1-Score (84.58%) was achieved by

the Swin Transformer Large model, followed very closely by the EfficientNet-

V2 Large model with a score of 84.49%. These two models stand out as the most

successful approaches for the classification of "Deck" class images, which are

characterized by homogeneous surface textures and sharp shadows. The

confusion matrices for the models that yielded the top performance for the 'Deck'

class are illustrated in Figure 21.

Figure 21. Confusion matrices for the two best-performing models on the

'Deck' binary classification task: Swin Transformer Large (left) and

EfficientNet-V2 Large (right).

When examining the CNN-based architectures, the ResNet family is seen to

offer reliable and stable performance, with F1-scores generally above 83%. The

best result within the family was achieved by ResNet-152 (83.84% F1); however,

a noteworthy point is that ResNet-50 exhibited a lower performance than the

smaller ResNet-34. This situation is an indicator that model depth does not

always bring a linear performance increase. In contrast, the DenseNet family

underperformed compared to other architectures in this task. The best DenseNet

model was the smallest in the family, DenseNet-121 (82.29% F1), while

performance decreased as model depth increased (DenseNet-169 and 201),

49

showing that the dense connectivity strategy did not scale effectively for this

specific task. Among the CNNs, the most striking success was demonstrated by

the EfficientNet-V2 family. While EfficientNet-V2 Large achieved one of the

highest scores, the EfficientNet-V2 Small model proved what a powerful

alternative it is in terms of efficiency by reaching a very high F1-score of 83.71%

with an extremely low computational cost (5.4 GFLOPs).

When considering the Transformer-based architectures, the differences

between the architectural designs become clearly apparent. The standard ViT

models obtained more modest results in general. Particularly in the ViT-Patch-16

family, the fact that the largest model, ViT-Large (80.49% F1), performed lower

than the smallest model, ViT-Tiny (82.22% F1), demonstrates that simply

increasing the parameter count is not an effective strategy for this task. In

contrast, the Swin Transformer family, which uses a hierarchical structure and a

windowed attention mechanism, was by far the most successful among the

Transformers. In this family, where performance consistently increased with

model size, Swin-Base (84.42% F1) and Swin-Large (84.58% F1) were among

the top-performing models. Finally, although the BEiT models had a reasonable

start (BEiT-Base 82.25% F1), the performance drop in the BEiT-Large model

indicates that self-supervised pre-training did not provide the expected advantage

for large models in this task.

Evaluating the results not only based on absolute performance but also along

the axis of efficiency (parameter count and GFLOPs) offers important takeaways

for practical applications. Although Swin-Large and EfficientNet-V2 Large stand

out as the best options in scenarios where maximum accuracy is targeted, the

efficiency champions are different. Specifically, EfficientNet-V2 Small and

ResNet-34 achieve F1-scores only marginally lower than the top-tier models, but

they do so at one-fifth or less of the computational cost. This situation clearly

demonstrates that in real-world applications where resources are limited or fast

inference time is important, lighter and more efficient models represent a much

more practical and sensible alternative.

50

Table 3. Performance comparison of all evaluated architectures on the

'Pavement' dataset for the binary classification task.

Models
Accuracy

(%)

Precision

(%)

Recall

(%)

F1-score

(%)
Params GFLOPs

R
es

N
et

18 90.43 90.47 90.43 90.43 11.18 3.6470

34 90.94 90.96 90.94 90.94 21.29 7.3565

50 90.82 90.82 90.82 90.82 23.51 8.2634

101 90.43 90.55 90.43 90.43 42.5 15.7288

152 90.05 90.09 90.05 90.05 58.15 23.2038

D
en

se
N

et

121 89.92 89.93 89.92 89.92 6.96 5.6667

169 86.48 86.83 86.48 86.45 12.49 6.7169

201 85.08 85.13 85.08 85.07 18.1 8.5795

E
ff

ic
ie

n
tN

et
-V

2
 Small 89.80 89.82 89.80 89.79 20.18 5.4192

Medium 89.92 90.09 89.92 89.91 52.86 10.4436

Large 90.05 90.06 90.05 90.05 117.24 23.9733

V
is

io
n
 T

ra
n
sf

o
rm

er
s

P
at

ch
-1

6

Tiny 88.27 88.27 88.27 88.26 5.52 2.1493

Small 89.67 90.15 89.67 89.64 21.67 8.4817

Base 88.14 88.16 88.14 88.14 85.8 33.6955

Large 88.65 89.12 88.65 88.61 303.3 119.2923

P
at

ch
-3

2

Small 87.12 87.66 87.12 87.07 22.49 2.2390

Base 87.37 87.43 87.37 87.37 87.46 8.7247

Large 87.24 87.53 87.24 87.22 305.51 30.5073

51

S
w

in
 T

ra
n
sf

o
rm

er
s

Tiny 87.12 87.17 87.12 87.11 27.52 8.7422

Small 88.27 88.46 88.27 88.25 48.84 17.0885

Base 90.43 90.51 90.43 90.43 86.75 30.3375

Large 89.16 89.44 89.16 89.14 195.0 68.1649

B
ei

t
T

ra
n
sf

o
rm

er
s

Base 89.41 89.49 89.41 89.41 85.76 25.3294

Large 75.38 76.57 75.38 75.10 303.41 89.5463

The results of the binary classification task conducted on the 'Pavement' dataset,

presented in detail in Table 3, reveal a performance distribution that is different from

the 'Deck' class and quite remarkable. The most successful results in this category

were surprisingly achieved by the classic ResNet family, which surpassed many more

modern and structurally complex architectures. It is noteworthy that the general

performance scores are higher compared to the 'Deck' class and are clustered more

closely around a 90% F1-Score. This situation indicates that the crack features in the

pavement dataset, despite the high visual noise it contains, could be learned more

clearly and distinctively by the models. The absolute winner of this category was

ResNet-34, with an impressive F1-Score of 90.94%. This result is of considerable

importance as it underscores the fact that the newest or largest model is not always

the best solution for a given task, and that a well-established, medium-depth

architecture can also deliver top-tier performance.

When the performance within the CNN-based architectures is examined, the clear

superiority of the ResNet family in this category is plainly visible. The top-

performing ResNet-34 was followed very closely by other members of the family

such as ResNet-50, ResNet-18, and ResNet-101, which also achieved F1-scores

52

above 90%. This suggests that medium-depth ResNet architectures create a "sweet

spot" of performance for the detection of pavement cracks, and that extreme depth,

as in ResNet-152, results in a marginal performance decrease compared to this peak.

