ARTIFICIAL INTEIL[IGEN(gE AND BEYOND:
APPLIED APPROACHES IN

COMPUTER SCIENCE

Editor: Dr. Songiil KARAKUS

DUURA

ARTIFICIAL
INTELLIGENCE AND BEYOND:
APPLIED APPROACHES IN
COMPUTER SCIENCE

Editor
Dr. Songil KARAKUS

DUURAR

Artificial Intelligence and Beyond: Applied Approaches in Computer Science
Editor: Dr. Songiil KARAKUS

Editor in chief: Berkan Balpetek
Cover and Page Design: Duvar Design
Printing: December 2025

Publisher Certificate No: 49837
ISBN: 978-625-8698-72-5

© Duvar Yayinlari

853 Sokak No:13 P10 Kemeralti-Konak/Izmir
Tel: 0232 484 88 68
www.duvaryayinlari.com

duvarkitabevi@gmail.com

The authors bear full responsibility for the sources, opinions, findings, results, tables,
figures, images, and all other content presented in the chapters of this book. They are
solely accountable for any financial or legal obligations that may arise in connection with
national or international copyright regulations. The publisher and editors shall not be
held liable under any circumstances

TABLE OF CONTENTS

Chapter 1 1
Towards Intelligent Modern Agriculture: Transfer Learning-Powered Deep
Learning Models For Comparative Classification Of Lettuce Diseases

Mehmet BURUKANLI, Musa CIBUK, Davut ARI

Chapter 2 14
Prediction of Manufacturing Defects With Machine Learning-Based

Classification Models:Application of Logistic Regression,
Random Forest and Xgboost
Murat BINICI

Chapter 3 41
Web Application Firewall (WAF)
Fikri AGGUN, Raif SIME

Chapter 4 69
Explainable Al Methods:The Example of SHAP and LIME

Bahaddin ERDEM

Chapter 5 85

Applied TinyML for Embedded Intelligence:
A Real-Time HAR Implementation on Arduino Nano 33 BLE Sense
Irfan OKTEN

Chapter 6 102
Outlier Analysis in Machine Learning:

Basic Approaches, Challenges, and Applications

Merve AKKUS

Chapter 7 124
WebAssembly:An Indispensable Component of the Modern Web
Fikri AGGUN, Raif SIME

Chapter 8 141
Machine Learning Regression Models: Methods and Application in

Insurance Cost Prediction

Murat BINICI

Chapter 1

Towards Intelligent Modern Agriculture:
Transfer Learning-Powered Deep Learning Models
For Comparative Classification Of Lettuce Diseases

Mehmet BURUKANLI!
Musa CIBUK?
Davut ARI?

ABSTRACT

Lettuce is among the most popular vegetables produced and consumed
worldwide. Unfortunately, efficient lettuce production is negatively impacted
by environmental pollution and other external physical factors. Early detection
of diseases in lettuce and preventing them from spreading to others are among
the most crucial factors in growing productive and healthy lettuce. In traditional
lettuce cultivation, this process is performed manually, with a high error rate
and difficult control. Using Artificial Intelligence (Al)-based tools is crucial to
overcome these challenges. Al-based models can help increase lettuce
productivity by detecting lettuce diseases at an early stage. Therefore, in this
study, we used 20 deep transfer learning models to detect early-stage lettuce
diseases. Among these models, the AlexNet model achieved the highest
accuracy of 97.88%. Furthermore, the explainability of deep learning
approaches was enhanced by the use of Grad-CAM-based heat maps to
demonstrate whether each model's outputs are based on meaningful regions in
the image. Experimental results support the ability of transfer learning-based
models to detect lettuce diseases at an early stage, thereby significantly
improving production efficiency.

Keywords: Lettuce disease detection, AlexNet model, Decision support
systems, Transfer learning, Grad-CAM

"Lecturer Dr., Bitlis Eren University, Rectorate, Department of Common Courses, mburukanli@beu.edu.tr,
ORCID: 0000-0003-4459-0455.

*Doc. Dr., Bitlis Eren University, Faculty of Engineering and Architecture, Computer Engineering,
mcibuk@beu.edu.tr, ORCID:0000-0001-9028-2221.

3Assist. Prof. Dr., Bitlis Eren University, Faculty of Engineering and Architecture, Computer Engineering,
dari@beu.edu.tr, ORCID:0000-0001-6439-7957.

1. INTRODUCTION

Agricultural production is being negatively impacted worldwide by factors
such as rapid population growth, environmental pollution, and climate change.
To address these challenges, modern technologies such as artificial intelligence,
which enable more efficient and sustainable production, are essential. Adverse
physical conditions, particularly high temperatures and low humidity, lead to
significant yield losses. Consequently, disease detection takes time, and the
spread of disease to healthy lettuce plants is accelerated.(Nafil et al.,
2023)(Rathor, Choudhury, Sharma, Nautiyal, et al., 2025). Deep learning-based
architectures, especially for disease detection, classification, and real-time
object detection, such as YOLO(Upadhyay et al., 2025)(Qadri et al.,
2025)(Wang et al., 2024)(Zhang & Li, 2022) and Convolutional Neural
Networks (CNNs) (Qadri et al., 2025)(Gang et al., 2022)(Rathor, Choudhury,
Sharma, Shah, et al., 2025), are frequently preferred. However, since they
consist of millions of parameters, their training takes some time. For this reason,
it has become possible to come across lightweight architectures in the literature
(Lin et al., 2022). Artificial intelligence-based decision support systems are
frequently preferred in lettuce disease detection, as in almost every field (Qin et
al., 2025)(Rathor, Choudhury, Sharma, Nautiyal, et al., 2025).

This proved that deep learning models could be used in lettuce detection.
Nafil et al. (Nafil et al., 2023) proposed a CNN-based model for the early
detection of lettuce diseases. Using this model, they achieved 94% accuracy.
Kumaratenna et al. (Kumaratenna & Cho, 2024) achieved high performance on
a lettuce dataset using a deep learning-based model. Yang et al. (Yang et al.,
2023) classified lettuce leaves using machine learning-based models such as
Multiple Linear Regression (MLR), K-Nearest Neighbors (KNN), and SVM.
They observed that the SCM model provided satisfactory performance. Rathor
et al. (Rathor, Choudhury, Sharma, Nautiyal, et al., 2025) proposed the Conv-7
DCNN model for the detection of lettuce diseases. They compared this model
with other deep learning models. Their proposed model achieved significant
results. Rathor et al. (Rathor, Choudhury, Sharma, Shah, et al., 2025) proposed
the CNN-WOPNet model for the detection of nutrient deficiencies in lettuce
diseases. They also compared this model with other deep learning models. The
model they proposed has achieved remarkable results. Flores et al. (Flores et al.,
2023) used deep learning-based models to classify lettuce samples. Their
MobileNet+SVM-based hybrid model achieved remarkable results. Pratondo et
al.(Pratondo et al., 2023) classified lettuce leaves using deep learning-based
models. They also achieved significant results with the support of transfer
learning. Upadhyay et al. (Upadhyay et al., 2025) detected plant diseases with

high accuracy using deep learning-based approaches. Zhang et al. (Zhang & Li,
2022) proposed the VOLO-D1 model to classify five different lettuce varieties.
This model achieved very successful results.

In this study, 20 artificial intelligence-based models (AlexNet, VGG16,
VGGI19, GoogleNet, Places365, ResNetl8, ResNet50, ResNetlOl,
Inceptionv3, Inception-ResNet v2, Xception, MobileNetv2, DenseNet201,
ShuffleNet, Darknetl9, Darknet53, SqueezeNet, EfficientNet-BO, NASNet-
Mobile, and NASNet-Large) were used to detect healthy and unhealthy leaves
on lettuce. These models were compared with each other in terms of accuracy,
precision, recall, specificity, and F1 scores. 20 deep learning models were
compared with each other on a lettuce dataset. The results showed that the
AlexNet model outperformed the other models.

2. MATERIALS AND METHODS

2.1. Lettuce Dataset

The Lettuce dataset used in this study consists of two classes: "Healthy" and
"Unhealthy." The "Healthy" class contains 326 image samples, while the
"Unhealthy" class contains 381 image samples (Kaggle, n.d.). Some of these
image samples in the Lettuce dataset are shown in Figure 1.

Healthy

Healthy

-
N - , ' Healthy
. <) 4 -
L
& \ X
o < 5
.
} 4t

Figure 1. Some of these image samples in the Lettuce dataset (Kaggle, n.d.)

2.2. Deep Transfer Learning Models

In this section, we used the following models, AlexNet, VGG16, VGG19,
GoogLeNet, Places365, ResNetl8, ResNet50, ResNetl01, Inceptionv3,
Inception-ResNet v2, Xception, MobileNetv2, DenseNet201, ShuffleNet,
Darknet19, Darknet53, SqueezeNet, EfficientNet-BO, NASNet-Mobile, and
NASNet-Large, which are frequently used and have proven successful in the
literature for lettuce disease detection. These models are particularly successful
in classification and computer vision tasks.

3. RESULTS

3.1. Performance Metrics and Evaluation Methods

In this work, to quantify the performance of each Al-based model, we used
the following performance metrics: Accuracy, Precision, Recall, Specificity,
and F1 score. The formulas for these metrics are given in Equations 1, 2, 3, 4,
and 5, respectively (Burukanli & Ari, 2025)(Burukanli & Cibuk, 2024).

Accuracy = S L — ()
TP+TN+FP+FN
Precision = —— (2)
TP+FP
Recall = —— 3)
TP+FN
Specificity = — 4
pecificity = Tnerp 4)
Fl=2- Precision-Recall (5)

Precision+Recall

3.2. Experimental Setup

In this study, the optimizer was set to stochastic gradient descent with
momentum (SGDM), learning rate to 0.001, epochs to 25, and batch size to 32
during training of all deep learning models. For the experimental computation
of this study, HP-Z840 workstation with 10 cores, 2 x Intel CPU (Xeon
E52687Wv3), 64 GB Ram and Quadro P5000 GPU was used.

3.3. Dataset-Level Heatmap Analysis of the Models

In this study, we used the Grad-CAM heat mapping technique to analyze in
detail the regions of the image where the deep transfer learning models focused
during the training phase and to understand the explainability of the models.
This technique allows us to obtain more information about the reliability of the
models. Visualizing the regions of the image where each model focused is
known to increase the explainability of the methods (Raghavan et al., 2023).
Dataset heatmap of models is given in Figure 2.

GOOGLENET

Figure 2. Dataset heatmap of models

3.4. Experimental Results

As illustrated in Figure 3, the AlexNet model demonstrated a high level of
discriminatory capability by correctly classifying 320 out of 326 samples in the
‘healthy’ class, resulting in only 6 misclassifications. Likewise, the model
accurately identified 372 out of 381 samples in the ‘unhealthy’ class, with
merely 9 instances incorrectly predicted. These outcomes underscore the
robustness and reliability of AlexNet in distinguishing between healthy and
diseased lettuce leaves. As seen in Figure 3, the lettuce dataset consists of two
classes, comprising 326 healthy and 381 unhealthy samples. Due to the VGG16
architecture producing NaN outputs in the Fold-1, Fold-4, and Fold-5 stages,
these sublayers were excluded from the evaluation and were not included in the
corresponding confusion matrix analyses. Similarly, the NaN values observed in
the Fold-3 and Fold-4 stages of the VGG19 architecture indicate that the model
was unable to perform reliable classification in these layers; therefore, these
results were excluded from the confusion matrix analysis. In addition,
DenseNet201 and DarkNet53 exhibit the lowest misclassification rates and the
highest overall performance, while GoogLeNet, EfficientNetBO, NASNet-
Large, and MobileNetV2 maintain stable accuracy levels around 94-95%. In
contrast, Inception-based architectures show noticeably higher false prediction
counts, particularly for the healthy class, indicating reduced generalization
capability. Furthermore, a comparative evaluation of the accuracy performance
of all models assessed on the lettuce dataset is provided in Figure 3.

Transfer Learning Confusion Matrixes Lettuce Images

alexnet (97.88%) vgg16 (38.33%) vgg19 (46.96%) googlenet (94.34%)
healthy 320 - healthy 127 healthy healthy 308 n
unhealthy 9 372 unhealthy - 144 unhealthy unhealthy “ 359
healthy unhealthy healthy unhealthy healthy unhealthy healthy unhealthy
places365 (95.76%) resnet18 (95.05%) resnet50 (95.76%) resnet101 (95.47%)

healthy 310 healthy 308 healthy 313 healthy 308

§=

unhealthy - 367 unhealthy 364 unhealthy 364 unhealthy

A

: healthy unhealthy healthy unhealthy healthy unhealthy healthy unhealthy
: inceptionresnetv2 (93.78%) inceptionv3 (94.48%) xception (94.91%) mobilenetv2 (94.91%)
0

0

n healthy 305 2 healthy 304 22 healthy 307 19 healthy 308 18

4

(3]

gunheallhy 358 unhealthy 17 364 unhealthy 17 364 unheallhy 363

H

1]

| healthy unhealthy healthy unhealthy healthy unhealthy healthy unhealthy
1

¥ densenet201 (96.46%) shufflenet (95.19%) darknet19 (96.75%) darknet53 (97.03%)

healthy 317 9 healthy 315

healthy 312 healthy 3n 15

unhealthy - 370 unhealthy 362 unhealthy 367 unhealthy 10 an
healthy unhealthy healthy unhealthy healthy unhealthy healthy unhealthy
squeezenet (91.80%) efficientnetb0 (94.63% nasnetmobile (93.49%) nasnetlarge (94.91%)

healthy 312 healthy 307 19 healthy 302 24 healthy 307

unhealthy 337 unhealthy 362 unhealthy 359 unhealthy 17 364

healthy unhealthy healthy unhealthy healthy unhealthy healthy unhealthy
<--- Predicted Classes --->

Figure 3. Confusion matrices obtained by selected CNN architectures,
including AlexNet, DarkNet53, DarkNet19, and DenseNet20 etc. on the lettuce
dataset.

The accuracy-loss graph obtained on the lettuce training dataset for each
Fold of the AlexNet model depending on the number of epochs is shown in
Figure 4.

Training Metrics Training Metrics
i R P

o8)
os |/ ost | M
orh f 07 (
= qalll —
g 06],I‘ E 06 v
2 osh Acauracy| | o o Accuracy| |
riad (| Loss 5 Loss
s S 04l |
4
= 04 N = o
o3 03 R
1\l 1
02 \ o2} |
1,
01 VY 01
Y\
0 PN — ° - - -
0 20 40 60 80 o 20 40 60 80 100
Epoch Epoch
alexnet_fold-1 alexnet fold-2
Training Metrics Training Metrics
1 _— L - 1 S L .
o 1 nf VY
M Wv
ost (V| oaf| [
hw ' | N
o7 " o7k {
3086 ', 506 J
-]
2o poaureoy| 8 o5 Rocuracy
g | é 11
]
So4 = 04
|
03| 03|
|
oz |y 0z} |
o1t) 01 1
0 ——e 0 ——eee
o 20 40 &0 80 i« o 20 El 60 80 100
Epoch Epoch
alexnet_fold-3 alexnet_fold-4
Training Metrics
1 A
‘,M
09 [\
Ml
ost| AV
Fy
A
o7 |
Zos
g, Acauracy
g
T o4
03
02
01
0 Bt -
o 20 40 60 80 100

Epoch
alexnet_fold-5

Figure 4. Accuracy-Loss graph for each Fold of the AlexNet model
depending on the number of epochs

As shown in Figure 4, the accuracy value of the AlexNet model increased,
especially after the 40th epoch, and the loss decreased accordingly. This means
that the AlexNet model was quite successful in detecting the lettuce dataset. The
resulting roc curve graph obtained on the lettuce training dataset for each Fold
of the AlexNet model is shown in Figure 5.

. ROC Curves for plant-health - alexnet - Fold 4 - AUC: 1.0000 . ROC Curves for plant-health - alexnet - Fold 3 - AUC: 0.9896

08 oaf

True Positive Rate
o
I

True Positive Rate
o o

heaithy 01 healthy
unhealthy unhealthy
02 04 08 08 1 0 02 04 08 08

False Positive Rate False Positive Rate
, ROC Curves for plant-heaith - alexnet - Fold 2 - AUC: 0.9962 ROC Curves for plant-heaith - alexnet - Fold 1 - AUC: 0.9970
——rt = v

osf

08 08
o7} 07
2 2
8 8
@x 06 X 06
2 -4
2 g
& £
g 04t {g 04
03 03
02 02
01 [healthy 01 [heaithy
unheaithy | | unheatthy |
0 0 -
o 02 04 . 08) 02 04 06 08

False Positive Rate False Positive Rate
5 ROC Curves for plant-health - alexnet - Fold 5 - AUC: 0.9998
09|

08}

o ©
o N

True Positive Rate
o
&

04
03
02}
0.1 healthy |
——— unhealthy
0 " L . T
0 0.2 04 06 08 1

False Positive Rate

Figure 5. The resulting roc curve graph for each Fold of the AlexNet model

As shown in Figure 5, the AUC value obtained by the AlexNet model for
Fold 1 was 0.9970, while the AUC value obtained for Fold 2 was 0.9962.
Similarly, the AUC value obtained by the AlexNet model for Fold 3 was
0.9896, while the AUC value obtained for Fold 2 was 1.000. In addition, the
AUC value obtained by the AlexNet model for Fold 5 was 0.9998. The resulting
average roc curve graph obtained on the lettuce dataset of the AlexNet model is
shown in Figure 6.

Average ROC Curves - plant-health - alexnet

o
o

True Positive Rate
o o
£ o

4
w

I
[N}

healthy
unhealthy

o

o

o

02 0.4 0.6 0.8 1
False Positive Rate

Figure 6. The resulting average roc curve graph of the AlexNet model

As shown in Figure 6, the average ROC curve obtained from the AlexNet
model on the lettuce dataset is nearly equal to 1.000, indicating the model’s
strong robustness and its ability to achieve highly reliable discrimination
between healthy and diseased samples. The confusion matrix produced by the
AlexNet model for the same dataset is presented in Figure 3, further illustrating
its accurate classification capability with minimal false positives and false
negatives. These results collectively demonstrate that AlexNet is one of the
most stable and effective architectures for lettuce disease identification within
the scope of this study. Comparison of all models in terms of accuracy on the

lettuce dataset is given in Figure 7.