In contrast, the DenseNet family, showing a similar trend to the 'Deck' results, could

not demonstrate top performance in this category either. The fact that the best result

was again obtained by the smallest model, DenseNet-121, and that performance

declined in deeper models, has strengthened the evidence that the dense connectivity

strategy does not provide a scalable advantage for the tasks in this project. The

EfficientNet-V2 family, however, exhibited highly consistent and successful results,

with all variants achieving very similar F1-scores (in the range of 89.8% - 90.05%).

The most important finding here is that the lightest model, EfficientNet-V2 Small,

demonstrated exceptional efficiency by delivering nearly the same performance as

its much larger Large version.

When considering the Transformer-based architectures, interesting results also

emerged in this category. The standard ViT models performed at a tier below the top

CNNs, showing moderate performance. The Swin Transformer family, which offers

a hierarchical structure, was again the most successful among the Transformers, and

the Swin-Base model ranked among the top performers alongside the best ResNets

with an F1-Score of 90.43%. However, unlike in the 'Deck' class, the performance of

the Swin-Large model decreased slightly compared to the Base model. The most

striking result in this category belongs to the BEiT family. While the BEiT-Base

model achieved a competitive result, the BEiT-Large model exhibited the worst

performance among all models with a very low F1-Score of 75.10%. This dramatic

drop demonstrates that the self-supervised pre-training strategy of BEiT, when

combined with a large model capacity, failed to generalize on the visual

characteristics of the 'Pavement' dataset and was entirely unsuccessful.

Evaluating the results not only based on absolute performance but also along the

axis of efficiency reveals a very clear picture for the 'Pavement' class. The undisputed

champions of this category, for both absolute performance and efficiency, are the

ResNet-18 and ResNet-34 models. While ResNet-34 achieved the highest F1-Score,

53

ResNet-18 also presents an exceptional cost-performance profile by delivering nearly

the same performance as the top models despite being one of the most efficient

models. These findings strongly demonstrate that for practical applications involving

crack detection on visually noisy and complex surfaces like pavements, the most

sensible and optimal solution is to use proven, efficient, and medium-depth

architectures like ResNet-18 or ResNet-34, rather than resorting to extremely large

and complex models. The confusion matrices for the ResNet-34 and ResNet-18

models, which were the top performers for the 'Pavement' class, are presented in

Figure 22.

Figure 22. Confusion matrices for the two best-performing models on the

'Pavement' binary classification task: ResNet-34 (left) and ResNet-18 (right).

54

Table 4. Performance comparison of all evaluated architectures on the 'Wall'

dataset for the binary classification task.

Models
Accuracy

(%)

Precision

(%)

Recall

(%)

F1-score

(%)
Params GFLOPs

R
es

N
et

18 88.51 88.58 88.51 88.51 11.18 3.6470

34 87.22 87.27 87.22 87.21 21.29 7.3565

50 88.51 88.54 88.51 88.51 23.51 8.2634

101 88.60 88.69 88.60 88.59 42.5 15.7288

152 87.91 87.95 87.91 87.91 58.15 23.2038

D
en

se
N

et

121 87.31 87.39 87.31 87.30 6.96 5.6667

169 84.89 85.10 84.89 84.86 12.49 6.7169

201 83.85 84.01 83.85 83.83 18.1 8.5795

E
ff

ic
ie

n
tN

et
-V

2
 Small 88.95 89.01 88.95 88.94 20.18 5.4192

Medium 87.39 87. 51 87.39 87.38 52.86 10.4436

Large 87.74 87.77 87.74 87.74 117.24 23.9733

V
is

io
n
 T

ra
n
sf

o
rm

er
s

P
at

ch
-1

6

Tiny 84.28 84.32 84.28 84.28 5.52 2.1493

Small 84.37 84.60 84.37 84.37 21.67 8.4817

Base 84.80 85.02 84.80 84.78 85.8 33.6955

Large 83.68 85.11 83.68 83.51 303.3 119.2923

P
at

ch
-3

2

Small 80.57 80.68 80.57 80.55 22.49 2.2390

Base 83.85 84.23 83.85 83.81 87.46 8.7247

Large 83.85 84.04 83.85 83.83 305.51 30.5073

55

S
w

in
 T

ra
n
sf

o
rm

er
s Tiny 86.96 87.08 86.96 86.95 27.52 8.7422

Small 86.36 87.03 86.36 86.29 48.84 17.0885

Base 87.13 87.27 87.13 87.12 86.75 30.3375

Large 87.31 87.40 87.31 87.30 195.0 68.1649

B
ei

t
T

ra
n
sf

o
rm

er
s

Base 77.55 78.78 77.55 77.30 85.76 25.3294

Large 86.70 86.80 86.70 86.69 303.41 89.5463

The results of the binary classification task conducted on the 'Wall' dataset,

presented in detail in Table 4, depict a performance landscape that is distinct and

unique from the other two categories. The most remarkable and important finding

in this task is that the EfficientNet-V2 Small model, one of the most efficient

members of the EfficientNet-V2 family, exhibited the highest performance

among all tested architectures with an F1-Score of 88.94%. This result is strong

evidence underscoring that the highest accuracy does not always come from the

largest or most complex model. The ResNet family also demonstrated highly

competitive and stable performance, with variants such as ResNet-101 and

ResNet-18/50 achieving F1-scores above 88.5%. The most successful results for

the "Wall" class appear to be obtained by modern and efficiency-focused CNN

architectures.

When the performance within the CNN-based architectures is examined more

deeply, it is clear that the winner of this category is the EfficientNet-V2 family.

The fact that the higher-performing EfficientNet-V2 Small model was not

surpassed by its larger Medium and Large variants suggests that the capacity and

architectural design of the Small model are optimal for learning the visual

features of 'Wall' surfaces (e.g., formwork lines, water stains). The ResNet family

once again delivered very strong and reliable results. The performance of all

56

variants within the family being very close (in the 87.2% - 88.6% F1 range)

confirms that the ResNet architecture provides a stable foundation for this task,

even at different depths. In contrast, the DenseNet family, in a consistent trend

observed in the previous two categories, exhibited weaker performance compared

to other CNNs in this task as well, and its performance decreased as model depth

increased. This situation reinforces the finding that scaling DenseNet did not

provide an advantage for any of the three surface types in our project.

The Transformer-based architectures lagged slightly behind the top-

performing members of the CNNs in the "Wall" category. The ViT and Swin

Transformer families delivered upper-mid-range performance with F1-scores

generally below 87%. In the Swin Transformer family, it is noteworthy that the

performance gain from scaling the model size from Tiny to Large was quite

marginal. One of the most interesting results in this category was observed in the

BEiT family. In contrast to the failure of the BEiT-Large model on the other two

datasets, in this task, BEiT-Large (86.69% F1) demonstrated a much superior

performance compared to the BEiT-Base model (77.30% F1). Although this

situation indicates that the features learned via BEiT's self-supervised pre-

training strategy interacted better with a larger model capacity on the unique

visual patterns of the 'Wall' dataset, this performance still did not reach the level

of the best CNNs.

The result of this comprehensive analysis for the "Wall" class presents an

exceptionally clear picture of the relationship between performance and

efficiency. The undisputed winner of this category is the EfficientNet-V2 Small

model, which not only achieved the highest F1-Score in terms of absolute

performance but also accomplished this as one of the most efficient models. This

model exhibits an outstanding cost-performance balance by delivering the highest

accuracy at one of the lowest computational costs. Similarly, ResNet-18 also

proved to be an excellent alternative for practical applications by achieving a

result very close to the highest performance levels at a very low cost. In effect,

for the detection of cracks on wall surfaces, this study has shown that using a

57

modern, efficient, and compact CNN architecture like EfficientNet-V2 Small

offers the most optimal and effective solution, rather than resorting to extremely

large and costly models. A detailed breakdown of the prediction distributions and

error types for the two most successful architectures in this category,

EfficientNet-V2 Small and ResNet-18, is illustrated by their respective confusion

matrices in Figure 23.

Figure 23. Confusion matrices for the two best-performing models on the 'Wall'

binary classification task: EfficientNet-V2 Small (left) and ResNet-18 (right).

Table 5. Performance comparison of all evaluated architectures for the 6-

class classification task on the unified dataset.

Models
Accuracy

(%)

Precision

(%)

Recall

(%)

F1-score

(%)
Params GFLOPs

R
es

N
et

18 86.56 86.69 86.23 86.22 11.18 3.6470

34 86.36 86.01 86.82 85.85 21.29 7.3565

50 86.09 85.95 85.56 85.63 23.51 8.2634

101 86.64 86.25 86.18 86.20 42.5 15.7288

152 85.97 85.59 85.44 85.45 58.15 23.2038

58

D
en

se
N

et

121 84.44 83.98 83.89 83.86 6.96 5.6667

169 82.76 82.89 82.19 82.12 12.49 6.7169

201 82.48 82.29 81.66 81.73 18.1 8.5795

E
ff

ic
ie

n
tN

et
-V

2

Small 87.11 86.60 86.45 86.42 20.18 5.4192

Medium 86.72 86.51 86.24 86.24 52.86 10.4436

Large 86.91 86.43 86.20 86.24 117.24 23.9733

V
is

io
n
 T

ra
n
sf

o
rm

er
s

P
at

ch
-1

6

Tiny 84.21 84.04 83.70 83.72 5.52 2.1493

Small 83.70 83.49 83.21 83.20 21.67 8.4817

Base 83.86 83.76 83.68 83.71 85.8 33.6955

Large 84.84 85.20 84.58 84.48 303.3 119.2923

P
at

ch
-3

2

Small 82.48 82.31 82.09 82.05 22.49 2.2390

Base 83.07 84.09 82.68 82.62 87.46 8.7247

Large 83.46 83.86 83.34 83.37 305.51 30.5073

S
w

in
 T

ra
n
sf

o
rm

er
s

Tiny 85.38 84.86 84.75 84.77 27.52 8.7422

Small 85.34 84.65 84.79 84.68 48.84 17.0885

Base 84.95 84.88 84.25 84.28 86.75 30.3375

Large 86.13 86.10 85.62 85.63 195.0 68.1649

B
ei

t
T

ra
n
sf

o
rm

er
s

Base 83.89 83.66 83.49 83.40 85.76 25.3294

Large 84.56 84.46 83.98 83.95 303.41 89.5463

59

The results of the second and most challenging phase of the experimental

study, the six-class multi-class classification task, measure not only the models'

ability to detect the presence of a defect but also their capacity to understand the

structural context (Deck, Pavement, or Wall) in which it appears. The findings

presented in Table 5 demonstrate that in this complex task, the EfficientNet-V2

and ResNet families established a clear superiority over the Transformer-based

architectures. The most remarkable and important result of this experiment is that

the model achieving the highest F1-Score (86.42%) among all tested architectures

was EfficientNet-V2 Small, one of the most efficient members of its family. This

finding strongly proves that the largest model is not always the best solution, even

for the most complex tasks, and that a well-designed and more compact

architecture can deliver superior performance.

The performance within the CNN-based architectures clearly reveals the

winner of this task. The EfficientNet-V2 family, with all its variants scoring

above an 86% F1-score, demonstrated that it is the most suitable architecture for

this challenging task. Notably, the fact that the smallest member of the family,

the Small model, achieved a marginally better result than its much larger Medium

and Large versions confirms that the balance of capacity and efficiency in this

model is optimal for this task. The ResNet family also, once again, delivered

extremely stable and strong performance. While all ResNet variants achieved

very similar results (in the 85.4% - 86.2% F1 range), the fact that the most

efficient member, ResNet-18, was among the top models demonstrates how

powerful and reliable this classic architecture remains. As in the previous

experiments, the DenseNet family delivered lower performance in this task

compared to other CNNs, reinforcing the observation that it is not a suitable

option for the tasks within the scope of this study.

The Transformer-based architectures could not reach the performance level of

the top CNNs in this multi-class classification task. The most successful family

among the Transformers was the Swin Transformer, where performance

consistently increased with model size. The largest member of the family, Swin-

60

Large, ranked at the top among Transformer models with an F1-Score of 85.63%.

The standard ViT and BEiT families, on the other hand, achieved more modest

results, recording F1-scores around 83%. In contrast to what was observed in

some of the binary classification tasks, it is noteworthy that for this more complex

multi-class task, the Large variants in both the ViT and BEiT families performed

better than their Base counterparts. This indicates that the increased number of

classes and complexity allowed these models to benefit somewhat from their

higher capacity, but this benefit was still not sufficient to compete with the best

CNNs.