‘J*"‘i"‘#“’ww""-ﬂ‘ﬁ""'ﬂﬂﬂﬂﬂﬂwﬁywﬁwﬁfﬂyﬁﬂ

........

Figure 7. Comparison of all models in terms of accuracy on the lettuce data set

As shown in Figure 7, among 20 models on the lettuce dataset, the AlexNet
model achieved the best result with an accuracy rate of 97.8823%, while the
VGG19 model achieved the worst result with an accuracy rate of 78.487%.

Furthermore, the performance rates of the other models were between AlexNet
and VGG19. Detailed comparison and Radar image of 20 deep learning based
models on lettuce dataset is shown in Figure 8.

F1score

1

Specificity

Accuracy

Figure 8. Detailed comparison of 20 deep learning-based models on lettuce
dataset

As shown in Figure 8, 20 transfer learning models were comparatively
evaluated using performance metrics including Accuracy (Acc), F1-score (F1),
Specificity (Spe), Precision (Pre), and Recall (Rec). A detailed examination of
the results reveals that the AlexNet model outperformed all other architectures,
achieving 0.9788 Acc, 0.9771 F1, 0.9841 Spe, 9816 Pre and 0.9726 Rec values.
In contrast, the VGG19 model obtained noticeably weaker performance relative
to the other models, with 0.7849 Acc value, 0.8043 F1 value and 0.6926 Rec

10

value. Additionally, NASNet-Mobile achieved the lowest both Spe values at
0.9373 and Pre values at 0. 9264.

4. CONCLUSION

In this study, 20 deep transfer learning models were used to detect lettuce
leaf diseases. These 20 DL models were compared with each other on a lettuce
dataset. The results obtained indicated that the AlexNet model outperformed the
other models with an accuracy of 97.88%. Additionally, the Grad-CAM
technique was used to identify the significant regions obtained by each deep
learning model on the dataset. Experimental findings indicate that Al-based
models, particularly the AlexNet model, achieve significant results in lettuce
disease detection. In the next study, we plan to perform disease detection using
state-of-the-art DL models on different lettuce datasets.

1"

REFERENCES

Burukanli, M., & Ari, D. (2025). BRAIN CANCER PREDICTION USING
DEEP TRANSFER LEARNING MODELS. ASES IX. INTERNATIONAL
SCIENTIFIC RESEARCH CONGRESS, 184-192.
https://www.researchgate.net/publication/392208728 BRAIN CANCER
_PREDICTION_USING DEEP TRANSFER LEARNING MODELS

Burukanli, M., & Cibuk, M. (2024). Intrusion Detection and Performance
Analysis Using Copula Functions. Bitlis Eren Universitesi Fen Bilimleri
Dergisi, 13(4), 1335-1354. https://doi.org/10.17798/bitlisfen.1561354

Flores, E. J. C., Gonzaga, J. A., Augusto, G. L., Chua, J. A. T., & Gan Lim, L.
A. (2023). Deep Learning-Based Vision System for Water Stress
Classification of Lettuce in Pot Cultivation. 2023 [EEE 15th
International Conference on Humanoid, Nanotechnology, Information
Technology, Communication and Control, Environment, and
Management, HNICEM 2023, 1-6.
https://doi.org/10.1109/HNICEM60674.2023.10589156

Gang, M.-S., Kim, H.-J., & Kim, D.-W. (2022). Estimation of Greenhouse
Lettuce Growth Indices Based on a Two-Stage CNN Using RGB-D
Images. Sensors, 22(15), 5499. https://doi.org/10.3390/522155499

Kaggle. (n.d.). Lettuce NPK dataset. Retrieved December 2, 2025, from
https://www.kaggle.com/datasets/baronn/lettuce-npk-dataset/data

Kumaratenna, K. P. S., & Cho, Y. Y. (2024). Detection of Tipburn Stress on
Lettuce Grown in a Plant Factory using Artificial Intelligence (Al)
Models. Horticultural Science and Technology, 42(6), 711-724.
https://doi.org/10.7235/HORT.20240059

Lin, Z., Fu, R., Ren, G., Zhong, R., Ying, Y., & Lin, T. (2022). Automatic
monitoring of lettuce fresh weight by multi-modal fusion based deep
learning. Frontiers in Plant Science, 13.
https://doi.org/10.3389/pls.2022.980581

Nafil, K., Saufi, A., Hdili, O., Faqihi, S., Maghraoui, H., Kobbane, A., &
Koutbi, M. El. (2023). Lettuce Leaf Disease Protection and Detection
Using Image Processing Technique. Proceedings - 10th International
Conference on Wireless Networks and Mobile Communications,
WINCOM 2023, 1-6.
https://doi.org/10.1109/WINCOM59760.2023.10323013

Pratondo, A., Novianty, A., & Fauzi, H. (2023). Classification of Lettuce Leaf
Variants Using Transfer Learning. Proceedings - 2023 3rd International
Conference on Electronic and Electrical Engineering and Intelligent
System: Responsible Technology for Sustainable Humanity, ICE3IS 2023,

12

August, 349-353. https://doi.org/10.1109/ICE31S59323.2023.10335452

Qadri, S. A. A., Huang, N.-F., Wani, T. M., & Bhat, S. A. (2025). Advances
and Challenges in Computer Vision for Image-Based Plant Disease
Detection: A Comprehensive Survey of Machine and Deep Learning
Approaches. IEEE Transactions on Automation Science and Engineering,
22,2639-2670. https://doi.org/10.1109/TASE.2024.3382731

Qin, Y. M., Tu, Y. H., Li, T., Ni, Y., Wang, R. F., & Wang, H. (2025). Deep
Learning for Sustainable Agriculture: A Systematic Review on
Applications in Lettuce Cultivation. Sustainability (Switzerland), 17(7).
https://doi.org/10.3390/su17073190

Raghavan, K., B, S., & V, K. (2023). Attention guided grad-CAM: an
improved explainable artificial intelligence model for infrared breast
cancer detection. Multimedia Tools and Applications, 83(19), 57551—
57578. https://doi.org/10.1007/s11042-023-17776-7

Rathor, A. S., Choudhury, S., Sharma, A., Nautiyal, P., & Shah, G. (2025). A
Novel Deep Convolutional Neural Network for Efficient Classification of
Lettuce Diseases. Procedia Computer Science, 258, 755-764.
https://doi.org/10.1016/j.procs.2025.04.308

Rathor, A. S., Choudhury, S., Sharma, A., Shah, G., & Nautiyal, P. (2025). A
mathematical modelling-based interpretable deep learning approach for
lettuce disease detection in extreme environmental conditions. Physics
and Chemistry of the Earth, 141(August).
https://doi.org/10.1016/j.pce.2025.104080

Upadhyay, A., Chandel, N. S., Singh, K. P., Chakraborty, S. K., Nandede, B.
M., Kumar, M., Subeesh, A., Upendar, K., Salem, A., & Elbeltagi, A.
(2025). Deep learning and computer vision in plant disease detection: a
comprehensive review of techniques, models, and trends in precision
agriculture. Artificial Intelligence Review, 58(3), 92.
https://doi.org/10.1007/s10462-024-11100-x

Wang, Y., Wu, M., & Shen, Y. (2024). Identifying the Growth Status of
Hydroponic Lettuce Based on YOLO-EfficientNet. Plants, 13(3), 372.
https://doi.org/10.3390/plants13030372

Yang, R., Wu, Z., Fang, W., Zhang, H., Wang, W., Fu, L., Majeed, Y., Li, R., &
Cui, Y. (2023). Detection of abnormal hydroponic lettuce leaves based on
image processing and machine learning. Information Processing in
Agriculture, 10(1), 1-10. https://doi.org/10.1016/j.inpa.2021.11.001

Zhang, P., & Li, D. (2022). YOLO-VOLO-LS: A Novel Method for Variety
Identification of Early Lettuce Seedlings. Frontiers in Plant Science, 13.
https://doi.org/10.3389/fpls.2022.806878

13

Chapter 2

Prediction of Manufacturing Defects With Machine
Learning-Based Classification Models:

Application of Logistic Regression,

Random Forest and Xgboost

Murat BINiCi!

ABSTRACT

This chapter investigates the prediction of manufacturing defects using machine
learning—based classification models on a multivariate, synthetic dataset representing
daily operational performance in a smart manufacturing context. The dataset
comprises 3,240 observations and 17 numerical variables, including indicators related
to production volume and cost, supplier quality, delivery delays, maintenance and
downtime, inventory performance, labor productivity, energy consumption, additive
processes, and a binary target variable (DefectStatus) indicating high- versus low-
defect production days. After a structured preprocessing phase involving missing data
checks, feature scaling where appropriate, and a two-level strategy for handling
severe class imbalance (SMOTE-based oversampling and class weighting), three
models—Logistic Regression (LR), Random Forest (RF), and XGBoost—are trained
and evaluated. Model performance is assessed on a stratified train—test split using
accuracy, precision, recall, F1-score, ROC-AUC, confusion matrices, and feature
importance analyses. The results show that tree-based ensemble models outperform
LR, with RF achieving the highest accuracy (0.94) and recall for the high-defect class,
whereas XGBoost yields the best ROC-AUC, indicating superior discriminative
power. Feature importance rankings consistently highlight maintenance-related
indicators, defect rate, quality score, and production volume as key drivers of defect
risk. The chapter concludes that ML-based classification, particularly with ensemble
methods, provides an effective decision-support framework for early defect detection
and quality improvement in manufacturing systems.

Keywords: Machine learning—based classification, Manufacturing defects, Smart
manufacturing, Logistic Regression, Random Forest, XGBoost

! Assist. Prof. Dr., Bitlis Eren University, Faculty of Engineering and Architecture, Department of Mechanical
Engineering, mbinici@beu.edu.tr, ORCID: 0000-0003-1814-438X.

14

1. INTRODUCTION

In the contemporary manufacturing sector, where global competition is
intensifying, product quality and process reliability are of strategic importance
for the sustainability of enterprises. Defects occurring in production systems
result in a wide range of direct and indirect costs, including rework, scrap,
delivery delays, warranty expenses, and customer dissatisfaction. Accordingly,
rather than detecting defects only at the end of the production line, it has
become increasingly critical to predict and prevent them at earlier stages. In this
regard, artificial intelligence and machine learning approaches that rely on the
effective analysis of multidimensional data collected from manufacturing
processes are emerging as more flexible, scalable, and powerful predictive tools
than classical statistical methods (Tercan and Meisen, 2022).

With the advent of Industry 4.0 and the smart manufacturing paradigm, vast
amounts of data are being generated from production lines through sensors, the
Internet of Things (IoT), and cyber-physical systems. These datasets
simultaneously encompass multiple dimensions such as production volume,
supplier quality, maintenance activities, energy consumption, inventory
movements, labor productivity, and quality control results. Within this complex
data structure, the relationships between process parameters and quality
outcomes are not expected to be linear, stable, or simple. The literature,
particularly in the domain of smart manufacturing, shows that Machine
Learning (ML)-based quality prediction models are widely employed to handle
such high-dimensional and complex datasets (Deokar et al., 2025).

Recent systematic reviews have shown that the range of ML algorithms used
for quality assurance and defect prediction in manufacturing has expanded;
however, tree-based ensemble methods and logistic regression stand out in a
substantial portion of applications. In particular, tree-based approaches such as
Random Forest (RF) and Extreme Gradient Boosting (XGBoost) are reported to
be widely preferred in manufacturing quality and defect classification problems,
owing to their ability to capture complex, nonlinear relationships, handle
heterogeneous types of variables (continuous, integer, ratio, etc.), and reveal
variable importance scores (Kausik et al., 2025). Logistic Regression (LR), on
the other hand, is commonly employed as a comparison (baseline) model in
many studies due to the interpretability of its coefficients and its relatively low
computational cost (Tercan and Meisen, 2022).

However, the class imbalance problem, which is frequently encountered in
production and maintenance data, emerges as one of the most significant
methodological challenges in defect prediction studies. In real manufacturing
environments, defective products typically occur as “rare events” whose

15

proportion within total production is relatively low. This situation leads to a
pronounced imbalance between majority and minority classes in the dataset,
increasing the risk that conventional classification algorithms will be biased
toward the majority class and overlook defective instances in the minority class,
which are often of primary interest. Recent systematic reviews focusing on the
manufacturing domain indicate that numerous approaches have been proposed
to address class imbalance at the data level (resampling, synthetic data
generation, etc.) and at the algorithmic level (class weighting, cost-sensitive
learning, etc.) (de Giorgio et al., 2023).

In this book chapter, a ML-based classification framework is proposed to
predict whether the level of defects occurring on the production line will be
“high” or “low,” using a multivariate manufacturing dataset that reflects daily
production performance. The dataset employed in the study, the Predicting
Manufacturing Defects Dataset, includes indicators covering a wide range of
processes, such as production volume and cost, supplier quality, delivery
delays, maintenance durations, downtime ratio, inventory indicators, labor
productivity, occupational safety incidents, energy consumption, and additive
production, and thus offers a holistic view of manufacturing operations (El
Kharoua, 2024). The target variable, DefectStatus, represents in binary form
whether the production output for a given day is highly defective (1) or has a
low level of defects (0).

This study examines three different classification models: LR, RF, and
XGBoost. LR, as a probability-based and interpretable model that relies on the
assumption of linear separability, makes it possible to investigate the direction
and magnitude of the effects of production parameters on defect probability.
RF, an ensemble method obtained by training a large number of decision trees
on random subsamples of observations and subsets of features, is able to capture
complex interactions and nonlinear relationships among variables. XGBoost, in
turn, is an optimized representative of the gradient-boosted decision tree family
and has come to the forefront in industrial applications in recent years due to
both its predictive performance and its sensitivity to hyperparameter tuning
(Chen et al., 2024).

The main objective of this chapter is to present a comprehensive approach to
predicting defect risk in production lines by comparatively evaluating Al-based
decision tree models and the logistic regression method on the aforementioned
dataset. Within this framework, the study aims to (i) analyze the relationships
between production, procurement, maintenance, inventory, energy, and labor
indicators and defect status; (ii) examine the impact of the class imbalance
problem on model performance; (iii) compare different classification algorithms

16

not only in terms of the accuracy measure, but also using metrics such as F1-
score, recall, specificity, and ROC-AUC; and (iv) investigate variable
importance levels, thereby developing an early warning and quality prediction
framework that can support decision-makers in manufacturing processes.

In this regard, the study aims to make a twofold contribution from both
theoretical and practical perspectives. On the theoretical plane, it introduces a
classification framework that follows current approaches in the manufacturing
quality prediction literature and is sensitive to class imbalance and model
evaluation metrics. On the practical plane, it contributes to the development of
data-driven decision support systems by proposing a modeling approach that,
drawing on operational indicators commonly recorded in manufacturing
environments, anticipates defect risk and points to potential areas for
improvement.

2. LITERATURE REVIEW

The use of ML technologies in quality assurance and defect control in the
manufacturing sector has become increasingly critical as the volume and variety
of data grow. Existing systematic studies show that process parameters and
quality outcomes derived from production data are analyzed using ML models,
thereby achieving higher prediction accuracy and greater process flexibility
compared to traditional methods (Kausik et al., 2025). In particular, in studies
that make use of sensor data, IoT systems, and large-scale datasets, ML
methods emerge as effective tools for in-process quality control and early
warning systems (Ordek et al., 2024). However, data preparation workflows,
model interpretability, and integration costs are among the challenges
encountered in this field (Antosz et al., 2024).

Tree-based models and ensemble methods are widely preferred for quality
prediction in manufacturing processes. In this context, the RF algorithm can
effectively capture nonlinear relationships and interactions among variables by
training a large number of tree structures on randomly sampled subsets of
observations and features. High performance of RF has been reported in areas
such as additive production, automotive components, and electronics
manufacturing lines (Kausik et al., 2025). Another advantage of these methods
is that, through feature importance measures, they provide an opportunity to
interpret from an engineering standpoint which production parameters have a
greater impact on quality. On the other hand, if the parameter settings (e.g.,
number of trees, depth) are not properly tuned, limitations such as the risk of
overfitting and a tendency to favor the majority class in datasets with class
imbalance may arise.

17

LR is one of the fundamental methods that has been used for many years in
classification problems and is also preferred in the context of manufacturing
quality due to the interpretability of its results (Tercan and Meisen, 2022; Md et
al., 2022). This method makes it possible to directly assess, through the logistic
function, the effect of a given production variable on defect probability
(Borucka and Grzelak, 2019). In the literature, LR is typically employed as an
initial or baseline model and subsequently compared, in terms of performance,
with more complex models (Tercan and Meisen, 2022). However, the linear
separability assumption of LR can be a limitation in capturing nonlinear
interactions among variables; therefore, its performance may remain relatively
lower in multivariate and nonlinear manufacturing processes (Md et al., 2022).

XGBoost is a tree-based ensemble algorithm that has become particularly
prominent in industrial data analytics and quality prediction studies. In a study
conducted for failure prediction on a production line using XGBoost, high
predictive accuracy was achieved (Mehregan et al., 2025). The advantages of
this method include the possibility of hyperparameter optimization, its
compatibility with large datasets, and its adaptability to irregular class
distributions through settings such as class weights. However, to ensure strong
performance, its hyperparameters must be selected carefully and overfitting
must be avoided.