The results obtained from this most comprehensive experiment of the study

offer an extremely important takeaway for practical applications: efficiency does

not mean sacrificing performance, even in complex tasks. The undisputed

champions of this task are the EfficientNet-V2 Small and ResNet-18 models,

which not only ranked among the top in absolute performance but also did so

with exceptional computational efficiency. These two models achieved a higher

accuracy rate than the largest Transformer models, which have hundreds of

millions of parameters, but at one-tenth or less of the parameter and

computational cost. This finding clearly demonstrates that for a multifaceted and

realistic problem involving both crack detection and contextual surface

recognition, modern and efficiency-focused CNN architectures, in their current

form, offer a much more effective, practical, and optimal solution compared to

Transformer-based approaches. For a more detailed view of the class-specific

prediction accuracy and inter-class confusion for the two most successful

architectures, the confusion matrices for EfficientNet-V2 Small and ResNet-18

are illustrated in Figure 24.

61

Figure 24. Confusion matrices for the two best-performing models on the unified

6-class classification task: EfficientNet-V2 Small (left) and ResNet-18 (right).

Discussion

The primary objective of this study was to conduct a comprehensive

comparison of the performance of modern CNN and Transformer-based DL

architectures in scenarios involving different surface types and task complexities

for concrete crack detection. The experimental findings present a rich and multi-

layered picture, revealing that no single architecture is universally superior across

all tasks, but that certain architectural philosophies are more advantageous for

specific tasks. The most fundamental and general finding is that efficiency-

focused modern CNNs, namely EfficientNet-V2 and the classic ResNet family,

exhibited more stable and generally higher performance compared to

Transformer-based approaches in most of the tested tasks. Notably, one of the

most remarkable results of this study is that smaller and more efficient models

competed head-to-head with, and even surpassed, their counterparts that were

many times larger and more complex.

The ResNet family, representing classic CNN architectures, depicted a highly

reliable, stable, and high-performance profile throughout all experiments. The

fact that the ResNet-34 model achieved the highest F1-Score among all tested

architectures in the visually noisiest and most challenging category, "Pavement",

62

reveals the fundamental strength of this architecture. The success of ResNet lies

in the ability to effectively train even very deep networks thanks to residual

connections, and in the strong inductive bias afforded by its convolutional layers.

This natural tendency to learn local spatial relationships (edges, textures) is

perfectly suited for a task based on texture and pattern recognition like crack

detection. Nevertheless, the observation that the deepest ResNet-152 model did

not yield a better result than the medium-depth variants in the "Pavement" and

"Deck" categories suggests that beyond a certain level of complexity, extreme

depth may provide only a marginal contribution to performance or even be

detrimental by starting to learn task-irrelevant noisy features.

In contrast to ResNet, another CNN family, DenseNet, underperformed

without exception in all tasks within the scope of this study. In theory, the

maximum feature reuse and strengthened gradient flow provided by dense

connectivity have the potential to create highly efficient and powerful models.

Indeed, in all three binary classification tasks, the best DenseNet performance

was achieved by the smallest member of the family, DenseNet-121. However, the

consistent drop in performance as model depth increased (DenseNet-169 and

201) indicates that there is an issue with the scalability of this architecture. A

possible reason for this situation is that the concatenation of feature maps from

all preceding layers in extremely deep DenseNet models might create a massive

feature stack, causing the model to become confused about which features to

focus on and complicating the optimization process. For the detection of fine

details like cracks, this "feature inflation" may have brought more harm than

good.

The star of the CNN wing in this study is undoubtedly the EfficientNet-V2

family. This architecture stood out not only for its high performance but also for

delivering this performance with exceptional efficiency. The "compound scaling"

philosophy at the core of EfficientNet, which is a strategy of increasing the

network's depth, width, and resolution in a balanced manner, proved to be more

intelligent and effective than brute-force approaches based solely on adding more

63

layers. The most striking result is that the EfficientNet-V2 Small model achieved

the highest F1-Score in both the "Wall" and the most challenging unified six-

class tasks. This is strong evidence that the highest accuracy does not always

come from the largest model and that an efficiency-focused, intelligent design

can be more important than raw computational power. The success of

EfficientNet-V2 is a testament to how successful innovations like Fused-

MBConv blocks, optimized for modern hardware, and progressive learning are at

combining theoretical accuracy with practical efficiency.

Turning to the Transformer-based architectures, it was observed that the

standard ViT generally could not reach the performance of the top CNNs. ViT's

core philosophy of completely eliminating convolutional operations, and thus the

locality bias, appears to be a disadvantage for this task. Since crack detection is

by its nature based on the analysis of local texture and edge features, the built-in

advantage that CNNs have in this regard outweighed ViT's ability to model global

context. The fact that Patch-16 variants generally yielded better results than

Patch-32 indicates that a higher-resolution view is necessary to capture the fine

details of cracks, but even this was not enough to close the performance gap with

the CNNs. The observation that the ViT-Large model performed worse than ViT-

Tiny in the "Deck" task revealed that simply increasing the size of the ViT

architecture is not an effective strategy for this task.

In contrast to the challenges faced by ViT, the Swin Transformer architecture

stood out as the most successful member of the Transformer family. The secret

to Swin's success is its intelligent reintroduction of two important CNN concepts

that ViT abandoned: hierarchy and locality. By computing self-attention within

local windows, which both increases computational efficiency (linear

complexity), and by enabling inter-window communication through the shifted

window mechanism, Swin effectively serves as a bridge between CNNs and

Transformers. This hybrid approach allowed Swin to compete head-to-head with

the best ResNet and EfficientNet models in tasks like "Deck" and "Pavement".

The fact that Swin-Large showed the best performance in the "Deck" task, while

64

Swin-Base was a top performer in the "Pavement" task and the Large model could

not surpass it, suggests that the optimal Swin size may vary depending on the

visual characteristics of the task.

The BEiT models, which highlight the importance of pre-training strategies,

yielded the most interesting and inconsistent results in this study. The complete

failure of the BEiT-Large model on the "Pavement" dataset with a very low F1-

Score of 75%, yet its significantly better performance than BEiT-Base on the

"Wall" dataset, shows that the features obtained through self-supervised learning

are extremely sensitive to the data distribution and visual nature of the fine-tuning

task. The representations learned via Masked Image Modeling (MIM) might not

have been generalizable to the weathered and noisy textures of "Pavement"

surfaces, while they may have found a better match with the more structured and

patterned features of "Wall" surfaces. This situation is an important finding that

reveals how decisive not only the model architecture but also the type of data and

task used in pre-training is on the final performance.