One frequently encountered issue in manufacturing quality data is that the
number of defective products is relatively low compared to total production,
which leads to class imbalance in the dataset. In the literature, two main
approaches are highlighted to address this problem: data-level resampling
(oversampling, undersampling, SMOTE) and algorithm-level strategies such as
assigning class weights or employing cost-sensitive learning (He and Garcia,
2009). Moreover, since using only accuracy as a performance measure can be
misleading in imbalanced settings, it is recommended to adopt more informative
metrics such as Fl-score, precision—recall, and ROC-AUC (Ogrizovi¢ et al.,
2024). In this context, addressing class imbalance in the modeling phase of the
present study is in line with good practice recommendations in the literature.

In summary, the literature indicates that ML methods are widely employed
for quality prediction and early fault detection in manufacturing processes, and
that tree-based methods and XGBoost in particular have demonstrated strong
effectiveness. However, studies that use daily production metrics with
multivariate inputs and class-imbalanced datasets to comparatively evaluate LR,
RF, and XGBoost within a unified framework remain limited. Therefore,
assessing these models on the same dataset, deriving variable importance levels,

18

and explicitly accounting for class imbalance has the potential to provide an
original contribution.

3. DATASET DESCRIPTION

A correct understanding of the structure of the dataset is critically important
for the subsequent modeling process, performance evaluation, and variable
importance analysis. In addition, factors such as the relationship of the variables
to the underlying production processes, the class distribution, and the nature of
the imbalance play a decisive role in the implementation of ML models. For this
reason, the general structure and key characteristics of the dataset, in this
section, are first described, and then each variable is examined in detail.

3.1. Data Source and Type

The dataset used in this study is a comprehensive synthetic data set that
reflects daily operational performance, quality indicators, and supply chain
conditions in manufacturing processes. It was specifically constructed for the
purpose of developing an ML-based model for the classification of production
line defects (El Kharoua, 2024). Accordingly, it was designed by taking into
account the variable structures, inter-variable relationships, and defect
formation dynamics observed in real manufacturing environments, while being
simulated in such a way that it does not contain any sensitive information
belonging to a commercial organization or an actual production facility. This
property makes the dataset both safe in terms of ethical use and flexible for
academic research.

The dataset consists of a total of 3,240 observations and 17 variables. Each
row in the dataset represents the operational performance for a single
production day. Variables such as production volume, cost, energy
consumption, maintenance activities, labor productivity, supply chain
performance, and quality control measures are summarized and recorded on a
daily basis. Since the dataset does not contain any information on product
categorization or product variety, the analysis is conducted under the
assumption of a homogeneous production line manufacturing a single product
type. This approach allows the defect prediction performance of the model to be
examined solely on the basis of process-specific metrics.

The synthetic nature of the dataset provides several methodological
advantages for the study. First, it allows defect cases that are rare in real
manufacturing environments but critical from a modeling perspective to be
incorporated into the data in a more balanced manner. Second, it can be used in
open-access research without raising data confidentiality concerns and is

19

suitable for educational and training applications. However, the main limitation
of synthetic datasets is that the relationships among variables may not fully
reflect the complexity observed in real production environments. Therefore,
while this dataset is well suited for model development, method comparison,
and academic teaching purposes, caution is required when transferring the
model outputs directly to the operational strategies of an actual factory.

In conclusion, by offering a wide range of metrics related to manufacturing
processes and capturing day-to-day operational behavior, the dataset provides
an appropriate and methodologically coherent basis for this study, which
focuses on classifying production line defects using ML methods.

3.2. Variables

In the dataset used in this study, the variables are grouped under thematic
categories in order to better reflect the multifaceted nature of manufacturing
processes. First, the production metrics category covers daily production output
and cost components. In this context, the variable ProductionVolume represents
the number of units produced per day, while ProductionCost denotes the total
cost of the corresponding production activity. Together, these two indicators
make it possible to analyze how production intensity and cost pressure influence
quality.

Supply chain and logistics indicators also occupy an important place in the
dataset. SupplierQuality reflects the quality of inputs provided by suppliers
using a percentage-based score, whereas DeliveryDelay indicates the duration of
delays in supply processes. Considering the impact of supplier quality and
logistical disruptions on the reliability of production outputs, these variables are
critical for the contribution they make to the model.

The quality control category includes two key variables that relate directly to
the quality performance observed at the end of the production process.
DefectRate quantitatively represents the number of defects per thousand units,
while QualityScore expresses the overall quality level of production as a
percentage score. These variables both summarize the quality outcome of the
process and can be regarded as important independent variables for defect
prediction models.

Variables related to maintenance and downtime include MaintenanceHours
and DowntimePercentage. MaintenanceHours, which indicates the weekly
duration of maintenance activities, and DowntimePercentage, which reflects the
proportion of time the production line is not operational, provide important
operational indicators of equipment efficiency and continuity. Since increases in

20

these values are typically associated with declines in quality performance, they
make meaningful contributions to the model.

Among the variables related to inventory management are
InventoryTurnover and StockoutRate. InventoryTurnover, which represents
stock turnover, indicates the efficiency of the firm’s inventory management,
while StockoutRate reflects the risk of production interruptions through the rate
of stock depletion. These two indicators are important for examining how
disruptions in the flow of raw materials may indirectly affect quality
performance.

Variables related to labor productivity and safety are also included in the
dataset. WorkerProductivity expresses workers’ productivity levels in
percentage terms, whereas Safetylncidents indicates the number of safety
incidents that occur within a given month. Considering that worker motivation,
safety, and productivity are closely associated with quality outcomes, the
inclusion of these indicators in the model is important.

Variables representing energy consumption and energy efficiency include
EnergyConsumption and EnergyEfficiency. EnergyConsumption, which
expresses daily energy use in kilowatt-hours, and FEnergyEfficiency, which
indicates the level of efficiency in energy utilization, are incorporated into the
model based on the assumption that overall line efficiency and fluctuations in
machine performance may affect quality.

Finally, the wvariables related to one of the modern manufacturing
technologies, namely additive manufacturing processes, AdditiveProcessTime
and AdditiveMaterialCost, represent, respectively, the duration of the additive
manufacturing process and the unit cost of the additive material used. These
parameters are important for assessing how innovative production techniques
influence defect formation.

Beyond all these categories, the main target variable of the study,
DefectStatus, enables the classification of the production output as low-defect
(0) or high-defect (1). This variable constitutes the primary outcome of the
modeling process in relation to all other indicators in the dataset.

The dataset used in this study consists of a total of 3,240 observations and 17
variables. This size is sufficient both to provide an appropriate sample for
training machine learning models and to allow for an analytical examination of
the multidimensional structure of manufacturing processes.

All variables in the dataset are numerical, and there are no categorical
variables. A subset of the wvariables are of integer type, namely
ProductionVolume, DeliveryDelay, MaintenanceHours, SafetyIncidents, and the
target variable in the classification process, DefectStatus. All remaining

21

variables are continuous numerical (float) in nature and cover a wide range of
measurements related to the production process, such as production cost, quality
indicators, inventory performance, energy usage, and additive manufacturing
times. Specifically, ProductionCost, SupplierQuality, DefectRate, QualityScore,
DowntimePercentage, InventoryTurnover, StockoutRate, WorkerProductivity,
EnergyConsumption, EnergyEfficiency, AdditiveProcessTime, and
AdditiveMaterialCost fall into this group.

The fact that the entire dataset consists of quantitative variables allows it to
be analyzed directly by both LR and tree-based classification models, and it also
substantially simplifies the preprocessing stage, as no encoding procedures are
required. Researchers who wish to access detailed descriptive statistics for all
variables in the dataset can obtain this information via the Kaggle platform
(Kaggle Dataset: Predicting Manufacturing Defects Dataset).

3.3. Class Imbalance

In the dataset, the class distribution of the target variable DefectStatus is
observed to be highly imbalanced; the high-defect class accounts for
approximately 84% of all instances, whereas the low-defect class constitutes
only about 16%. Such a distribution is referred to in the literature as class
imbalance and represents a fundamental issue that directly affects the
performance of ML-based classification models. Since the number of defective
products is typically low in real manufacturing data, it is likely that the model
will develop a bias in favor of the majority class and fail to adequately learn the
minority class (de Giorgio et al., 2023).

Class imbalance plays a critical role particularly in applications such as
production quality control and defect prediction. Recent reviews of application
domains show that imbalanced learning is still a major obstacle in “real-world”
data and is explicitly addressed in studies on production line failure or defect
detection (Gao et al., 2025). This situation indicates that evaluating models
solely on the basis of the accuracy metric can be misleading; therefore, it is
recommended to use performance measures such as Fl-score, precision—recall
curves, and ROC-AUC (Gao et al., 2025).

To address class imbalance, the literature highlights two main approaches:
data-level resampling techniques (oversampling, undersampling, SMOTE, etc.)
and algorithm-level strategies such as assigning class weights or adopting cost-
sensitive learning. In this regard, Chen et al. (2024) note that, in addition to
data-level and algorithm-level solutions, hybrid methods have also become
increasingly widespread. In the manufacturing context, Giorgio et al. (2023)
show that, in fault/defect detection problems with imbalanced data where the

22

error/defect class is rare, resampling procedures and class weight adjustments
are commonly employed.

In this study as well, appropriately addressing class imbalance prior to the
modeling stage will not only improve the performance of the model but also
enhance the reliability of the inferences drawn for quality control applications.
In this way, it will become possible to predict in advance the days with a high
defect risk on the production line and to establish a more robust foundation for
decision-support systems.

4. METHODOLOGY

This section presents the methodological framework of the ML approach
applied to classify production line defects. The methodology of the study covers
the data preprocessing steps carried out to make the dataset suitable for analysis,
the theoretical foundations of the LR, RF, and XGBoost models used in the
classification process, and finally the criteria selected to evaluate model
performance. Considering the multidimensional and imbalanced nature of
production data, planning the methodological procedure in a systematic and
coherent manner is of great importance both for the reliability of the results
obtained from the models and for the validity of the implications for industrial
applications. For this reason, the methodology section explains in detail both the
data processing procedures and the analytical logic of the selected algorithms.

4.1. Pre-Processing

The ability of ML models to produce reliable and generalizable results
depends on subjecting the dataset to appropriate preprocessing prior to analysis.
Since multidimensional data structures derived from manufacturing processes
may contain issues such as differences in scale, unequal distributions across
variables, and class imbalance, a systematic preprocessing procedure was
applied before modeling. This section discusses key steps such as checking for
missing data, scaling, addressing class imbalance, and splitting the dataset into
training and test sets.

4.1.1. Missing data analysis

The first step in the preprocessing procedure is to check the dataset for
missing or erroneous records. Missing data can reduce the learning capacity of
the model and may directly introduce bias, particularly in statistical methods
such as LR. Although the dataset used in this study contains no missing values
because it was generated synthetically, missingness is quite common in real

23

manufacturing data. For this reason, missing data analysis is a critical step for
preserving methodological integrity.

4.1.2. Feature scaling

Differences in the scales on which the variables in the dataset are measured
can adversely affect coefficient estimates and convergence behavior,
particularly in LR and other gradient-based methods. For this reason, variables
with wide ranges, such as production volume (100—1000), cost (5,000-20,000),
and energy consumption (1,000-5,000 kWh), may take much larger values than
percentage- or ratio-based metrics, potentially destabilizing weight updates in
the models. In this study, standard scaling (StandardScaler) was applied to
ensure stable behavior of LR and to allow for consistent comparison across
models. For the tree-based methods, no scaling was applied, as they are more
flexible and less sensitive to differences in feature scales.

4.1.3. Addressing class imbalance

Given the substantial class imbalance in the dataset (approximately 84%
high-defect vs. 16% low-defect), it is necessary to apply methods that increase
the model’s sensitivity to the minority class. Imbalanced data structures tend to
induce a bias toward the majority class in ML models and reduce the
classification performance for the minority class (Chen et al., 2024; de Giorgio
et al., 2023). Therefore, two complementary approaches were adopted in this
study:

(a) Data-level approach: By applying SMOTE (Synthetic Minority Over-
sampling Technique), synthetic samples were added to the minority class and
the class distribution was balanced. This method aims to enable the model to
learn the low-defect cases, which are rarely observed in manufacturing
processes, more effectively.

(b) Algorithm-level approach: In the LR, RF and XGBoost models, the
class_weight parameter was set to "balanced", thereby forcing the model to
assign greater weight to the misclassification cost of the minority class.

This two-stage strategy can enhance the model’s sensitivity in predicting
production line defects.

4.1.4. Splitting the dataset into training and test sets

The dataset was split into 80% training and 20% test in order to evaluate the
generalization capacity of the models. The training set represents the stage in
which the model parameters are learned, while the test set is used to objectively
assess model performance on previously unseen data. Taking class imbalance

24

into account, a stratified split technique was applied so that the class proportions
were preserved in both the training and test subsets. This approach eliminates
the risk that the minority class might be entirely absent from either the training
or the test set.

4.2. Applied Machine Learning Models

In this study, three different ML-based classification models were employed
for classifying production line defects: LR, RF, and XGBoost. This section
briefly explains the basic assumptions, working principles, and the specific role
of each model within the context of the present study.

4.2.1. Logistic regression

LR is a statistically grounded method that has long been used to solve binary
classification problems and offers a high degree of interpretability. The model
expresses the relationship between the independent variables and the target
variable in probabilistic terms through the logistic (sigmoid) function, and this
feature allows it to provide directly interpretable outputs for decision-makers in
risk-oriented processes such as production defect prediction (Hosmer et al.,
2013). In addition, the coefficient-based structure of LR makes it possible to
directly infer from the model the direction and magnitude of the effects of
variables such as production volume, quality scores, and supplier quality on
defect probability.

One of the main advantages of LR is that its model parameters are directly
interpretable and that the effect of each variable on the target can be assessed in
terms of log-odds. This property contributes to the frequent use of LR as a
baseline model in decision-oriented domains such as quality engineering and
production analytics. Indeed, the literature commonly reports LR as a reference
model both for evaluating classification performance and for benchmarking
against more complex models (Kovacs et al., 2024).

In this study, the LR model was applied to classify defects occurring in the
production process (0 = low defect, 1 = high defect). The model was
implemented using a Pipeline structure that incorporates the data preprocessing
steps. The training of the model consists of the following steps:

(a) Data splitting: After separating the target variable DefectStatus, the
dataset was split into training and test sets in an 80-20 ratio, and a stratified
split procedure was employed to preserve the class distribution.

(b) Scaling: Since the LR model can be affected by the scale of the
features, all independent variables were standardized using StandardScaler.

25

(c) Handling class imbalance: Since the high-defect class is dominant in
the dataset, two strategies were applied. The first is a model-level adjustment
using class_weight = "balanced", and the second is a data-level procedure using
SMOTE. Both approaches were integrated into the Pipeline.

(d) Model specification: The model was defined with the following
parameters: class weight="balanced", max_iter=1000, solver="Iliblinear",
random_state=42.

(e) Pipeline structure: The Pipeline was composed of three components:
StandardScaler, SMOTE, and LR. This configuration ensured a clean workflow
and prevented data leakage.

(f) Training the model: The Pipeline was fitted on the training data to
construct the model. Subsequently, predictions were generated on the test data;
however, this section reports only the model implementation procedure, while
the performance evaluation is presented in the following sections.

4.2.2. Random forest classifier

RF is an ensemble ML method based on decision trees. The core idea is to
build a large number of decision trees on different subsamples of the training
data and then aggregate their predicted classes using majority voting for the
classification task. In this way, the overfitting problem to which a single deep
tree is prone is substantially reduced, and the model’s generalization
performance is improved (Breiman, 2001). RF reduces correlation among trees
by using both random sampling of observations (bootstrap sampling) and
random subsets of features at each node; thus, instead of individual trees with
high variance, a more balanced and stable ensemble model is obtained
(Breiman, 2001).

One of the main reasons why RF models are widely used in manufacturing
and quality control is their success in capturing nonlinear relationships and
interactions among variables. Recent studies show that RF outperforms
traditional statistical methods in terms of predictive performance, owing to its
ability to process high-dimensional sensor data and to achieve high accuracy in
predicting quality outcomes in complex production processes (Kausik et al.,
2025; Antosz, 2024). In addition, despite its relatively “black-box” nature, RF
offers a practically useful level of transparency for decision-support systems by
providing feature importance scores that indicate which inputs contribute more
strongly to the model output (Scornet, 2021).

In this study, the RF classifier was applied to classify the target variable
DefectStatus (0 = low defect, 1 = high defect) using the large set of operational
variables measured on a daily basis in the production process. As in the LR

26

model, the target variable was first separated from the dataset, and all remaining
variables were defined as the feature set (X). To preserve the class distribution,
the dataset was then split into training and test subsets in an 80—20 ratio using a
stratified structure. In this way, the imbalanced class structure was represented
in a similar manner in both the training and test sets, and a fair basis for
comparison across models was established.

Since RF is a tree-based method, it is not sensitive to feature scales unlike
LR; therefore, no additional scaling step was applied for this model. However,
the class imbalance present in the dataset (with the high-defect class being
dominant) was taken into account, and a two-level strategy was adopted to
mitigate this issue. First, SMOTE was applied to the training data to
synthetically increase the number of minority-class observations, thereby
enabling RF to learn the underrepresented class more effectively. Second, the
classifier’s class weight parameter was set to "balanced", ensuring that the loss
function assigns greater weight to the minority class. The combined use of these
two approaches is consistent with good practice recommendations in the
literature for imbalanced datasets (Khan et al., 2024).

The RF model was implemented in Python using the
RandomForestClassifier class from the scikit-learn library. To enhance model
stability, the n_estimators parameter was set to a relatively high value (300
trees), while the random_state parameter was fixed to ensure reproducibility of
the results. In addition, by setting n jobs = -I, the training process was
executed in parallel, taking advantage of multi-core processor architectures. As
in the LR model, the specification and training of the RF model were defined
within a Pipeline, thereby ensuring that SMOTE was applied only to the training
data and preventing data leakage.

After the training procedure was completed, the RF model generated
predictions on the test set, and performance metrics such as accuracy, precision,
recall, Fl-score, and ROC-AUC were computed based on these predictions.
However, this subsection presents only the theoretical framework and
implementation steps of the RF model; the resulting performance scores are
discussed in Section 5, Results and Discussion, where they are comparatively
evaluated together with the other models (LR and XGBoost) in order to
preserve the overall coherence of the study.

4.2.3. XGBoost classifier

XGBoost is an optimized, high-performance implementation of a tree-based
gradient boosting algorithm. Its core working principle is to build weak learners
sequentially in such a way that they minimize the residual error, focusing on the

27

parts of the data that previous models failed to explain. Thanks to
hyperparameters such as learning rate, tree depth, subsampling, and strong
regularization mechanisms, the model both keeps overfitting under control and
delivers high predictive performance on large and complex datasets (Chen and
Guestrin, 2016).

In recent years, XGBoost has come to be regarded as one of the leading
gradient boosting methods for critical applications such as quality classification,
fault detection, and anomaly detection in manufacturing processes. Various
studies report that XGBoost models optimized for anomaly detection on
production lines achieve high accuracy, precision, and F1-scores, and that they
outperform traditional methods as well as some other ensemble approaches
(Dalal et al., 2024; Nilsson and Kyrk, 2025). Similarly, in complex
manufacturing environments such as printed circuit board production,
XGBoost-based models have been shown to be effective in defect detection
using high-dimensional data generated by the production process (Prasad-Rao et
al., 2023). Owing to its capacity to handle large datasets, its embedded
regularization mechanisms, and its success in capturing nonlinear relationships,
XGBoost has become a frequently preferred algorithm for data-driven quality
control and decision-support systems within the scope of Industry 4.0 (Kausik
etal., 2025; Qu et al., 2024).

In this study, the XGBoost classifier was used to classify defects occurring
in manufacturing processes (0 = low defect, 1 = high defect). The
implementation steps were designed to remain consistent with the previous
models. First, the target variable was separated from the dataset, and all
independent variables were defined as the feature set. To allow for a fair
evaluation of the model, the dataset was split into 80% training and 20% test
using a stratified procedure.

Since XGBoost is a tree-based algorithm, it does not require additional
scaling (standardization). However, the pronounced class imbalance in the
dataset was taken into account, and SMOTE was applied during training to
increase the representation power of the minority class. To ensure that SMOTE
was applied only to the training data and to prevent data leakage, the model was
defined within a Pipeline, as in the RF setup.

In this study, the XGBoost classifier was configured with specific
hyperparameter settings to ensure a balanced learning process and to keep
overfitting under control in the classification task. The parameter
n_estimators=300 was chosen to obtain a more stable and well-trained
ensemble of trees, while max_depth=4 was used to limit tree depth and thereby
prevent overfitting. To ensure a more gradual learning process,

28

learning rate=0.1 was adopted so that the contribution of each individual tree
to the model was reduced in a controlled manner. In addition, the
hyperparameter subsample=0.8, which randomly samples a portion of the
dataset, was employed to enhance the generalization ability of the model,
whereas colsample bytree=0.8, which creates a feature subset for each tree,
introduced further diversity and supported model performance. This
combination of parameters provides an effective configuration for XGBoost,
balancing its predictive accuracy with its capacity to control overfitting.

4.3. Model Evaluation Metrics

In ML-based classification problems, accurately evaluating model
performance is critically important, especially in datasets that exhibit class
imbalance. For this reason, assessing a model on the basis of a single metric is

often inadequate. Below, the main classification metrics used in this study are
described.

4.3.1. Accuracy

Accuracy represents the proportion of correctly classified instances to the
total number of instances. However, this metric can be misleading when there is
a severe imbalance between classes. For example, in a dataset where the
positive class is very rare, a model that predicts all instances as “negative” may
still achieve a high accuracy score (He and Garcia, 2009).

4.3.2. Precision ve recall

Precision indicates how many of the instances that the model predicts as
positive are actually positive, whereas recall shows how many of the truly
positive instances are correctly identified by the model. In domains such as
production defects, where errors can lead to costly consequences, these two
metrics are particularly critical. This is because false positives (unnecessary
intervention costs) and false negatives (missed actual defects) directly affect
decision-making processes (Saito and Rehmsmeier, 2015).

4.3.3. F1-score

The Fl-score is the harmonic mean of precision and recall, and it enables
these two metrics to be optimized jointly. In situations with class imbalance, the
Fl-score is a much more informative evaluation measure than accuracy alone,
because it balances the impact of both false positives and false negatives
(Chicco and Jurman, 2020).

29

4.3.4. ROC-AUC

The ROC (Receiver Operating Characteristic) curve illustrates the model’s
ability to distinguish the positive class across different threshold values. The
AUC (Area Under the Curve) represents the area under this ROC curve, and as
it approaches 1, the model is considered to have better discriminative power
(Fawcett, 2006).

4.3.5. Confusion matrix

The confusion matrix provides a detailed breakdown of the model’s correct
and incorrect classifications in terms of four components (TP, FP, FN, TN).
This matrix is extremely important for understanding the impact of false
negatives (missing actual defects) and false positives (unnecessary intervention)
on manufacturing processes (Kelleher et al., 2015).

5. RESULTS AND DISCUSSION

In this section, the performance results of the three classification models
used in the study—LR, RF, and XGBoost—are examined in a comparative
manner. All models were evaluated using the same train—test splitting strategy,
and SMOTE was applied to address class imbalance. Model performance was
assessed not only in terms of accuracy, but also using more comprehensive
metrics such as precision, recall, Fl-score, and ROC-AUC, thereby enabling a
more robust analysis of the ability of the different classification models to
distinguish between high- and low-defect conditions.

5.1. Performance Comparison

The test-set performances of the LR, RF, and XGBoost models are compared
in detail. The main evaluation metrics used for the three models are summarized
in Table 1, and classification performance is assessed not only in terms of
accuracy, but also using precision, recall, F1-score, and ROC-AUC. As can be
seen from the table, LR, due to its structure based on linear relationships, lags
behind the other models and shows more limited success, particularly in
distinguishing the high-defect class. By contrast, the RF model achieves the
highest accuracy (0.94) and the highest recall value, demonstrating a notably
strong performance in detecting the high-defect class. XGBoost, on the other
hand, attains the highest ROC—-AUC value, making it the model that best
separates the classes. In this regard, although all the three models exhibit
different strengths, the tree-based methods appear to be more successful,
especially when dealing with manufacturing data characterized by complex and
nonlinear relationships.

30

Table 1. Model performance summary

Model Accurac Precision Recall F1-Score ROC-
y (Class 1) (Class 1) (Class 1) AUC

Logistic 0.7546 0.93 0.76 0.84 0.79

Regression

Random 09414 | 0.95 0.98 0.96 0.83

Forest

XGBoost | 0.9151 0.95 0.95 0.95 0.84

The confusion matrix results for the models are presented in Table 2. An
examination of the confusion matrices shows that LR produces a high number
of false negatives (FN = 130), indicating that the model frequently classifies
high-defect products as “low defect.” In a critical domain such as production
defect detection, a high false negative rate is a highly undesirable outcome. By
contrast, the RF model yields only nine false negatives and, in this respect, is
the method that captures the high-defect class best among the three models.
Although the number of false negatives produced by XGBoost (FN = 26) is
higher than that of RF, it still demonstrates a much better classification
performance than LR. The fact that all three models share the same number of
true negatives (TN = 74) and false positives (FP = 29) suggests that, after
SMOTE, class rebalancing and model complexity primarily affect the high-
defect class.

Table 2. Confusion matrix results

Model TN FP FN TP
Logistic 74 29 130 415
Regression

Random 74 29 9 536
Forest

XGBoost 74 29 26 519

Evaluating model performance in terms of ROC curves provides a more
detailed understanding of the discriminative power between classes. In the ROC
plots (Figure 1), the curves of RF and XGBoost lie above that of LR, indicating
that the tree-based methods offer a more consistent and stronger separation
capability across different threshold values. In particular, the ROC curve of
XGBoost attains higher true positive rates at both low and high false positive
rates, revealing that the model has strong generalization performance. Although
the ROC-AUC value of RF is slightly lower than that of XGBoost, it still
constitutes a robust alternative from an operational risk management
perspective due to its high success in capturing the positive (high-defect) class.
The ROC curve of LR, by contrast, remains lower, indicating that it cannot

31

deliver optimal performance for manufacturing data characterized by nonlinear
relationships.

\i%g\st\c Regression + SMOTE + Scaling - ROC Curve 0 Random Forest + SMOTE - ROC Curve o XGBoost + SMOTE - ROC Curve
~ :
'f 08
j f 06 JJ
JJJ J 04 r;
02 f

r" — Classifier (AUC = 0.79) f(— Classifier (AUC = 0.83) H — Classifier (AUC = 0.84]
00 00 00

00 02 04 08 08 10 0o 02 04 06 08 10 00 02 04 06 08 10
False Positive Rate (Positive label: 1) False Positive Rate (Positive label: 1} False Positive Rate (Positive label: 1)

&

o

e
=

True Positive Rate (Positive label: 1)

o

True Positive Rate (Positive label: 1)

True Positive Rate (Positive label: 1)

Figure 1. Comparison of ROC curves for LR, RF, and XGBoost models

Overall, when Table 1, Table 2, and the ROC curves (Figure 1) are evaluated
jointly, it is evident that tree-based methods perform markedly better in the
production defect classification problem. RF largely prevents high defects from
being missed by minimizing false negatives, whereas XGBoost provides a
higher discriminative capacity and a more balanced overall performance.
Although LR has the advantage of interpretability, it lags behind the other
models in terms of predictive performance. These results indicate that ensemble
methods are more suitable for analyzing complex data structures in
manufacturing processes.

5.2. Feature Importance Ranking

When the comparative feature importance values obtained from the three
models (LR, RF, XGBoost) are examined, it is observed that certain variables
systematically stand out across all models in determining production defects.
According to the findings presented in Table 3, MaintenanceHours and
DefectRate are the two key determinants with the highest importance scores in
all three models. This result indicates that maintenance activities and existing
defect levels play a central role in predicting the emergence of new defects in
production.

32

Table 3. Comparative feature importance of LR, RF, and XGB models

Feature LR ' LR Abs. RF XGB
Coefficient Importance Importance Importance
MaintenanceHours 1.238882 1.238882 0.257275 0.215104
DefectRate 1.037257 1.037257 0.199312 0.178374
QualityScore -0.652453 0.652453 0.132414 0.121911
ProductionVolume 0.456485 0.456485 0.105837 0.105118
SupplierQuality 0.139299 0.139299 0.024049 0.027003
StockoutRate 0.107314 0.107314 0.027081 0.030488
DeliveryDelay 0.094509 0.094509 0.023217 0.056954
EnergyConsumption | 0.079072 0.079072 0.031444 0.027456
Table 3. Comparative feature importance of LR, RF, and XGB
models (Cont.)
Feature LR . LR Abs. RF XGB
Coefficient | Importance Importance | Importance
InventoryTurnover 0.056089 0.056089 0.030937 0.036420
ProductionCost 0.051716 0.051716 0.027198 0.027782
EnergyEfficiency -0.045549 0.045549 0.022840 0.029812
AdditiveMaterialCost | 0.043202 0.043202 0.024409 0.026204
AdditiveProcessTime | 0.035864 0.035864 0.024945 0.030594
WorkerProductivity | -0.035269 0.035269 0.023239 0.026643
SafetyIncidents 0.012323 0.012323 0.016844 0.029211
DowntimePercentage | 0.003322 0.003322 0.028958 0.030925

QualityScore and ProductionVolume are also consistently found to be
important across the models. By contrast, some variables exhibit different
importance levels from one model to another. For example, while
DowntimePercentage has a low coefficient in LR, it attains higher importance
in both RF and XGBoost. This indicates that linear models may be insufficient
for capturing certain nonlinear relationships. Similarly, the variable
DeliveryDelay stands out clearly in the XGBoost model, whereas it remains
more in the background in LR and RF.

Overall, the common findings across the three models indicate that
indicators related to maintenance, quality, and production volume are the
primary determinants of in-process quality risk, whereas differences between
the models show that interaction and nonlinear effects among variables are
captured more effectively, particularly by tree-based methods. Therefore, the
feature importance analysis not only helps to explain model behavior, but also
provides a practical roadmap for identifying which parts of the production

process should be targeted in order to reduce defect risk.

33

5.3. Comparison of Model Predictions on A New Observation

To assess the practical usefulness of the models, the predictive performance
of the three models was compared on an example new observation representing
a production scenario (Table 4). This new observation simulates a
manufacturing situation in which features such as production volume, supplier
quality, maintenance time, quality score, and energy consumption are set at
realistic levels.

Table 4. Feature values of the new observation used in the model

comparison
Feature Value Feature Value
ProductionVolume 750 InventoryTurnover 5.2
ProductionCost 12000 StockoutRate 3.1

Table 4. Feature values of the new observation used in the model
comparison (Cont.)

Feature Value Feature Value
SupplierQuality 92.5 WorkerProductivity 95
DeliveryDelay 1 SafetyIncidents 2
DefectRate 23 EnergyConsumption 2500
QualityScore 88 EnergyEfficiency 0.32
MaintenanceHours 10 AdditiveProcessTime 6.5
DowntimePercentage | 1.5 AdditiveMaterial Cost 230

The results indicate substantial differences among the models (Table 5). LR
predicts the defect class for this observation as 1 (high risk) and assigns a very
high probability to this outcome (= 0.99999). By contrast, RF classifies the
observation in class 0 (low risk) and estimates a more moderate defect
probability of 0.1667. The XGBoost model, in turn, yields the lowest risk
estimate, computing the defect probability at approximately 0.0043.

These results show that the models differ in the sensitivity of their decision
boundaries. The high sensitivity of LR stems from the fact that its linear
decision boundary more readily labels certain combinations of variables as
“risky.” RF and XGBoost, by contrast, assign the same observation to a lower-
risk category because they capture interactions and nonlinear relationships
among features more effectively. In particular, the extremely low defect
probability produced by XGBoost can be attributed to its tree-based structure, in
which most observations similar to this one tend to fall into the non-defective
class.

34

Table 5. Comparison of model predictions on a new observation

Model Predicted Predicted Probability of High Defect
Class (P(Class=1))
Logistic 1 (High
0.999
Regression Defect) 99999
Random Forest 0 (Low Defect) 0.16667
XGBoost 0 (Low Defect) 0.00427

5.4. Discussion

In this study, among the three ML models compared, XGBoost achieving the
highest performance is closely related to its structural advantages. XGBoost
stands out by constructing a strengthened ensemble model in which sequential
weak learners minimize residual errors, by effectively controlling overfitting
through its regularization (L1-L2) mechanisms, and by performing well on data
structures characterized by complex, nonlinear relationships. Since
manufacturing processes exhibit a high degree of variability driven by the
interaction of multiple inputs, it is to be expected that XGBoost can capture
such patterns. The findings obtained in this study confirm this tendency.

Although LR has the advantage of interpretability, its reliance on a linear
decision boundary can be limiting in highly multidimensional and complex
processes such as manufacturing. In this study, the model lagged behind in
terms of classification performance, particularly in situations where interactions
among variables were strong and nonlinear relationships were dominant.
Moreover, in the presence of an imbalanced data structure, the sensitivity of LR
tends to decrease. In this dataset, where the high-defect class is dominant, this
caused the model to make more conservative predictions. This is clearly
reflected in the prediction results on the new data.

When evaluated from the perspective of real manufacturing environments,
the results indicate that all three models are practically usable, but that the most
reliable outputs for decision-support systems are obtained particularly from
ensemble models. Models such as XGBoost and RF, with their high accuracy
and consistent performance, can reduce operators’ workload in defect detection
processes on the production line, contribute to maintenance planning, and
support supply chain optimization. Nevertheless, LR remains an important tool
due to its simple structure and interpretability advantage, enabling production
managers to quickly understand which factors increase defect probability.

From a quality improvement perspective, the importance scores obtained
from the three models show that variables such as MaintenanceHours,
DefectRate, and QualityScore play a central role in defect formation. This
indicates that firms should place greater emphasis on maintenance planning,

35

quality control procedures, and the relationship between production volume and
quality. Moreover, the fact that the new-data scenario is assigned to different
classes by the models suggests that companies should consider adopting a
multi-model approach, since relying on the decision of a single model may
introduce risk in critical production decisions.

6. CONCLUSION AND RECOMMENDATIONS

In this study, three different ML models (LR, RF, and XGBoost) were
comprehensively compared for predicting defect states in manufacturing
processes. The dataset used in the analysis consists of multidimensional
variables such as production volume, supply chain performance, quality
indicators, maintenance activities, energy consumption, and labor productivity,
thereby reflecting the characteristic complexity of modern manufacturing
environments. In addition, the class imbalance problem in the dataset was
addressed using methods such as SMOTE and class weights, enabling the
models to produce more balanced predictions.

The findings show that XGBoost is the most successful model in terms of
overall performance. This can be explained by its ability to capture nonlinear
relationships and its robustness against overfitting through regularization
mechanisms. The RF model also demonstrates a high level of success,
particularly by providing stable results in feature importance rankings. LR, on
the other hand, while advantageous in terms of interpretability, remains
comparatively weaker in performance because it cannot fully capture the
dynamics of complex manufacturing processes.

When the feature importance scores are examined, it is observed that
MaintenanceHours, DefectRate, QualityScore, and ProductionVolume play a
decisive role in defect prediction. This finding underscores the importance for
firms of strengthening their maintenance strategies, optimizing quality control
procedures, and adopting a more fine-grained approach to production planning.
In the prediction for the new observation, the differences observed among the
models indicate that a multi-model approach should be considered in
manufacturing systems, and that relying on a single model in critical decision-
making processes may be risky.

Based on the findings of this study, the following recommendations can be
made:

e Ensemble methods such as XGBoost or RF can be integrated into
operational systems for the early detection of production defects.