The two-phase structure of the experiments (binary vs. multi-class) also offers

an important takeaway. As expected, when the task complexity increased, that is,

in the six-class unified task, there was a drop in the absolute F1-scores of all

models. However, the relative ranking of the model families was largely

preserved: the EfficientNet-V2 and ResNet families were again at the top, while

Swin Transformer followed them, and the other Transformers lagged further

behind. This demonstrates that the models that are successful in the fundamental

binary classification task also learn more powerful and discriminative features

that allow them to handle the more complex task of contextual surface

recognition. The fact that the EfficientNet-V2 Small model showed the highest

performance even in this most challenging task is the ultimate proof of how

superior its balance of efficiency and power is.

When all these results are brought together, an extremely clear roadmap for

practical applications emerges. If the sole purpose in an application is to achieve

the absolute highest accuracy and computational resources are not a constraint,

65

models like Swin-Large or EfficientNet-V2 Large could be preferred. However,

the marginal performance increase provided by these models comes at the cost of

a much higher parameter count and slow inference times. In contrast, this study

demonstrates with overwhelming evidence that for almost all practical scenarios,

the most optimal solution is efficient models. Specifically, models like

EfficientNet-V2 Small and ResNet-18/34 delivered better performance than the

top-performing models, at one-fifth or less of the computational cost. This

situation clearly reveals that in real-world applications where resources are

limited, fast inference times are necessary, and energy efficiency is important,

these light and efficient CNN architectures are much more sensible and effective

alternatives.

Lastly, it is important to acknowledge some limitations of this study and to

indicate potential paths for future research. Although SDNET2018 is a

comprehensive dataset, it would be beneficial to test these models on other

datasets collected from different geographical regions and different types of

concrete to verify the generalizability of the findings. This study focused on the

task of classification; in future work, the best-performing backbone architectures

(e.g., EfficientNet-V2 Small) could be combined with decoder structures like U-

Net or DeepLab and be evaluated for semantic segmentation tasks, which

determine the exact location and width of cracks. In addition, the effects of newer

self-supervised learning methods or different pre-training strategies on this task

could be investigated. Finally, further optimizing even the most efficient models

with techniques such as model quantization and pruning so that they can run on

mobile or embedded systems could be a practical extension of this research.

Conclusions

This comprehensive investigation aimed to present a comparative analysis of

modern DL architectures, spanning both CNNs and Transformer-based models,

to determine which architectural philosophies are most suitable for the specific

and practical engineering problem of concrete crack detection. For this purpose,

66

a wide array of models from seven distinct architectural families (ResNet,

DenseNet, EfficientNet-V2, ViT, Swin, BEiT) was meticulously tested on the

SDNET2018 dataset across three different structural categories (Deck, Pavement,

Wall) in both binary and multi-class classification tasks. The obtained

experimental results present a rich and multi-layered picture, revealing that while

no single model was universally superior across all scenarios, the general trend

indicates that efficiency-focused modern CNNs, particularly EfficientNet-V2 and

the classic ResNet family, exhibited more stable, reliable, and generally higher

performance compared to Transformer-based approaches. The most fundamental

finding of this study is the fact that achieving the highest accuracy does not

always require the largest or most complex model; on the contrary, intelligently

designed, more compact architectures can deliver the best results even in the most

challenging tasks. In this context, the classic ResNet family once again proved

the power and durability of the fundamental residual connection concept, with

the medium-depth ResNet-34 variant achieving the highest performance in the

visually noisiest and most challenging "Pavement" category. On the other hand,

the consistent observation across all experiments of performance degradation

with increasing model depth in the DenseNet architecture was a significant

finding, indicating an issue with the scalability of this architecture for these tasks.

The undisputed star on the CNN side was the EfficientNet-V2 family, which

combines efficiency and performance through its "compound scaling"

philosophy. The most striking result of our work is that the smallest member of

the family, the EfficientNet-V2 Small model, achieved the highest F1-Score in

both the "Wall" binary classification task and the most demanding six-class task,

which required the models to recognize both the crack and the surface type

simultaneously. This situation underscores that an architecture that intelligently

balances parameter count and computational cost can be more effective than raw

processing power. On the Transformer front, it was observed that Swin

Transformer, which offers a hierarchical structure and a local attention

mechanism similar to CNNs, was the most successful among the Transformers.

67

The standard ViT, lacking a strong locality bias, lagged behind the CNNs in this

task, which is critical for texture and edge analysis. The inconsistent performance

exhibited by the BEiT models across different datasets demonstrated how

sensitive the features obtained through self-supervised learning are to the visual

nature of the fine-tuning task. Ultimately, the clearest message this study offers

for practical engineering applications is the following: in real-world scenarios

where a balance between reliability, speed, and accuracy is required, the most

optimal solution is compact CNN architectures with proven efficiency. Models

like EfficientNet-V2 Small and ResNet-18 delivered higher performance metrics

than the largest Transformer models with hundreds of millions of parameters,

achieving this at one-tenth or less of the computational cost and thus offering an

exceptional cost-performance ratio. This finding provides a concrete and

applicable roadmap for the development of fast and reliable crack detection

systems that can be integrated into autonomous inspection systems, drones, or

mobile devices. Future work holds the potential to further advance success in this

area by adapting these most successful architectures to segmentation tasks and by

developing more task-specific pre-training strategies.

68

REFERENCES

[1] T. Huang, C. Wan, T. Liu, C. Miao, Degradation law of bond strength of

reinforced concrete with corrosion-induced cracks and machine learning

prediction model, Journal of Building Engineering 98 (2024) 111022.

https://doi.org/10.1016/J.JOBE.2024.111022.

[2] J. Pouya, M. Neji, L. De Windt, F. Péralès, A. Socié, J. Corvisier,

Investigating chemical and cracking processes in cement paste exposed to

a low external sulfate attack with emphasis on the contribution of gypsum,

Constr Build Mater 413 (2024) 134845.

https://doi.org/10.1016/J.CONBUILDMAT.2023.134845.

[3] H. Zeng, M. Jin, W. Li, C. Gao, Y. Ma, Q. Guan, J. Liu, Performance

evolution of low heat cement under thermal cycling fatigue: A

comparative study with moderate heat cement and ordinary Portland

cement, Constr Build Mater 412 (2024) 134863.

https://doi.org/10.1016/J.CONBUILDMAT.2024.134863.

[4] T. Feng, Y. Miao, Y. Tan, Z. Yang, T. Cao, F. Wang, J. Jiang, Prediction

Methodology for the Service Life of Concrete Structures in Marine

Environment: From Materials to Performance, Engineering (2025).

https://doi.org/10.1016/J.ENG.2025.03.010.

[5] S. Ullmann, D. Lowke, The effect of external load on the chloride

migration resistance and the service life of reinforced concrete structures

and repair mortars, Constr Build Mater 443 (2024) 137770.

https://doi.org/10.1016/J.CONBUILDMAT.2024.137770.