36

e Regular monitoring of maintenance and quality control processes is a
critical area for improvement, particularly in light of the high importance of the
MaintenanceHours and QualityScore variables.

e To enhance the consistency of model results, firms should standardize
their data collection processes, reduce the proportion of missing data, and
improve overall data quality.

e In situations that require straightforward interpretation, LR remains a
valuable tool, clearly showing decision-makers which variables increase defect
probability.

e Future studies can be supported by explainable Al techniques such as
SHAP values, enabling a clearer understanding of model decisions.

e The models’ generalization capability could be enhanced by extending
the dataset to include different product types, multiple production lines, or a
time-series structure.

In conclusion, this study has shown that ML-based classification models can
serve as a powerful decision-support tool in manufacturing processes. With
appropriate feature selection, suitable data preprocessing steps, and balanced
model evaluation, companies can transform their quality improvement
processes into a more systematic and predictable structure.

37

REFERENCES

Tercan, H., & Meisen, T. (2022). Machine learning and deep learning based
predictive quality in manufacturing: a systematic review. Journal of
Intelligent Manufacturing, 33(7), 1879-1905.

Deokar, S., Kumar, N., & Singh, R. P. (2025). A comprehensive review on
smart manufacturing using machine learning applicable to fused
deposition modeling. Results in Engineering, 104941.

Kausik, A. K., Rashid, A. B., Baki, R. F., & Maktum, M. M. J. (2025). Machine
learning algorithms for manufacturing quality assurance: A systematic
review of performance metrics and applications. Array, 100393.
https://doi.org/10.1016/j.array.2025.100393

de Giorgio, A., Cola, G., & Wang, L. (2023). Systematic review of class
imbalance problems in manufacturing. Journal of Manufacturing
Systems, 71, 620-644.

Rabie El Kharoua. (2024). Predicting Manufacturing Defects Dataset [Data set].
Kaggle. https://doi.org/10.34740/KAGGLE/DSV/8715500

Chen, C., Li, X., & Wang, K. (2024). Applying XGBoost for Fault Prediction in
Industrial Production Line. Journal of Intelligence and Knowledge
Engineering (ISSN: 2959-0620), 2(3), 155.

Ordek, B., Borgianni, Y., & Coatanea, E. (2024). Machine learning-supported
manufacturing: A review and directions for future research. Production &
Manufacturing Research, 12(1), 2326526.
https://doi.org/10.1080/21693277.2024.2326526

Antosz, K., Knapcikova, L., & Husar, J. (2024). Evaluation and Application of
Machine Learning Techniques for Quality Improvement in Metal Product
Manufacturing. Applied Sciences, 14(22), 10450.
https://doi.org/10.3390/app142210450

Md, A. Q., Jha, K., Haneef, S., Sivaraman, A. K., & Tee, K. F. (2022). A
review on data-driven quality prediction in the production process with
machine learning for industry 4.0. Processes, 10(10), 1966.
https://doi.org/10.3390/pr10101966

Borucka, A., & Grzelak, M. (2019). Application of logistic regression for
production machinery efficiency evaluation. Applied Sciences, 9(22),
4770. https://doi.org/10.3390/app9224770

Mehregan, M. R., Rezasoltani, A., & Khani, A. M. (2025). A Novel Hybrid
Machine Learning Model for Defect Prediction in Industrial
Manufacturing Processes. Contributions of Science and Technology for
Engineering, 2(4), 43-58. https://doi.org/10.22080/cste.2025.29099.1037

38

He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE
Transactions on knowledge and data engineering, 21(9), 1263-1284. DOI:
10.1109/TKDE.2008.239

Ogrizovi¢, M., Draskovi¢, D., & Boji¢, D. (2024). Quality assurance strategies
for machine learning applications in big data analytics: an overview.
Journal of Big Data, 11(1), 156.

de Giorgio, A., Cola, G., and Wang, L. (2023). Systematic review of class
imbalance problems in manufacturing. Journal of Manufacturing
Systems, 71, 620-644. https://doi.org/10.1016/j.jmsy.2023.10.014

Gao, X., Xie, D., Zhang, Y., Wang, Z., Chen, C., He, C., ... & Zhang, W.
(2025). A comprehensive survey on imbalanced data learning. arXiv
preprint arXiv:2502.08960. https://doi.org/10.48550/arXiv.2502.08960

Chen, W., Yang, K., Yu, Z., Shi, Y., & Chen, C. P. (2024). A survey on
imbalanced learning: latest research, applications and future directions.
Artificial Intelligence Review, 57(6), 137.
https://doi.org/10.1007/s10462-024-10759-6

Hua, Y., Stead, T. S., George, A., & Ganti, L. (2025). Clinical risk prediction
with logistic regression: Best practices, validation techniques, and
applications in medical research. Academic Medicine & Surgery.
https://doi.org/10.62186/001¢c.131964

Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic
regression. John Wiley & Sons. DOI: 10.1002/9781118548387

Breiman, L.(2001). Random Forests. Machine Learning 45, 5-32.
https://doi.org/10.1023/A:1010933404324

Scornet, E. (2021). Trees, forests, and impurity-based variable importance in
regression. arXiv:2001.04295.
https://doi.org/10.48550/arXiv.2001.04295

Khan, A. A., Chaudhari, O., & Chandra, R. (2024). A review of ensemble
learning and data augmentation models for class imbalanced problems:
Combination, implementation and evaluation. Expert Systems with
Applications, 244, 122778. https://doi.org/10.1016/j.eswa.2023.122778

Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd acm sigkdd international conference
on knowledge discovery and data mining (pp. 785-794).
https://doi.org/10.1145/2939672.2939785

Dalal, S., Rani, U., Lilhore, U. K., Dahiya, N., Batra, R., Nuristani, N., & Le, D.
N. (2024). Optimized XGBoost Model with Whale Optimization
Algorithm for Detecting Anomalies in Manufacturing. Journal of

39

Computational and Cognitive Engineering.
https://doi.org/10.47852/bonviewJCCE42023545

Nilsson, F., & Kyrk, D. (2025). Anomaly Detection In Manufacturing For
Quality Control.

Prasad-Rao, J., Heidary, R., & Williams, J. (2023). Detecting Manufacturing
Defects in PCBs via Data-Centric Machine Learning on Solder Paste
Inspection Features. arXiv preprint arXiv:2309.03113.
https://doi.org/10.48550/arXiv.2309.03113

Qu, D., Gu, C,, Zhang, H., Liang, W., Zhang, Y., and Zhan, Y. (2024).
Research on Critical Quality Feature Recognition and Quality Prediction
Method of Machining Based on Information Entropy and XGBoost
Hyperparameter Optimization. Applied Sciences, 14(18), 8317.
https://doi.org/10.3390/app14188317

He, H., and Garcia, E. A. (2009). Learning from imbalanced data. IEEE
Transactions on knowledge and data engineering, 21(9), 1263-1284. DOI:
10.1109/TKDE.2008.239

Saito T, Rehmsmeier M (2015) The Precision-Recall Plot Is More Informative
than the ROC Plot When Evaluating Binary Classifiers on Imbalanced
Datasets. PLoS ONE 10(3): e0118432.
https://doi.org/10.1371/journal.pone.0118432

Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation
coefficient (MCC) over F1 score and accuracy in binary classification
evaluation. BMC genomics, 21(1), 6. https://doi.org/10.1186/s12864-
019-6413-7

Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters,
27(8), 861-874. https://doi.org/10.1016/j.patrec.2005.10.010

Kelleher, J. D., Mac Namee, B., & D'arcy, A. (2020). Fundamentals of machine
learning for predictive data analytics: algorithms, worked examples, and
case studies. MIT press.

40

Chapter 3

Web Application Firewall (WAF)

Fikri AGGUN!
Raif SIME?

ABSTRACT

A Web Application Firewall (WAF) is a security solution designed to protect
web applications against cyber threats. The increasing volume of cyber attacks
and the widespread adoption of web applications have made the use of WAFs
essential for ensuring data security. The evolution of WAFs encompasses a
transformation from their initial, simple functionalities into more intelligent
systems through the integration of artificial intelligence and machine learning.
WAFs operate by analyzing incoming requests to modern web applications
based on predefined rules, evaluating these requests and blocking suspicious
activities. They are deployed in various forms (cloud-based, hardware-based,
and software-based) across different domains and are particularly preferred in
environments with high data sensitivity, such as e-commerce platforms and
financial institutions. However, WAFs also have limitations; complex rule
management and high false positive rates may adversely affect user experience.
Moreover, their effectiveness is often confined to known threats, which can
result in limited protection against emerging attack vectors.

Keywords: Web application security, Reverse proxy, Cross-Site scripting
(XSS) attacks, SQL injection, Regular expressions (ReGex)

! Assist. Prof. Dr., Bitlis Eren University, faggun@beu.edu.tr, ORCID: 0000-0001-9550-1462
2 Bitlis Eren University, rsime@beu.edu.tr, ORCID: 0009-0008-4292-2456

41

1. INTRODUCTION

The rapid evolution of the Internet has rendered web applications one of the
most critical components of organizations. Numerous processes, ranging from
banking and e-government services to educational systems and e-commerce, are
now conducted on web-based platforms. However, this evolution has
simultaneously introduced significant security threats. The inadequacy of
traditional security mechanisms particularly network-level firewalls and
IDS/IPS solutions in preventing attacks targeting web applications has led to the
emergence of the need for Web Application Firewalls (WAFs). Institutions and
organizations with network traffic implement strict security measures and
surround their systems with multiple preventive solutions. Nevertheless, due to
the conscious or unconscious use of various technical and facilitative services
within applications operating on web platforms, there is always a potential for
security vulnerabilities to arise.

Even a minor vulnerability in corporate systems may lead to exposure to
cyber attacks, resulting in reputational damage and significant business losses.
In this context, Web Application Firewall (WAF) solutions come into play and
assume a major role in protecting web applications.

2. WHAT IS A WEB APPLICATION FIREWALL?

A WAF is a specialized security mechanism designed to detect, block, and
filter attacks targeting web applications, and to stop malicious traffic before it
reaches the application. Unlike traditional firewalls, a WAF does not operate at
the network layer but directly at the application layer (Layer 7 of the OSI
model). Accordingly, it performs a detailed analysis of all incoming HTTP and
HTTPS requests to determine whether they contain malicious content. The
primary objective of a WAF is to establish a protective shield against attacks
targeting the underlying code base, database, and business logic of the web
application.

Web applications are inherently dynamic systems, particularly due to the
processing of user inputs. This characteristic leads to an expansion of the attack
surface with every newly developed feature, added parameter, and integrated
module.

The advanced structure of web applications, the lack of validation for user-
supplied data, and the fact that not all developers adhere to the same security
standards increase the likelihood of security vulnerabilities. These
vulnerabilities are frequently exploited by attackers and can often lead to severe
consequences such as data theft, content manipulation, unauthorized access, and
complete system compromise. WAFs have been developed to mitigate the

42

impact of such vulnerabilities in web applications and to block malicious
requests before they reach the application. Their core features include simple
filtering; regular expression-based filtering; URL encoding validation; Unicode
encoding validation; auditing; null byte attack prevention; upload memory
limitations; and server identity masking (Razzaq et al., 2013). The operating
principle of a WAF is to filter all traffic directed to the application and allow
only secure traffic to pass through. A WAF analyzes the headers, parameters,
URL structure, body, and cookies of HTTP requests. It is also capable of
detecting anomalies related to session management, authentication attempts, IP
addresses with an excessive number of failed login attempts, suspicious bot
activities, and behaviors resembling known attack signatures. Today, in order
to mitigate increasing cyber threats and enhance the level of protection, efforts
are being made to establish a new framework for existing traditional firewalls
by integrating artificial intelligence support. As can be observed from the
sample studies in the literature discussed below, WAF systems which operate at
the application layer and are significantly more effective than traditional,
hardware-based system-level countermeasures against cyber attacks are being
combined with contemporary artificial intelligence algorithms, emerging as
highly effective, fast, and high-performance security solutions.

Various methodologies and techniques, such as secure coding, configuration
analysis, and the deployment of web application firewalls, are employed for
application security. To prevent web application issues, web administrators
typically rely on web application firewalls. Web application firewalls operate at
the web application layer, perform in-depth inspection of HTTP packets and
each of their components, and search for web application attacks. They detect
malicious strings and configuration errors by using different techniques such as
whitelisting, blacklisting, and greylisting. (Razzaq et al., 2013).

A Web Application Firewall (WAF) performs deep packet inspection of the
network traffic occurring between the client and the server. By analyzing the
data transmitted between the client and the server, a WAF can detect potential
attacks even if the application itself lacks such detection capabilities. Utilizing
the default configuration of a web server may lead to security vulnerabilities
despite the presence of a firewall; this situation must be mitigated through
comprehensive security testing (Clincy & Shahriar, 2018). As a solution to this
problem, WAFs are extensively utilized. In the studies on WAFs available in
the literature, WAFs have been examined from multiple perspectives and their
benefits have been documented. In their work focusing on the use of WAFs for
multi-attack detection, the authors concentrate on an Adaptive Web Application
Firewall (WAF) that employs machine learning for real-time threat detection,

43

enhances security, and reduces cyber risks. They report that WAF
implementations are capable of protecting against a wide range of threats,
including SQL injection, DDoS attacks, directory traversal, and CSRF, and that
the system can reliably detect threats by distinguishing malicious patterns with
fewer false positives (Maheshwari et al., 2024). In their study focusing on an
advanced WAF that leverages machine learning for enhanced security, Dhote et
al. aimed to distinguish between different types of attacks at the application
layer by classifying requests, and conducted a noteworthy investigation on
attack detection using WAFs. (Dhote et al., 2024). In another study employing
deep learning-based artificial intelligence to enhance web application security,
the authors achieved an accuracy rate of 98.61% in attack detection with their
proposed CNN-LSTM model. They emphasized that the performance of the
DL-based WAF is more effective than that of traditional rule-based WAFs
(such as ModSecurity), and demonstrated that the critical and high-severity
vulnerabilities observed in conventional systems are effectively mitigated by the
DL-based WAF (Muttaqin & Sudiana, 2025). In a study proposing a Web
Application Firewall (WAF) that employs hybrid detection methods for XSS
attacks, the authors introduced an effective artificial intelligence approach for
the early detection of XSS attacks by leveraging machine learning and deep
learning techniques. Extensive experimental evaluations demonstrated that the
random forest method, when used with the proposed feature set, outperforms
state-of-the-art approaches and achieves a high performance score of 0.99.
(Younas et al., 2024).

3. WHY HAS A WAF BECOME NECESSARY?

Today, web applications have become an indispensable component for
institutions and organizations in conducting their operations; however,
alongside the convenience they provide, they also introduce numerous
vulnerabilities and issues. These systems have been exposed to malicious
activities that may lead to severe and often uncontrollable consequences such as
data theft, disruption of business processes and functions, and service outages.
Among the major initiatives undertaken to contain and prevent these threats, the
WATF stands out as one of the most significant countermeasures.

Web applications have become one of the most critical components of
modern organizations. Government services, educational platforms, e-
commerce websites, banking systems, enterprise management tools, API-based
microservice architectures, and cloud-based applications now play a central role
in the functioning of society and the economy. Within this expanding digital
ecosystem, security is not merely a technical requirement but a multi-layered

44

necessity that extends from national security and financial stability to business
continuity and personal data protection. Consequently, the rise in attacks
targeting web applications has evolved into a serious issue that significantly
affects institutions, individuals, and states.

At precisely this point, Web Application Firewall (WAF) technology has
emerged as one of the indispensable components of modern cyber security
architectures. The primary objective of a WAF is to stop attacks targeting web
applications before they reach the application, to detect anomalous behavior,
and to provide protection against threats occurring at the application layer.
However, there are much deeper reasons why a WAF is regarded not merely as
a necessity but as an obligation. These reasons are closely related to
technological advancements, the evolution of attack patterns, and the
transformation of organizational operating models.

Below, the reasons why a WAF is needed are examined and elaborated from
historical, technical, operational, and security perspectives in a comprehensive
manner.

3.1. The Explosion of Web Applications and the Increased Attack
Surface as a Driver for WAF Adoption

The acceleration of digital transformation since the early 2000s has led to an
extraordinary increase in the use of web applications. The Internet environment,
which previously consisted only of simple, informational websites, has over
time evolved into complex structures such as:

* User Account Management Systems

* Online Payment Modules

* E-Government Services

* E-Signature and Identity Authentication Services

* API and Microservice-based Architectures

* Remote Education Systems

* Enterprise ERP, CRM and HR Systems

Protecting such an extensive surface manually is practically impossible.
Regardless of how carefully developers work, numerous risks naturally emerge,
such as: Coding errors, Insufficient input validation, linadequate input filtering,
Authentication weaknesses, Security issues in third-party libraries.

For this reason, WAF technology, which filters incoming traffic to the
application, blocks suspicious requests, and provides an additional protection
layer for the application has become mandatory.

45

3.2. The Inadequacy of Traditional Firewalls Against Application-
Layer Attacks

Traditional firewalls and IDS/IPS solutions operate at the network layer.
These systems block attacks by inspecting: IP addresses, port numbers, protocol
types, packet direction.

However, the majority of modern cyber attacks occur at the application
layer. These attacks typically resemble standard web traffic, originate from
ports 80 and 443, and carry malicious payloads embedded within seemingly
normal HTTP requests (as in the case of SQL Injection, XSS (Cross-Site
Scripting), RFI/LFI, and CSRF attacks).

For example, attacks such as SQL Injection, XSS (Cross-Site Scripting),
RFI/LFI, CSRF, Path Traversal, Command Injection, Bad Bot Attacks, API
Abuse, Business Logic Attacks are perceived as legitimate traffic by a
traditional firewall, because they appear as ordinary HTTP requests.

A traditional firewall, when inspecting such requests, may effectively
conclude: “This is port 443, protocol HTTPS. It does not appear dangerous,”
and therefore forward the request to the internal network. However, the
malicious content embedded in the parameters or payload of the request may
completely compromise the application. For this reason, a mechanism capable
of understanding application-layer attacks has become necessary, and this
mechanism is the WAF.