[6] M. Sohaib, M.J. Hasan, M.A. Shah, Z. Zheng, A robust self-supervised

approach for fine-grained crack detection in concrete structures, Scientific

Reports 2024 14:1 14 (2024) 1–20. https://doi.org/10.1038/s41598-024-

63575-x.

[7] Q.; Yuan, Y.; Shi, M.A. Li, M. Libera Battagliere, V. Gagliardi, Q. Yuan,

Y. Shi, M. Li, A Review of Computer Vision-Based Crack Detection

Methods in Civil Infrastructure: Progress and Challenges, Remote

69

Sensing 2024, Vol. 16, Page 2910 16 (2024) 2910.

https://doi.org/10.3390/RS16162910.

[8] A.N. Beskopylny, S.A. Stel’makh, E.M. Shcherban’, I. Razveeva, A.

Kozhakin, B. Meskhi, A. Chernil’nik, D. Elshaeva, O. Ananova, M.

Girya, T. Nurkhabinov, N. Beskopylny, Computer Vision Method for

Automatic Detection of Microstructure Defects of Concrete, Sensors

2024, Vol. 24, Page 4373 24 (2024) 4373.

https://doi.org/10.3390/S24134373.

[9] H. Kaveh, R. Alhajj, Recent advances in crack detection technologies for

structures: a survey of 2022-2023 literature, Front Built Environ 10 (2024)

1321634. https://doi.org/10.3389/FBUIL.2024.1321634/XML/NLM.

[10] Y. Cakmak, S. Safak, M.A. Bayram, I. Pacal, Comprehensive Evaluation

of Machine Learning and ANN Models for Breast Cancer Detection,

Computer and Decision Making: An International Journal 1 (2024) 84–

102. https://doi.org/10.59543/COMDEM.V1I.10349.

[11] Y. Cakmak, I. Pacal, Enhancing Breast Cancer Diagnosis: A Comparative

Evaluation of Machine Learning Algorithms Using the Wisconsin

Dataset, Journal of Operations Intelligence 3 (2025) 175–196.

https://doi.org/10.31181/JOPI31202539.

[12] Pacal Ishak, Cakmak Yigitcan, DIAGNOSTIC ANALYSIS OF

VARIOUS CANCER TYPES WITH ARTIFICIAL INTELLIGENCE,

2025. www.duvaryayinlari.com.

[13] J. Zeynalov, Y. Çakmak, İ. Paçal, Automated Apple Leaf Disease

Classification Using Deep Convolutional Neural Networks: A

Comparative Study on the Plant Village Dataset, Journal of Computer

Science and Digital Technologies 1 (2025) 5–17.

https://doi.org/10.61640/jcsdt.2025.0601.

[14] Y. Qi, Z. Ding, Y. Luo, Z. Ma, A Three-Step Computer Vision-Based

Framework for Concrete Crack Detection and Dimensions Identification,

70

Buildings 2024, Vol. 14, Page 2360 14 (2024) 2360.

https://doi.org/10.3390/BUILDINGS14082360.

[15] J. Liu, H. Sun, H. Liu, Q. Yue, Z. Xu, Y. Jia, S. Wang, Recognition and

quantification of apparent damage to concrete structure based on

computer vision, Measurement 240 (2025) 115635.

https://doi.org/10.1016/J.MEASUREMENT.2024.115635.

[16] I. Pacal, O. Akhan, R.T. Deveci, M. Deveci, NeXtBrain: Combining local

and global feature learning for brain tumor classification, Brain Res 1863

(2025) 149762. https://doi.org/10.1016/J.BRAINRES.2025.149762.

[17] S. Ince, I. Kunduracioglu, B. Bayram, I. Pacal, U-Net-Based Models for

Precise Brain Stroke Segmentation, Chaos Theory and Applications 7

(2025) 50–60. https://doi.org/10.51537/CHAOS.1605529.

[18] B. Bayram, I. Kunduracioglu, S. Ince, I. Pacal, A systematic review of

deep learning in MRI-based cerebral vascular occlusion-based brain

diseases, Neuroscience 568 (2025) 76–94.

https://doi.org/10.1016/J.NEUROSCIENCE.2025.01.020.

[19] I. Pacal, O. Attallah, InceptionNeXt-Transformer: A novel multi-scale

deep feature learning architecture for multimodal breast cancer diagnosis,

Biomed Signal Process Control 110 (2025) 108116.

https://doi.org/10.1016/J.BSPC.2025.108116.

[20] B. Ozdemir, E. Aslan, I. Pacal, Attention Enhanced InceptionNeXt Based

Hybrid Deep Learning Model for Lung Cancer Detection, IEEE Access

(2025). https://doi.org/10.1109/ACCESS.2025.3539122.

[21] M.A.H. Lubbad, I.L. Kurtulus, D. Karaboga, K. Kilic, A. Basturk, B.

Akay, O.U. Nalbantoglu, O.M.D. Yilmaz, M. Ayata, S. Yilmaz, I. Pacal,

A Comparative Analysis of Deep Learning-Based Approaches for

Classifying Dental Implants Decision Support System, Journal of Imaging

Informatics in Medicine 37 (2024) 2559–2580.

https://doi.org/10.1007/S10278-024-01086-X/FIGURES/14.

71

[22] I. Leblebicioglu Kurtulus, M. Lubbad, O.M.D. Yilmaz, K. Kilic, D.

Karaboga, A. Basturk, B. Akay, U. Nalbantoglu, S. Yilmaz, M. Ayata, I.

Pacal, A robust deep learning model for the classification of dental

implant brands, J Stomatol Oral Maxillofac Surg 125 (2024) 101818.

https://doi.org/10.1016/J.JORMAS.2024.101818.

[23] M. Lubbad, D. Karaboga, A. Basturk, B. Akay, U. Nalbantoglu, I. Pacal,

Machine learning applications in detection and diagnosis of urology

cancers: a systematic literature review, Neural Comput Appl 36 (2024)

6355–6379. https://doi.org/10.1007/S00521-023-09375-2/TABLES/6.

[24] P. Panwar, K. Goyal, J.K. Shandilya, Deep Learning-Enabled Health

Assessment for Sustainable Maintenance of Existing Concrete Structures:

A Review, Springer Tracts in Civil Engineering Part F219 (2025) 93–121.

https://doi.org/10.1007/978-981-97-8975-7_3.

[25] R. Kirthiga, S. Elavenil, A survey on crack detection in concrete surface

using image processing and machine learning, Journal of Building

Pathology and Rehabilitation 2023 9:1 9 (2023) 1–25.

https://doi.org/10.1007/S41024-023-00371-6.

[26] V. Pandey, S. Sharan Mishra, A review of image-based deep learning

methods for crack detection, Multimedia Tools and Applications 2025

(2025) 1–43. https://doi.org/10.1007/S11042-025-20729-X.

[27] L.M. Arpitha, R.A. Kumar, Z. Fathima, R. Yeshaswini, G. Dhanyashree,

D. Roshini, Comprehensive Analysis of Machine Learning Techniques

for Crack Detection, Sustainable Civil Infrastructures (2025) 169–192.

https://doi.org/10.1007/978-3-031-83750-0_12.

[28] Navpreet, R.K. Roul, R. Rani, Comparative Analysis of Machine

Learning and Deep Learning Classifiers for Crack Classification, Lecture

Notes in Networks and Systems 1085 LNNS (2024) 191–203.

https://doi.org/10.1007/978-981-97-6726-7_15.

[29] S.G.A. Usha, Cutting-Edge Network Based Concrete Crack Detection and

Analysis for Structural Health Monitoring, Springer Tracts in Civil

72

Engineering Part F219 (2025) 157–175. https://doi.org/10.1007/978-981-

97-8975-7_5.

[30] Y.M. Abbas, H. Alghamdi, Semantic segmentation and deep CNN

learning vision-based crack recognition system for concrete surfaces:

development and implementation, Signal Image Video Process 19 (2025)

1–15. https://doi.org/10.1007/S11760-025-03913-2/FIGURES/18.

[31] S.K. Bussa, N.K. Boppana, Enhanced ResNet50 deep learning algorithm

for classification of crack images in RCC structures, Asian Journal of

Civil Engineering (2025) 1–12. https://doi.org/10.1007/S42107-025-

01396-7/TABLES/3.

[32] Q. Dai, M. Ishfaque, S.U.R. Khan, Y.L. Luo, Y. Lei, B. Zhang, W. Zhou,

Image classification for sub-surface crack identification in concrete dam

based on borehole CCTV images using deep dense hybrid model,

Stochastic Environmental Research and Risk Assessment (2024) 1–18.

https://doi.org/10.1007/S00477-024-02743-X/FIGURES/14.

[33] J. Wang, T. Ueda, P. Wang, Z. Li, Y. Li, Building damage inspection

method using UAV-based data acquisition and deep learning-based crack

detection, J Civ Struct Health Monit 15 (2024) 151–171.

https://doi.org/10.1007/S13349-024-00836-3/FIGURES/11.

[34] Structural Defects Network (SDNET) 2018, (n.d.).

https://www.kaggle.com/datasets/aniruddhsharma/structural-defects-

network-concrete-crack-images (accessed July 1, 2025).

[35] S. Dorafshan, R.J. Thomas, M. Maguire, SDNET2018: An annotated

image dataset for non-contact concrete crack detection using deep

convolutional neural networks, Data Brief 21 (2018) 1664–1668.

https://doi.org/10.1016/J.DIB.2018.11.015.

[36] M. JGMv, Fracture processes of concrete: assessment of material

parameters for fracture models, (1997).

[37] H. Ahmed, A. Zahedi, L.F.M. Sanchez, P.L. Fecteau, Condition

assessment of ASR-affected reinforced concrete columns after nearly 20

73

years in service, Constr Build Mater 347 (2022) 128570.

https://doi.org/10.1016/J.CONBUILDMAT.2022.128570.

[38] M.G. Richardson, Fundamentals of Durable Reinforced Concrete,

Fundamentals of Durable Reinforced Concrete (2023) 1–390.

https://doi.org/10.1201/9781003261414/FUNDAMENTALS-

DURABLE-REINFORCED-CONCRETE-MARK-

RICHARDSON/RIGHTS-AND-PERMISSIONS.

[39] J. Jakubowski, K. Tomczak, Deep learning metasensor for crack-width

assessment and self-healing evaluation in concrete, Constr Build Mater

422 (2024) 135768.

https://doi.org/10.1016/J.CONBUILDMAT.2024.135768.

[40] K.B. Shahrbijari, J.A.O. Barros, I.B. Valente, Experimental study on the

structural performance of concrete beams reinforced with prestressed

GFRP and steel bars, Constr Build Mater 438 (2024) 137031.

https://doi.org/10.1016/J.CONBUILDMAT.2024.137031.

[41] A. Borosnyói, G.L. Balázs, Models for flexural cracking in concrete: the

state of the art, Structural Concrete 6 (2005) 53–62.

https://doi.org/10.1680/STCO.2005.6.2.53.

[42] A. Codina, L. Torres, T. D’Antino, M. Baena, C. Barris, Flexural

performance of RC beams strengthened with HB CFRP plates:

Experimental study and theoretical model based on the intermediate crack

debonding, Constr Build Mater 458 (2025) 139444.

https://doi.org/10.1016/J.CONBUILDMAT.2024.139444.

[43] E.M. Silva, K.A. Harries, P. Ludvig, S. Sólyom, S. Platt, Experimental

investigation of bond and cracking behaviours in gfrp-reinforced concrete

members, Journal of Building Engineering 83 (2024) 108434.

https://doi.org/10.1016/J.JOBE.2024.108434.

[44] V. Picandet, A. Khelidj, H. Bellegou, Crack effects on gas and water

permeability of concretes, Cem Concr Res 39 (2009) 537–547.

https://doi.org/10.1016/J.CEMCONRES.2009.03.009.

74

[45] L. Mengel, H.W. Krauss, D. Lowke, Water transport through cracks in

plain and reinforced concrete – Influencing factors and open questions,

Constr Build Mater 254 (2020) 118990.

https://doi.org/10.1016/J.CONBUILDMAT.2020.118990.

[46] R. Saliger, High Grade Steel in Reinforced Concrete, in: Proceedings of

the 2nd Congress of the International Association for Bridge and

Structural Engineering (IABSE), IABSE Publications, Berlin-Munich,

1936: pp. 293–315.

[47] N.J. Carino, J.R. Clifton, A. Prabhakar, Prediction of Cracking in

Reinforced Concrete Structures, 1995.

[48] B.B. Broms, Crack Width and Crack Spacing In Reinforced Concrete

Members, Journal Proceedings 62 (1965) 1237–1256.

https://doi.org/10.14359/7742.