3.3. The Rise of OWASP Top 10 Attacks and Security Vulnerabilities

The OWASP Top 10, which is updated every few years, lists the most
critical web application vulnerabilities worldwide. Nearly all entries in this list
stem from the way web applications process user input. Most of these
vulnerabilities arise from issues such as injection attacks, authentication
weaknesses, authorization flaws, improper input validation, and security
misconfigurations.

A WAF provides direct protection particularly against items in the OWASP
Top 10 such as Injection, Broken Authentication, Sensitive Data Exposure,
XML External Entities, Broken Access Control, Security Misconfiguration,
and XSS. Since the absence of adequate controls against the OWASP Top 10 is
considered a major risk in corporate security audits, the WAF has become a
critical component for meeting these requirements.

3.4. The Rise of SQL Injection, XSS, and Other Critical Vulnerabilities

Over the past 20 years, some of the most widely used attack types worldwide
have included SQL Injection, XSS, File Inclusion (LFI/RFI), Command

46

Injection, and Broken Authentication. Because these attacks can be executed
even with relatively simple techniques, they are frequently observed especially
in small, medium-sized, and poorly coded systems. An attacker may inject an
SQL command into the parameters of a web application to take control of the
database, inject JavaScript code to hijack user accounts, or manipulate the file
upload mechanism to execute commands on the server. The common
characteristic of these attacks is that all of them occur at the application layer. A
WAPF detects and blocks such attacks using signature-based analysis, behavioral
analysis, and input validation techniques.

3.5. The Rise of Zero-Day Vulnerabilities and Aggressive Attack
Techniques

In the contemporary cybersecurity landscape, threat actors are capable of
exploiting undiscovered (zero-day) vulnerabilities with increasing rapidity. In
the event of a zero-day vulnerability, relying solely on vendor patches is
insufficient to mitigate such attacks. Upon the discovery of a vulnerability, a
remediation cycle is required wherein the software vendor must fix the flaw,
users must acquire the update, and system administrators must test and deploy
the patch. While this process may span days or even weeks, attackers are often
able to exploit the vulnerability within minutes. Consequently, a WAF protects
the application by filtering malicious traffic until the official patch is deployed,
effectively buffering the system against zero-day attacks.

3.6. The Rise of Distributed Microservices and API-based Architectures

The paradigm shift from traditional monolithic applications to microservices
architectures has significantly compounded the complexity of security
management. Modern systems are no longer constituted by a single application;
rather, they function as an aggregate of dozens of API endpoints, hundreds of
microservices, diverse protocols, and heterogeneous authentication
mechanisms. As this architectural complexity increases, security risks escalate
accordingly. Consequently, the Web Application Firewall (WAF) has become
an indispensable primary solution for API security. Within this complex
architectural framework, a WAF: Analyzes API traffic, Blocks malicious bots,
Detects authentication violations, Enforces rate limiting, Prevents data
manipulation.

3.7. Automated Attacks, Bot Traffic and Scraping Threats

While cyberattacks were historically executed manually, the contemporary
threat landscape is dominated by automated tools such as SQLmap, DirBuster,

47

Nikto, and Burp Suite automations, alongside Python scripts and Al-assisted
attack vectors. These tools provide adversaries with the capability to perform
high-velocity scanning, automated exploit attempts, and API exploitation.
Furthermore, malicious bots are capable of engaging in activities such as price
scraping, brute force login attempts, comment spamming, API token theft, and
content manipulation.

By analyzing this traffic, a WAF: Identifies bot behavior, Issues CAPTCHA
challenges, Enforces rate limiting, Performs IP reputation checks, Blocks
anomalous requests. Consequently, it safeguards the web application against
automated attacks.

3.8. The Necessity of Protection Against DDoS and Application Layer
Flood Attacks

Modern iterations of DDoS attacks no longer target solely the network layer
but increasingly focus on the application layer (Layer 7). For instance, attacks
such as:

* Flooding an API endpoint with thousands of requests per second,

* Overloading login forms via brute-force attempts,

* Submitting resource-intensive queries to search fields,

* Disrupting filtering mechanisms

can exhaust system resources and precipitate application failure. It is not
feasible to mitigate application layer DDoS attacks using standard network
firewalls alone. Consequently, a WAF intervenes to protect the application by
employing mechanisms such as rate limiting, behavioral analysis, IP reputation
checks, bot scoring, and automated blocking.

3.9. Enterprise Requirements and Regulatory Compliance

In order to ensure logging and the security of real-time transactions at the
application level across various sectors, the deployment of Web Application
Firewalls (WAF) has become a standard and indispensable requirement. This
necessity arises from regulatory mandates and legal obligations that enforce
specific protection levels for web applications, including: PCI-DSS (mandatory
for payment systems), ISO 27001 (security requirements), GDPR/KVKK
(prevention of data breaches), Banking regulations, Public sector security
standards, Healthcare data protection laws.

Given that a single data breach can result in substantial financial penalties,
reputational damage, operational downtime, and litigation processes,
organizations are compelled to adopt WAF solutions proactively.

48

3.10. The Inevitability of Human Error and the Persistence of Security
Vulnerabilities

Regardless of the rigor of the development process, no software can be
rendered entirely secure. Factors such as the inevitability of human error,
increased error rates in code developed under time constraints, the continuous
emergence of new vulnerabilities in third-party libraries, and the lack of
familiarity among new developers with legacy security decisions make it
impossible to exhaustively test for all vulnerabilities in complex systems. By
mitigating the impact of these unavoidable errors, a WAF enhances the overall
security resilience of the system.

4. THE EVOLUTION OF WAF

The evolutionary trajectory of WAF technology originated as a technical
countermeasure to the escalating cyber threats associated with the proliferation
of the Internet. To fully comprehend the contemporary status of WAFs, it is
essential to analyze both the evolution of web applications and the shifting
landscape of attack vectors. This progression represents not merely a technical
advancement, but the result of a comprehensive transformation driven by
enterprise requirements, security standards, next-generation software
architectures, and DevSecOps methodologies.

The following section examines the timeline of WAF development, ranging
from its inception to its current sophisticated architecture, through a
chronological framework.

4.1. The Early Era of Web Applications and Fundamental Security
Needs (1990-2000)

In the mid-1990s, the World Wide Web consisted primarily of static HTML
pages. As client-server interaction was minimal, the attack surface remained
relatively narrow. During this period, fundamental enterprise security solutions
were limited to traditional network firewalls and Intrusion Detection/Prevention
Systems (IDS/IPS). However, with the advent of web technologies such as CGI,
PHP, ASP, and Java Servlets, websites evolved into dynamic and interactive
platforms. Users gained the capability to submit data, complete forms, and
interact directly with backend databases.

This shift precipitated the onset of application-level exploits, leading to the
emergence of attack vectors such as SQL Injection, Command Injection, and
File Inclusion, alongside a rise in database manipulation attempts.

Traditional network firewalls, operating primarily at the TCP/IP layer, were
incapable of detecting such attacks. Similarly, while IDS/IPS systems analyzed

49

network traffic, they lacked the depth of inspection required to comprehend the
specific business logic of web applications. Consequently, a novel security layer
was required to mitigate threats targeting the application layer. This necessity
laid the groundwork for the inception of the WAF.

4.2. The Emergence of First-Generation WAFs (2000-2005)

The establishment of the Open Web Application Security Project (OWASP)
in the early 2000s catalyzed a significant shift in the security community's focus
toward web application security. The publication of the OWASP Top 10 list
established global recognition regarding the criticality of application security.
The fundamental characteristics of the first-generation WAFs developed during
this era were as follows:

e Static Signature and Rule-Based Architecture

Early WAF solutions analyzed attacks using static signature sets, analogous
to IDS systems. For instance, patterns such as “ ¢ OR I=1--” were identified as
SQL Injection attempts and subsequently blocked.

e HTTP Packet-Level Filtering

These WAFs inspected HTTP requests and blocked those deemed
anomalous. However, they lacked the capability to comprehend the application
context.

e Reverse Proxy Architecture

Many WAF solutions operated as reverse proxies, analyzing incoming traffic
to the web server within an intermediary layer.

o Limited Flexibility

Rule-based systems frequently generated high rates of false positives,
thereby increasing the operational overload associated with WAF deployment.

During this period, WAF technology began to advance commercially, and
the first open-source solutions, such as ModSecurity, were introduced.

4.3. The Expansion of Web and the Maturation Phase of WAF
Technology (2005-2012)

Post-2005, the landscape of web applications expanded significantly with the
widespread adoption of AJAX, SOAP, REST APIs, desktop-like web
applications, and mobile web technologies. Concurrently, attack vectors
diversified to include Cross-Site Scripting (XSS), CSRF, RFI/LFI, XML
Injection, Session Hijacking, and Cookie Manipulation.

Since the majority of these attacks targeted application behavior, WAF
solutions were compelled to evolve. During this period, WAFs acquired the
following capabilities:

50

e Behavioral Analysis and Anomaly Detection

Recognizing the inadequacy of static signatures, WAF models were
developed to learn the baseline traffic of an application and detect deviations.

e Advanced Rule Engines

Flexible rule engines based on Regular Expressions (RegEx) and extensible
rule sets in tools such as ModSecurity emerged.

o OWASP ModSecurity Core Rule Set (CRS)

The introduction of the CRS marked a significant milestone in the
standardization of WAF rule sets.

e Application Layer Protection

In addition to HTTP/HTTPS inspection, advanced controls were
implemented for data formats such as JSON, XML, and SOAP. This era
facilitated the widespread adoption of WAFs within enterprise infrastructures.

4.4. Rise of Cloud Technologies and the Reshaping of WAF (2012-2018)

The proliferation of cloud-based applications, microservices architectures,
and the exponential increase in traffic volume necessitated the transformation of
WAFs into scalable architectures. During this period, Content Delivery
Network (CDN)-based protection services and Software-as-a-Service (SaaS)
WAF solutions gained particular prominence. The pivotal transformation points
of this era can be outlined as follows:

e Cloud WAF Solutions

Major technology corporations such as Cloudflare, AWS, Azure, and Google
began offering WAF services via globally distributed infrastructures.

e DDoS Integration

WAFs gained the capability to detect and mitigate Distributed Denial of
Service (DDoS) attacks in addition to ensuring application security.

e WAF as a Service

The service model requiring no local installation and offering real-time
updates became widespread.

e API Security

Specialized controls for REST and SOAP APIs were integrated into the
functional repertoire of WAFs.

This era marks the period in which WAF technology became more user-
centric, significantly reducing the operational overload associated with
deployment and maintenance.

51

4.5. Artificial Intelligence, Machine Learning, and the Modern WAF
Era (2018—Present)

The foundation of the current state of WAF technology is constituted by
decision-making mechanisms based on Artificial Intelligence (Al) and Machine
Learning (ML).

Key Features of Modern WAFs:

e Machine Learning-Based Anomaly Detection

By learning the behavioral patterns of the application, anomalous requests
are automatically identified. This methodology exhibits significantly higher
efficacy compared to static signature-based approaches.

e Bot Management and Anti-Automation

Contemporary WAFs possess the capability to autonomously distinguish and
mitigate malicious bots, scrapers, and credential stuffing attempts.

e Zero-Day Attack Detection

Early warning mechanisms facilitate the detection of attacks for which
signatures have not yet been generated.

e Large-Scale Distributed Architectures

Utilizing CDN-based global networks, requests are filtered at the network
edge (nearest point of presence).

e API Gateway Integration

API security has evolved into a fundamental component of WAF
architecture.

e DevSecOps Integration

Modern WAF solutions are integrated into CI/CD pipelines, ensuring
security enforcement as early as the code development phase. Consequently,
WATF technology has transcended its role as a mere firewall, evolving into a
comprehensive application security platform.

4.6. Future Projections and the Evolution of WAF Technology

The evolutionary trajectory of WAF technology is not yet complete. In the
forthcoming years, it is anticipated that Artificial Intelligence will evolve
toward a rule-less operational model through Fully Automated Security
Policies; WAF capabilities will converge with Service Mesh technologies (e.g.,
Istio, Linkerd) via the full integration of API and microservices security; the
focus will extend beyond mere attack detection to include user behavior
profiling through User Behavior Analytics (UBA); requests will be filtered at
the network edge prior to reaching the data center via the implementation of

52

Edge-Computing based WAFs; and WAFs will establish themselves as a
fundamental authentication layer within the system through Zero-Trust
Integration.

5. HOW WAF OPERATES

What is the fundamental concept? What functions does a WAF, where
is it positioned?

The primary role of a WAF is to inspect inbound HTTP/HTTPS traffic at the
application layer (OSI Layer 7) and intercept malicious requests before they
reach the web application. This mechanism is distinct from traditional network
security approaches based on IP addresses and ports. A WAF analyzes the
request body, Uniform Resource Identifier (URI), HTTP headers, cookies,
JSON/XML payloads, and even session logic.

The deployment models of a WAF can be categorized as follows:

e Reverse Proxy (Inline): The most prevalent model, wherein client
requests are first routed to the WAF for analysis and, if deemed benign, are
subsequently forwarded to the origin server.

e Transparent Bridge: Deployed within the network infrastructure to
passively monitor traffic without modification or to perform active inline
blocking.

e Host-Based (Agent): Operates as a module directly on the application
server, residing on the same host machine as the application itself.

e Cloud/CDN-Based WAF: Traffic is filtered through the provider's
distributed network infrastructure, facilitating mitigation at the network edge.

e API Gateway / Service Mesh Integration: Provides gateway-level
integration within microservices or API-first architectures.

The selection of deployment topology is critical regarding security efficacy,
latency, and scalability. While reverse proxy and cloud-based WAFs offer
distinct advantages in scalability and DDoS mitigation, host-based solutions
provide deeper visibility into the application context.

The WAF Request Inspection Pipeline

The request processing logic of a Web Application Firewall typically
adheres to the following sequential stages:

1. TLS Decryption (Termination): If the WAF operates with inline TLS
termination, the encrypted request is first decrypted. (Note: Deep packet
inspection is not feasible if TLS termination does not occur at the WAF level.)

2. HTTP Parsing and Normalization: This phase involves URL
decoding, character normalization, Unicode normalization, and content-type

53

determination (e.g., JSON, XML, form-data). This step is of critical importance
for neutralizing evasion techniques.

3. Header, URI, and Body Inspection: A granular analysis is performed
on HTTP headers, methods, Uniform Resource Identifiers (URIs), query strings,
and the request body.

4. Rule Application and Modeling: This stage involves the execution of
signature-based rules (pattern matching, Regular Expressions), the evaluation of
behavioral and statistical models, and the application of positive/negative
security logic (allowlisting/blocklisting).

5. Rate Limiting and Connection Control: Traffic volume is assessed
against predefined thresholds; temporary bans or throttling may be enforced
based on these limits.

6. Bot Challenge / CAPTCHA: Based on the calculated bot score, the
requester may be redirected to a CAPTCHA or a similar computational
challenge.

7. Action Execution (Allow/Deny/Redirect/Sanitize): Based on the
outcome of the rule evaluation, specific actions such as blocking with an alert or
payload sanitization are executed.

8. Logging, Telemetry, and Forwarding: Comprehensive logs are
generated and forwarded to Security Information and Event Management
(SIEM) systems for incident response and forensic analysis.

Inspection Methodologies:

WAFs employ diverse techniques to execute inspection processes. These
methodologies can be categorized as follows:

* Signature-Based Detection: This method utilizes string matching and
regular expressions (RegEx) to identify known attack patterns, such as SQL or
JavaScript snippets. While highly efficient in detecting established threats with
precision, it often proves inadequate against novel or polymorphic attack
variants. For example, a RegEx pattern such as (\bselect\b.*\bfrom\b) identifies
SQL Injection attempts.

* Positive Security Model (Allowlisting): This approach defines a strict
set of permissible request formats (allowlist) and rejects all others. It is a robust
technique, particularly suitable for static and well-defined applications.
However, its primary disadvantages include the administrative complexity of
management within dynamic environments and a high potential for false
positives.

* Negative Security Model (Blocklisting): This model focuses on
identifying and blocking known malicious patterns. It is the most widely
adopted approach for filtering out recognized threats.

54

* Behavioral and Anomaly Detection: This technique establishes a
baseline traffic profile (e.g., request frequency, parameter structures), triggering
alerts upon the detection of deviations. Machine Learning algorithms are often
employed to distinguish between benign and anomalous traffic. For instance,
500 login attempts against an endpoint from a single IP address within a short
timeframe would be identified as a brute-force attack.

* Stateful Application: Logic Inspection The WAF validates session
identifiers, CSRF tokens, and the sequential integrity of specific business
workflows. It detects logic anomalies, such as a user attempting to submit a
payment request while bypassing the requisite checkout sequence.

* Payload Normalization and Decoding: This process neutralizes
evasion techniques such as path traversal (%2E%2E), Unicode obfuscation,
double-encoding, and chunked transfer manipulation. Signature matching and
malicious content detection are executed subsequent to the normalization
process.

* Context-Aware Parsing: The WAF parses payloads according to their
specific content type (e.g., JSON, XML, multipart/form-data) to apply relevant
security policies. Format-specific vectors, such as XML External Entity (XXE)
attacks, are identified at this layer.

WAF Rule Categories:

Web Application Firewalls utilize a diverse range of rule sets to enforce
security policies. These encompass simple string and Regular Expression
(RegEx) rules for basic pattern matching of known signatures, as well as
complex logical rules involving boolean logic or multi-condition criteria.
Furthermore, the system employs rate-limiting rules to restrict request
frequency, geo-location rules for restrictions based on geographic origin, and IP
reputation rules to filter traffic according to the trustworthiness history of IP
addresses. Additionally, WAFs support time-based (temporal) rules for policies
active during specific timeframes and custom rules, such as specialized rule sets
developed for frameworks like ModSecurity.