[49] J. Ferry-Borges, Cracking and deformability of reinforced concrete

beams, Association International Des Ponts et Charpenters 26 (1966).

[50] T.P. Doğan, H. Kalkan, Ö. Aldemir, M. Ayhan, M. Böcek, Ö. Anıl,

Investigation of RC structure damages after February 6, 2023,

Kahramanmaraş earthquake in the Hatay region, Bulletin of Earthquake

Engineering 22 (2024) 5201–5229. https://doi.org/10.1007/S10518-024-

01965-2/TABLES/3.

[51] C. Européen, Eurocode 2: Design of concrete structures—Part 1-1:

General rules and rules for buildings, London: British Standard Institution

(2004) 37.

[52] C.E.N.F. 1992-1-1, Eurocode 2–design of concrete structures: part 1–1:

general rules and rules for buildings, bridges and civil engineering

structures, (2023).

[53] F.I. Du Béton, fib model code for concrete structures 2010, Wiley-vch

Verlag Gmbh, 2013.

[54] F.I. Du Béton, fib model code for concrete structures 2010, Wiley-vch

Verlag Gmbh, 2013.

75

[55] D. Borosnyoi-Crawley, Change of crack widths and anatomy of cracks

within the cover of reinforced concrete tension members, Constr Build

Mater 489 (2025) 142192.

https://doi.org/10.1016/J.CONBUILDMAT.2025.142192.

[56] İ. Feyza, Ç. Sdu, BETONARME BİNALARDA GÖZLENEN

HASARLAR, NEDENLERİ VE ÖNERİLER, International Journal of

Technological Sciences 3 (2011) 62–71.

https://dergipark.org.tr/en/pub/utbd/issue/25986/273729 (accessed July

24, 2025).

[57] A. Mertol, C. Mertol, Deprem Mühendisliği, Depreme Dayankl Yap

Tasarm, Kozan Ofset, Ankara (2002).

[58] C. Beklen, İ.H. Çağatay, Çerçevelerde Dolgu Duvar Modellerinin

İncelenmesi, Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi

Dergisi 24 (2016).

https://dergipark.org.tr/tr/pub/cukurovaummfd/issue/22771/243029

(accessed July 24, 2025).

[59] F. Şermet, E. Ercan, E. Hökelekli, A. Demir, B. Arısoy, The behavior of

concrete-encased steel composite column-beam joints under cyclic

loading, The Structural Design of Tall and Special Buildings 30 (2021)

e1842. https://doi.org/10.1002/TAL.1842.

[60] F. Şermet, E. Ercan, E. Hökeleklı̇, B. Arisoy, Cyclic behavior of

composite column-reinforced concrete beam joints, Sigma Journal of

Engineering and Natural Sciences 38 (2021) 1427–1445.

https://dergipark.org.tr/en/pub/sigma/issue/65286/1007464 (accessed

July 24, 2025).

[61] Z. Wang, P. Wang, K. Liu, P. Wang, Y. Fu, C.-T. Lu, C.C. Aggarwal, J.

Pei, Y. Zhou, A Comprehensive Survey on Data Augmentation, (2024).

https://arxiv.org/abs/2405.09591v3 (accessed May 28, 2025).

[62] A. Mumuni, F. Mumuni, N.K. Gerrar, A Survey of Synthetic Data

Augmentation Methods in Machine Vision, Machine Intelligence

76

Research 2024 21:5 21 (2024) 831–869. https://doi.org/10.1007/S11633-

022-1411-7.

[63] G. Mesnil, Y. Dauphin, X. Glorot, S. Rifai, Y. Bengio, I. Goodfellow, E.

Lavoie, X. Muller, G. Desjardins, D. Warde-Farley, P. Vincent, A.

Courville, J. Bergstra, Unsupervised and Transfer Learning Challenge: a

Deep Learning Approach, 27 (2012) 97–110.

https://proceedings.mlr.press/v27/mesnil12a.html (accessed July 1,

2025).

[64] Y. Bengio, Deep Learning of Representations for Unsupervised and

Transfer Learning, 27 (2012) 17–36.

https://proceedings.mlr.press/v27/bengio12a.html (accessed July 1,

2025).

[65] M. Iman, H.R. Arabnia, K. Rasheed, A Review of Deep Transfer Learning

and Recent Advancements, Technologies 2023, Vol. 11, Page 40 11

(2023) 40. https://doi.org/10.3390/TECHNOLOGIES11020040.

[66] Z. Ren, H. Zhang, T. Huang, D. Yang, W. Zhang, Y. Jiang, Y. Zhou, X.

Zhang, Y. Wang, J. Gupta, S. Pathak, G. Kumar, Deep Learning (CNN)

and Transfer Learning: A Review, J Phys Conf Ser 2273 (2022) 012029.

https://doi.org/10.1088/1742-6596/2273/1/012029.

[67] Z. Zhao, L. Alzubaidi, J. Zhang, Y. Duan, Y. Gu, A comparison review

of transfer learning and self-supervised learning: Definitions,

applications, advantages and limitations, Expert Syst Appl 242 (2024)

122807. https://doi.org/10.1016/J.ESWA.2023.122807.

[68] Deep Learning and Transfer Learning Approaches for Image

Classification, (2019).

https://www.researchgate.net/publication/333666150 (accessed July 1,

2025).

[69] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, C. Liu, A Survey on Deep

Transfer Learning, Lecture Notes in Computer Science (Including

Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

77

Bioinformatics) 11141 LNCS (2018) 270–279.

https://doi.org/10.1007/978-3-030-01424-7_27.

[70] K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image

Recognition, (n.d.). http://image-net.org/challenges/LSVRC/2015/

(accessed July 1, 2025).

[71] G. Huang, Z. Liu, L. van der Maaten, K.Q. Weinberger, Densely

Connected Convolutional Networks, (2018).

http://arxiv.org/abs/1608.06993.

[72] M. Tan, Q. V. Le, EfficientNetV2: Smaller Models and Faster Training,

(2021). http://arxiv.org/abs/2104.00298.

[73] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T.

Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J.

Uszkoreit, N. Houlsby, AN IMAGE IS WORTH 16X16 WORDS:

TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE, (n.d.).

https://github.com/ (accessed July 1, 2025).

[74] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin

Transformer: Hierarchical Vision Transformer using Shifted Windows,

(n.d.). https://github. (accessed July 1, 2025).

[75] H. Bao, L. Dong, S. Piao, F. Wei, BEIT: BERT Pre-Training of Image

Transformers, (n.d.). https://aka.ms/beit (accessed July 1, 2025).

78