WAF Action Policies

Upon the triggering of a security rule, a Web Application Firewall (WAF) is
capable of executing a diverse range of enforcement actions. These include
Block (Deny), which serves to immediately reject the request; Redirect /
Challenge, employed to enforce verification mechanisms such as CAPTCHA
or HTTP 302 redirects; Alert / Log Only, a passive mode particularly
beneficial during the operational tuning phase for generating telemetry without
service interruption; Sanitize / Scrub, which neutralizes malicious payloads

55

while permitting the sanitized request to proceed to the origin; Quarantine,
utilized to isolate the request or reroute it to a secondary processing queue; and
Rate-Limit / Throttle, designed to restrict traffic velocity based on defined
thresholds.

Performance and Scalability

Since the Web Application Firewall (WAF) is positioned at the application
perimeter, latency and throughput are of critical importance. To ensure optimal
performance, the following considerations must be addressed:

* TLS Termination: Due to the high CPU overhead associated with
decryption, hardware acceleration or termination at the network edge should be
prioritized.

* Rule Complexity: An excessive number of complex Regular
Expressions (RegEx) can significantly increase CPU consumption;
therefore, rule optimization is essential.

* Caching / Fast Path: Caching mechanisms should be implemented to
provide rapid access to static content and validated (sanitized) traffic.

* Horizontal Scaling: Horizontal scalability should be achieved through
Cloud/Content Delivery Network (CDN)-based WAFs or the utilization of load
balancers.

* Connection Persistence and Pooling: Efficient connection
management contributes to performance enhancement.

During the planning phase, the processing cost per request must be
evaluated, and Service Level Agreements (SLA) must be taken into account.

Bot Management, CAPTCHA, and Rate Limiting

Modern Web Application Firewalls (WAFs) transcend simple signature-
based detection by incorporating bot behavioral analysis through the utilization
of Fingerprinting, Behavioral Scoring, Challenge/Response, and Rate
Limiting techniques. Specifically, Fingerprinting is employed to discern
between legitimate browsers and automated agents. Behavioral Scoring
calculates a probabilistic bot score by analyzing telemetry data, including
mouse movements and cookie support capabilities. The Challenge/Response
mechanism validates the client by imposing computational or interactive tasks,
such as CAPTCHAs, JavaScript Challenges, or Proof-of-Work algorithms.
Furthermore, Rate Limiting enforces traffic constraints based on specific
endpoints, IP addresses, or authentication tokens.

56

Attack Evasion Techniques and WAF Countermeasures

Adversaries employ various methodologies to circumvent WAF inspection
mechanisms, including:

* Encoding / Double-Encoding: Manipulating character sets to disguise
malicious strings.

* Chunked Transfer or Fragmentation: Splitting requests to bypass
pattern matching.

* Obfuscated Payloads: Using techniques such as comment injection
and whitespace obfuscation to hide payloads.

* Polymorphic Payloads: Altering the appearance of the payload while
retaining malicious functionality.

* Out-of-Band / External Channels: Exploiting vectors like XML
External Entity (XXE) or Server-Side Request Forgery (SSRF).

e Malicious Business-Logic Flows: Executing attacks that appear
syntactically valid but violate business logic.

In response to these evasion attempts, WAFs implement the following
countermeasures:

* Normalization & Decoding: Applying rigorous input sanitization
steps.

* Multiple Parsing Passes: Recursively analyzing nested inputs.

* Context-Aware Parsing: Conducting content-specific analysis for
formats like JSON and XML.

* Behavioral Detection: Identifying anomalies based on traffic patterns.

Nevertheless, detecting sophisticated evasion tactics (specifically "low-and-
slow" attacks) remains a significant challenge. Consequently, a WAF should not
constitute the sole layer of defense within the security architecture.

Having examined the functional mechanics and capabilities of Web
Application Firewalls, it is pertinent to illustrate their operational workflow
through a sequential use-case scenario involving a standard deployment cycle:

1. A new API endpoint is deployed.

2. The WAF monitors this endpoint in "learning" or "log-only" mode for a
designated period (7 days).

3. The WAF generates automated policy recommendations, such as JSON
schema validation and rate limiting thresholds.

4. The security operations team reviews the proposed rules and tentatively
applies them in the production environment under "log-only" mode.

5. False positives are eliminated, and the rule set is fine-tuned.

6. Upon validation, the rules are transitioned to "block" (active
enforcement) mode.

57

7. The system is integrated with a SIEM solution, and automated ticketing
workflows are configured.

This methodology ensures robust security enforcement while maintaining an
uncompromised user experience.

6. WAF TYPES AND DEPLOYMENT MODELS

Web Application Firewall technologies have evolved significantly over time,
diversifying into various distinct types to address differing operational
requirements and usage scenarios. The primary drivers behind the emergence of
these diverse WAF classifications include the heterogeneity of application
hosting infrastructures, varying security assurance levels, scalability
expectations, and the diversity of enterprise governance policies. Consequently,
WAF solutions are categorized into multiple distinct classes based on their
deployment models, architectural frameworks, traffic processing
methodologies, and operational modalities.

WATF Classifications:

e Based on Deployment Model
Hardware-Based WAF (Appliance)
Software-Based WAF

Virtual Appliance WAF
Cloud-Based WAF

Based on Operational Principle
Reverse Proxy WAF

Transparent (Bridge Mode) WAF
Embedded (In-App) WAF

Based on Security Approach
Signature-Based WAF
Behavioral (Heuristic) WAF
Machine Learning-Based WAF
Based on Architecture
Centralized WAF

Distributed WAF

Based on Service Model

SaaS WAF (WAF-as-a-Service)
Managed WAF

Based on Specific Use Cases

o API Security Firewall (API-WAF)

o O € 0O O ¢ 0O OO € O O O ® O O O O

58

o WAF with Integrated Bot Management

o CDN-Integrated WAF

In alignment with contemporary technological advancements and evolving
requirements, WAF technologies are structured and deployed to address a
diverse array of application domains and varying levels of security necessities.
Consequently, the functional spectrum and application scope of WAF solutions
have expanded significantly.

The application domains of WAF technology can be delineated as follows:

1. Web Application Protection: The most fundamental and prevalent use
case for a WAF is ensuring the security of web applications. WAFs protect
applications against threats such as SQL Injection, Cross-Site Scripting (XSS),
Remote Command Execution, File Inclusion attacks, Directory Traversal, CSRF
attacks, and XML/JSON manipulation attacks. Given that web applications are
central to contemporary business processes, the mitigation of these attacks is of
critical importance. As a secondary function, WAFs ensure the Protection of
Sensitive Data. In systems processing critical data (such as those in banking,
healthcare, education, and the public sector) WAF protection prevents data
leakage, manipulation, and unauthorized access.

2. Protection of APIs and Microservices: The majority of modern
software development practices rely on API-based architectures. Mobile
applications, IoT devices, microservices, and integration systems operate via
APIs. Through API Traffic Inspection, WAFs detect threats such as API brute-
force attacks, rate limit violations, JWT token manipulation, API key abuse, and
GraphQL query exploitation. Furthermore, as distributed systems entail unique
security requirements for each service, WAFs are integrated with API
Gateways to consolidate all microservices under a centralized and consistent
security policy.

3. E-Commerce and Financial Sector: E-commerce sites and financial
transaction platforms are among the most frequent targets for attackers due to
the monetary value, personally identifiable information (PII), and payment data
they transmit. In this domain, WAFs perform duties related to Fraud
Prevention, Bot Detection, and protection against malicious automation
attempts. Specifically, they provide defense against attacks such as Carding
(payment card guessing), Fake Account Creation, Credential Stuffing, and
CAPTCHA Bypass attempts. Additionally, many financial institutions are
mandated to deploy WAF solutions to ensure compliance with PCI-DSS
regulations for the protection of payment systems.

4. Public Sector and Academic Institutions: Digital platforms operated
by public institutions process citizen data, while universities host student,

59

personnel, and academic records. In this context, WAFs are deployed to ensure
the Protection of Critical E-Government Services, including Electronic
Document Management Systems (EBYS/EDMS), Integration Platforms, Email
Portals, Personnel and Student Information Systems, and Public-Facing Web
Services. Furthermore, as public sector entities are frequently subjected to
active cyber hostilities, Threat Intelligence Integration is achieved via WAF
deployment. By leveraging real-time threat intelligence, WAFs provide rapid
defense capabilities against emerging attack vectors.

5. Healthcare Sector: In healthcare systems, personal data represents
some of the most sensitive information categories. Consequently, healthcare
organizations in many jurisdictions are obligated to deploy WAF solutions. The
Protection of Electronic Health Records (EHR) including patient files,
laboratory results, appointment systems, and centralized physician appointment
systems is facilitated by WAFs. Moreover, Compliance Requirements such as
KVKK (PDPL) and HIPAA mandate that healthcare organizations protect data
access; WAFs constitute a critical component of this compliance framework.

6. Cloud Environments and CDN Services: The proliferation of cloud-
based systems has expanded the deployment scope of WAFs. On cloud
platforms such as AWS, Azure, and GCP, WAFs are utilized to protect Web
Servers, API Gateways, Kubernetes Ingress Controllers, and Serverless
backend functions. Additionally, WAF services provided by Content Delivery
Networks (CDNs) ensure that attacks are blocked at the network edge before
reaching the origin server, facilitating integration with DDoS mitigation and
enabling low-latency global operations.

7. Mobile Application Backend Services: Mobile applications establish
direct connectivity to backend services, which predominantly rely on API-based
architectures. WAFs perform Mobile Backend API Protection, safeguarding
applications against threats such as Token Validation failures, mobile bot
attacks, rate limit violations, and unauthorized data extraction attempts.

8. IoT and Industrial Systems: As the number of IoT devices increases,
attacks targeting the web-based control panels managed by these devices also
escalate. WAFs are deployed to protect IoT management interfaces in domains
such as Smart City Infrastructures, Sensor Control Systems, Industrial SCADA
Interfaces, and Home Automation Systems.

9. Protection of Internal Enterprise Systems: WAF deployment is not
limited to public-facing services but also extends to intranet environments.
Internal Web Applications, including Enterprise Resource Planning (ERP)
systems, Customer Relationship Management (CRM) software, Corporate
Portals, and HR Automation systems, can be protected by WAFs. Furthermore,

60

WAFs can be positioned to mitigate risks associated with insider threats
(network attacks) caused intentionally or inadvertently by personnel.

10. Regulatory and Compliance Requirements: In numerous sectors, the
deployment of WAFs has become mandated by law or industry standards.
Compliance frameworks such as PCI-DSS (Payment Card Industry), ISO
27001 (Information Security Management), GDPR/KVKK (Personal Data
Protection), and HIPAA (Healthcare) either recommend or mandate the
protection of web applications via WAFs.

11. Mitigation of DDoS and Botnet Attacks: Certain WAF solutions
provide integrated protection against Layer 7 DDoS attacks, including HTTP
Flood, Slowloris, and Cache Bypass attacks, as well as botnet driven volumetric
traffic. Additionally, they offer advanced rate limiting and bot filtering
capabilities to halt automated attacks.

7. LIMITATIONS OF WAF

Although Web Application Firewall (WAF) solutions have become
fundamental components of modern network and application security, like any
technology, they possess certain limitations and vulnerabilities. These
limitations may arise from both architectural design and usage methodologies.
While the protection offered by a WAF can be quite effective with correct
configuration and up-to-date rules, it is inherently unable to provide a complete
security guarantee. The fundamental limitations of WAFs are discussed below.

1. Inability to Detect All Attacks (False Negative Problem)
WAF solutions detect attacks using signature-based, behavior-based, or
statistical models. However:

* They may not always detect new, yet unidentified attack techniques
("zero-day attacks").

* Payloads that are cleverly concealed, encoding methods, or multi-
layered attacks may evade the WAF's analysis.

* Attacks targeting the application's business logic often appear as normal
traffic, making them difficult for the WAF to detect.
For these reasons, WAFs cannot provide 100% attack detection.

2. Generation of False Positives (False Positive Problem):
One common issue with WAFs is the generation of false positives. Particularly
under strict security rules:

* Normal user requests may be perceived as attacks.

e API requests, dynamic parameters, or custom input formats may be
blocked.

61

* Software development teams frequently need to spend additional time
correcting these erroneous blocks.

False positives degrade user experience and increase the management
burden.

3. Challenges in Analyzing Encrypted Traffic:

Modern web applications predominantly use HTTPS. To analyze this traffic,
a WAF must:

* Perform SSL/TLS termination or operate in reverse proxy mode.
This setup:

* Can lead to performance losses.

* Requires an additional certificate management process.

* Makes it challenging to decrypt traffic in certain environments (e.g.,
applications using mutual TLS on end-user devices).

When encrypted traffic is not fully analyzed, some attacks may go
unnoticed.

4. Impact on Performance:

A WAF must analyze every request, model behaviors, and enforce rules.
This process:

* May cause latency.

* Can result in performance degradation under load.

* Increases the need for scaling in applications with heavy traffic.

Even cloud-based WAFs can lead to service delays by implementing rate
limits during high traffic conditions.

5. Inadequacy Against Business Logic Attacks:

WAFs primarily focus on attacks at the technical layer. However: Threats
such as fake return requests, Logic manipulation, Privilege escalation attempts,
Multi-step attacks are often not detected by WAFs as they may resemble normal
user behavior. These attacks require specialized "business logic security" to be
effectively safeguarded against.

6. Difficulty in Staying Up-to-Date:

Attack techniques are continuously evolving. For a WAF to be effective:

* Rules must be regularly updated.

* Machine learning models need to be retrained.

* New threat intelligence must be integrated.

However, many organizations do not perform these updates regularly,
causing the WAF to become ineffective over time.

62

7. Dependency on Development and Operations Teams:

For WAF rules to function correctly, it is essential to recognize all endpoints
of the application, model normal behavior, and accurately define allowed
parameters. A misconfigured WAF can:

* Render the entire application inaccessible,

* Accidentally block critical endpoints,

* Completely overlook security vulnerabilities.

Therefore, managing a WAF requires specialized expertise.

8. Integration Issues with CDN and Distributed Architecture:

Since a WAF operates under the principles of a reverse proxy or edge
firewall, it may encounter integration challenges with CDNs. In microservices
architectures, separate configurations may be necessary for each service, and
conflicts can arise with API gateway structures. Particularly in container-based
environments (like Kubernetes), WAF management can become complex.

9. Ineffectiveness Against Internal Threats:

WAFs primarily provide protection against external threats. However,
attacks originating from the internal network, such as abuse by authorized users
or database hijacking, are generally not blocked by the WAF.

10. Limitations Against Advanced Evasion Techniques:

Attackers have developed specialized methods to bypass WAFs, including
multiple encoding (double/triple encoding), payload fragmentation, HTTP
parameter polymorphism, low-rate attacks, and stealth attack techniques. Such
methods can make it challenging for the WAF to detect the attack.

11. Inadequacy Against Zero-Day Vulnerabilities:

Due to the operational nature of WAFs, their protection level is low against
attacks that are unprecedented, not yet defined by signatures, and exhibit
unknown behaviors. WAFs cannot provide complete protection against zero-
day attacks.

8. WAF INSTALLATION AND EXAMPLE RULE SET

To provide a reference for a WAF installation, the steps for setting up a
WAF using Nginx web server and ModSecurity rule sets within an enterprise
network are outlined below. The installation environment chosen is Ubuntu
24.04 LTS, and the ModSecurity installation (Nginx + OWASP CRS) has been
carried out on this platform. The following steps detail the installation of
ModSecurity + OWASP Core Rule Set (CRS) on an Ubuntu 24.04 LTS server
in the most updated and stable manner.

1. System Update Procedure: First, the Ubuntu server to be used as the
platform must be updated to the latest version.

63

Bash

sudo apt update && sudo apt upgrade -y

2. Installing Required Packages: Necessary packages, such as nginx and
modsecurity, must be installed.

Bash

sudo apt install -y nginx libnginx-mod-security (In Ubuntu 24.04,
ModSecurity is now available in the official repositories under the package
libnginx-mod-security).

3. Verification of ModSecurity Nginx Module Installation:

Bash

nginx -t | grep modsecurity veya dpkg -L libnginx-mod-security

The installations of the packages are verified using these commands.

4. Creating ModSecurity Main Configuration File:

Bash

sudo cp /usr/share/modsecurity-crs/modsecurity.conf-recommended
/etc/modsecurity/modsecurity.conf

5. Editing Basic Settings:

Bash

sudo nano /etc/modsecurity/modsecurity.conf

Change these rows:

conf

instead of “DetectionOnly” do “On” yapin (blocking is active)

SecRuleEngine On

SecRequestBodyAccess On

SecResponseBodyAccess On

SecAuditEngine RelevantOnly ~ # OR “On” (If more logging is desired)

SecAuditLog /var/log/modsecurity/audit.log

SecDataDir /var/cache/modsecurity

SecTmpDir /tmp

SecDefaultAction "phase: 1,log,deny,status:403"

SecDefaultAction "phase:2,log,deny,status:403"

6. Installation of OWASP Core Rule Set (CRS):

Bash

sudo apt install -y modsecurity-crs

Here, the CRS is automatically installed in the /usr/share/modsecurity-crs/
directory.

7. Including the CRS Main File: A configuration file is created for this

purpose.
Bash

64

sudo nano /etc/modsecurity/crs.conf
The following content should be added to the configuration file:.
conf
Include /usr/share/modsecurity-crs/crs-setup.conf
Include /usr/share/modsecurity-crs/rules/*.conf
8. Adding ModSecurity to Nginx Configuration:
Bash
sudo nano /etc/nginx/nginx.conf
http { The following line should be added at the top of the block.
nginx
ModSecurity settings
modsecurity on;
modsecurity rules_file /etc/modsecurity/crs.conf;
9. Extra Check forn Site Configuration (Optional):
For a example site (/etc/nginx/sites-available/default):
nginx
server {

listen 80;

server_name domain.com www.domain.com,
ModSecurity is already enabled globally; if it is desired to enable it again

here:

modsecurity on; is performed.

location / {

... other settings

}
}

10. Setting Up Folders and Permissions:

Bash

sudo mkdir -p /var/log/modsecurity

sudo chown www-data:www-data /var/log/modsecurity
sudo mkdir -p /var/cache/modsecurity

sudo chown www-data:www-data /var/cache/modsecurity

11. Testing and Starting:
Bash

sudo nginx -t

if there is no errors:

Bash

sudo systemctl reload nginx

65

12. Testing if the System is Working:

The URL should be tested in the browser with the format “http://your-server-
ip-address/?id=1+OR+1=17, and if the WAF is functioning, access to the site
should be blocked (a 403 response should be returned). The same test can be
performed using the curl command:

Bash

curl -i http://127.0.0.1/?test=../etc/passwd should be applied as follows. In
this case, if the system is functioning, a "403 Forbidden" message should be
received, and a ModSecurity log should be created.

13. Checking the Logs: The logs can be checked using the following
command.

Bash

sudo tail -f /var/log/modsecurity/audit.log

14. Adjusting the Paranoia Level to Reduce False Positives (Optional):

Bash

sudo nano /etc/modsecurity/crs/crs-setup.conf

This should be adjusted (the recommended starting level is 2):
conf
SecAction \
"id: 900000,
phase:1,\
nolog,\
pass,\
t:none,\
setvar:tx.paranoia_level=2"
15. Starting in Log Mode (DetectionOnly) (Optional):
To test initially without blocking:
Bash
sudo nano /etc/modsecurity/modsecurity.conf
conf’
SecRuleEngine DetectionOnly
Later, when the system is stable, "SecRuleEngine On" should be configured.
16. Update and Maintenance:
Bash
updates of CRS and ModSecurity
sudo apt update && sudo apt upgrade

66

http://127.0.0.1/?test=../etc/passwd

The WAF installation will be completed after these steps. Now, an additional
protection layer is actively present in front of the system. In this section, if we
also show an example of a ModSecurity rule used:

ta| |multipart/related|

-amf| |application/jsen|
lication/

setvar: "ty allowed_request_content_types|application/x-wwi-form-urlencoded| |text/xnl| |spplication/uml| |application/soapml| |application/jsen| |text/plain|'*

Through this rule, only the specified file types in the list are allowed.

9. CONCLUSION

A WAF alone does not provide comprehensive protection against all
potential threats in a network. Therefore, it cannot be sufficient on its own
without additional security layers such as IDS/IPS, DDoS protection, RASP
(Runtime Application Self-Protection), Secure Software Development Life
Cycle (SSDLC), and code security scans. Considering these disadvantages, it is
more appropriate to position a WAF not as a "single solution" security
mechanism in front of an enterprise system, but as a component of a Defense in
Depth strategy.

In conclusion, WAF solutions have become an indispensable security layer
for modern web applications. The attacks that applications face today are
increasingly complex, and solely relying on network-level security mechanisms
is no longer adequate. For protecting applications developed on both enterprise
and individual scales, WAFs are now considered essential components of
network security and are actively utilized by many organizations, institutions,
and authorities. They are continuously updated to meet current demands and
enhanced with features supported by machine learning and artificial
intelligence.

67

REFERENCES

Clincy, V., & Shahriar, H. (2018). Web Application Firewall: Network Security
Models and Configuration. Proceedings - International Computer
Software and Applications Conference, 1, 835-836.
doi:10.1109/COMPSAC.2018.00144

Dhote, S., Magdum, A., Singh, S., & Raigar, D. (2024). ML based Web
Application Firewall for Signature and Anomaly Detection Using Feature
Extraction. 2024 15th International Conference on Computing
Communication and Networking Technologies, ICCCNT 2024, 1-6.
doi:10.1109/ICCCNT61001.2024.10725511

Maheshwari, M., Nayak, A., Sethy, A., & Sujatha, G. (2024). Adaptive Web
Application Firewall for Multi-Threat Detection. Proceedings of 5th
International Conference on loT Based Control Networks and Intelligent
Systems, ICICNIS 2024, 232-238.
doi:10.1109/ICICNIS64247.2024.10823239

Muttaqin, R. Z., & Sudiana, D. (2025). Design of Realtime Web Application
Firewall on Deep Learning-Based to Improve Web Application Security.
Jurnal Penelitian Pendidikan IPA, 10(12), 11121-111209.
doi:10.29303/jppipa.v10i12.8346

Razzaq, A., Hur, A., Shahbaz, S., Masood, M., & Ahmad, H. F. (2013). Critical
analysis on web application firewall solutions. 2013 IEEE Eleventh
International Symposium on Autonomous Decentralized Systems
(ISADS), 1-6. doi:10.1109/isads.2013.6513431

Younas, F., Raza, A., Thalji, N., Abualigah, L., Zitar, R. A., & Jia, H. (2024).
An efficient artificial intelligence approach for early detection of cross-
site scripting attacks. Decision Analytics Journal, 11(January), 100466.
doi:10.1016/j.dajour.2024.100466

68

Chapter 4

Explainable AI Methods:
The Example of SHAP and LIME

Bahaddin ERDEM'

ABSTRACT

Recently, artificial intelligence (AI) tools have become increasingly
important in data analysis, and their applications are becoming increasingly
widespread. While high performance has been achieved in analyses conducted
using machine learning and deep learning models, their "black box" nature
raises concerns about transparency, accountability, fairness, and trust. The field
of Explainable Al (XAI) has emerged as a solution to the black box problem in
Al-based analysis. XAI produces more transparent and accountable results for
model decisions and predictions. This has fostered trust in Al-based data
analysis, encouraging user adoption of these tools. XAl offers many methods
for explaining and interpreting. This study examines only Shapley Additive
Explanations (SHAP) and Local Interpretable Model-Independent Explanations
(LIME), methods widely used in the literature, and supports them with
experimental applications. SHAP is an XAI method based on strong game
theory that attempts to increase interpretability by calculating the values of
every feature that could affect the target variable or independent variable. LIME
is one of the best-known methods for solving black-box problems. LIME
approximates complex models and transfers the calculated examples to another
locally interpretable model. This supports the probability of which class a
feature belongs to in classification models. In the last part of the study, online
exam data was visualized by using libraries in Python environment; both SHAP
and LIME analysis were performed with XGBoost algorithm in binary
classification analysis, and the positive and negative aspects of the features on
the model and the degree to which they affect were analyzed.

Keywords: Al, XAl, SHAP, LIME, Black box

! Lecturer Dr.; Bitlis Eren University, Adilcevaz Vocational School, Department of Computer Programming,
bahaddin2363@gmail.com, ORCID: 0000-0003-3693-0966

69

1. INTRODUCTION

The adventure of Al, began in the 1950s, and it has gained momentum and
become widely used, especially in recent years, for three main reasons. Firstly,
the accessibility of vast amounts of data generated by e-commerce platforms,
social networks and businesses; secondly, the advancement of Machine
Learning (ML) algorithms enabling them to deliver more reliable results; and
thirdly, the availability of cloud technologies and high-performance computers
at more affordable costs have accelerated this process. Today, Al continues to
transform many areas, from individual life to social structure and commercial
areas (Mondal, 2020:389). Al is essentially a computer system that emulates
human cognition by processing data from various sources and systems, making
decisions and learning from the resulting patterns. Al is also defined as the
capacity of computers to recognize patterns in existing data and statistical
models and take appropriate action (Hassani et al., 2020:145). Many Al tools,
especially machine learning and deep learning-based models, have been
developed to examine large-scale data sets, reveal hidden patterns in these data,
and produce various solutions (Brozek, 2024:427, Hassija et. all., 2024:45). The
critical role of Al in today's technological advancements is clearly evident in its
widespread use. By analyzing large data sets and uncovering patterns, Al is
boosting creativity and productivity in numerous sectors, including finance,
healthcare, education, and entertainment. This demonstrates that Al plays a
crucial role in shaping the future through the collaboration between human
creativity and technological advancement. However, Al models also present
challenges, as they obscure decision-making and prediction processes, raising
concerns about transparency, trust, accountability, and explainability. Although
Al offers high accuracy and efficiency, it is often considered a “black box” and
is therefore subject to criticism, especially in complex structures such as deep
learning and large language models (LLM) (Hsieh, 2024:7).

XAl, as a field of research, is focused on developing methods and models
that will enable people to gain confidence and understanding of the workings of
Al systems and how these systems relate to logic (Hassija et. all., 2024:51-52).
The main goal of XAl is to develop models that can provide transparent, clear
and understandable explanations for decisions taken or predictions produced.
These models directly integrate interpretability into the learning process,
strengthening engagement in accountability, trust, and transparency, and
enabling people to validate Al outputs, better understand the results, and make
sound decisions (Contreras ve Bocklitz, 2024:604). A significant drawback of
most machine learning models is the lack of transparency in decision-making
and prediction processes (Adadi and Berrada, 2018:52138). This behavior of the

70

models is often described as a "black box." Even experienced professionals face
difficulties interpreting these complex models. When a model is difficult to
understand or ambiguous, it becomes difficult to gain acceptance and build user
trust. This leads people to distrust the model's decisions or predictions. XAl
aims to provide tools and methods to help users and researchers interpret and
understand the results of Al models.

XAI is a powerful tool that allows users to make sense of complex model
outputs and visualize their results. Visualizing outputs and results facilitates
developers' deep understanding of model decisions and increases
understandability and confidence in predictive accuracy. Thus, XAl supports
model adoption by providing effective outputs before, during, and after deep
learning and machine learning predictions (Cifci, 2025:36293). The responsible
use of Al is crucial for understanding how decision-making processes work and
for the public's ability to gain trust in Al. The growing interest in explainable Al
aims to foster trust by increasing the understandability and transparency of Al
decision-making (Kalasampath et al., 2025:41112). By explaining the complex
operating logic of Al algorithms, XAI provides insights into how predictions
and interpretations are generated, thereby increasing end-user confidence in
model decision processes and closing the understanding gap between models
(Contreras ve Bocklitz, 2024:604 ve Infant et. al., 2025:1).

2. CONCEPTUAL FRAMEWORK

2.1. Basic concepts of XAI

Explainability: Central to the concept of explainability is the extent to which
a machine learning model can be understood at its core. Explainability goes
beyond interpretability by explaining "why" the model's decisions were made.
Four fundamental principles stand out for XAl mechanisms:

1. Explanation: The system provides relevant evidence or justification for
outputs and/or processes.

2. Meaningfulness: XAl system provides explanations that the intended
users can understand.

3. Explanation accuracy: XAI system provides explanations that
accurately represent the process of producing the output.

4. Knowledge limits: XAI systems only work under the conditions for
which they were designed and when there is sufficient confidence in their
output (Philips, 2021:2).

Transparency: Transparency is a fundamental element of all scientific
research. Without transparency, the integrity and validity of research findings
cannot be independently tested and verified. This highlights the importance of

71

transparency for the reliable use of evidence in decision-making processes
(Sampson, et. al., 2019:1355).

Interpretability: By definition, it refers to the extent to which an individual
can understand the reasons behind a decision. This process often involves
translating complex model predictions into human-comprehensible insights. In
short, explainability is the effort to make an explanation more easily understood
(Erasmus, Brunet ve Fisher, 2020:849).

Justice: Justice refers to the ethical characteristics of an Al system that are
unbiased, sensitive to diversity, and non-discriminatory. Descriptions of Al
systems provide human-understandable interpretations of the system's internal
workings and the decisions it makes (Zhou, Chen, & Holzinger, 2020). Justice
in Al aims to develop methods to detect, reduce, and control biases in Al-
supported decision-making processes (Schwartz, et., al., 2022:177).

White Box: White box models are known as interpretable models in machine
learning and offer transparency in decision-making processes. By providing
inherent explainability, they allow us to understand the impact of input features
on model output, thus providing valuable insights into underlying relationships
and patterns (Nasarian vd., 2024:3). The concepts of understandable models
and XAI are used to describe all machine learning models that produce results
that experts in the application domain can easily interpret (Loyola-Gonzalez,
2019:154101). These models offer a balance between explainability, accuracy
and confidence. The availability of larger data sets and the proliferation of
computer-aided decision-making have increased the demand for interpretable
models. The interpretability offered by white-box models allows all
mechanisms, from users to regulators and developers, to evaluate the logic of
the model, identify potential biases, and ensure fairness and accountability
(Mumuni ve Mumuni, 2025:1). "White box" models are characterized by the
easy-to-understand algorithms used, allowing a clear interpretation of how input
features are transformed into output or target variables (Wiewiorowski, 2021:3).
Examples of such models include linear regression, Bayesian Networks, Fuzzy
Cognitive Maps, logistic regression, decision trees and rule-based systems.

72

Explanation
of Human

Experts
V'Sua.l Dialog with
Analytics H
uman
XAl or D
White-Box
Machine CHuman
Learning (ML) Iterative omputer
ML Interface
(HCI)

Figure 1. Interaction of different areas that make up the XAl and
White-Box model (Loyola-Gonzalez, 2019:154102)

Figure 1 shows an explainable model resulting from interactions between
machine learning, human-computer interfaces, explanations by human experts,
visual analytics, iterative machine learning, and interactions between machine
learning experts and human experts in the application domain.

Black Box: Black box methods operate on the assumption that there is no
knowledge of the internal workings of the model. Therefore, for each input,
only the final outputs produced by the model can be observed. In this approach,
to explain a black box model, it is necessary to develop ways to query the
outputs in a way that reveals the model's underlying behavior. However, these
methods are generally slower than white-box approaches because knowledge is
only gained by submitting additional queries to the model. In recent years,
explainability methods have become increasingly important for providing
insights into black-box machine learning methods such as deep neural networks.
However, interpretability alone is insufficient to address all the problems of
black-box models. Deep or shallow neural networks are among the most
common examples of black-box models in machine learning (Holzinger et. all.,
2020:260).

Gray Box: Gray-box models aim to strike a balance between both
explainability and accuracy. Consequently, any data-driven learning algorithm,
including white- and black-box models, can be considered a gray-box model
(Ghasemi et. All., 2024:5). Gray box methods combine the interpretability
advantages of White box methods with the high performance of black box
methods. Research in this area focuses on improving Al methods to achieve

73

explanation goals without significantly compromising performance. The biggest
advantage of gray-box approaches is their ability to combine understandability
with high performance, especially in sensitive areas like medicine. However,
only a limited number of application examples currently exist, and
explainability in these methods is limited to certain elements. As with all
methods of explanation, it is important to decide whether to provide an
explanation specific to individual cases or a general one, and different
explanation strategies should be applied accordingly. Therefore, additional
research and development is needed to ensure that grey-box methods can be
used effectively and specifically across a very large application domain. Only
then will the full benefits of these methods be realized (Gallee et. All.,
2023:800). An annotated comparison of the gray box, black box and white box
models in the literature is given in Figure 2.

pmm——— ASSmmmmmmsmmEmssEmEEEEEmEEE .- Self-interpretable
] I
A
H Inspect the inner logic of a Higher Explaimability and Due to less accuracy, itis |
i;’ ML model and understand = interpretability, yet lower = notused in daily-life |
& its decision aceuracy applications |
-3 1
—]
L e e L L LT 4
pmmmmmEEmEsmEmmsssssssssssEEmssmsssssssm====e--— ~
— \I
Al
])) |
2 Partially analyzed the Can inferpret at some Can be used in critical I
al —» intemal working of amodel — degree with significant: —P applications if designed
g g 8 g |
o and understand its decision aceuracy carefully |
| |
N e memmem———— ’
7 “\
,,‘ I
2
35 . .) Due to a non-explainable 1
il ~ 4 Could not inspect the inner Higher accuracy, but fa iIisnmp actcal |
21 r —» logicofthemodeland —» lowerexplainabiliyand — . u‘w w“rﬂﬂ I
all understand its decision mterpretability L
L applications |
! I
\

A e L L LT Neither interpretable

—
nor explainable
Reveal the decision > Built the user trust being fair and ethical
making mechanism (verify the prediction)
Explainability/ Interpretation Towards ,ﬂw
= trustworthiness
Understand the intrinsic properties of of the model
Diselose the internal —» the tode] that echance model’s
working of the model ORI EITE ’
ransparency
Interpretability _J

Figure 2. Comparison of gray box, black box and white box
models (Ali et. All., 2023:3)

As shown in Figure 2, the concepts of gray box, black box and white box
represent different levels of internal components of models. White box models,
by design, offer higher interpretability; therefore, their output is easier to

74

understand, but their accuracy is generally lower. Gray box models provide a
balance between interpretability and accuracy. Black box models, on the other
hand, offer high accuracy but are limited in interpretability. The following list
summarizes the advantages of providing a solution to black box systems (Ali et.
All., 2023:3):

e To protect individuals from the negative effects of automated decision-
making processes due to automatic decisions.

e To enable individuals to make more effective and conscious choices.

e To detect and prevent vulnerabilities resulting from security problems.

e Developing algorithms that are compatible with human values.

e To increase business and user trust by establishing user standards in the
development of artificial intelligence-based products.

e To implement Right to Explanation policies.

2.1. The Black Box Problem in Al

Although inputs and outputs are known in Al models, it is often difficult to
determine exactly how inputs are transformed into outputs (Pavlidis, 2024). The
automation of routine decisions, coupled with the complex information
architectures that enable this automation, raises concerns about system
reliability. These concerns are particularly pronounced in the deep learning
(DL)-based Al class, which utilizes algorithmic systems comprised of deep
neural networks and are difficult for humans to understand. These types of
problems are often called “black box problems” in Al (Bearman ve Ajjawi,
2023:1163). Observers can trace the inputs and outputs of these complex,
nonlinear processes, but they cannot directly see the internal workings of the
system. The mechanisms by which Al reaches its conclusions are often obscure
or invisible. Without understanding this mechanism, the question of how
trustworthy these systems can be remains unanswered. The increasing
delegation of decision-making authority to Al to protect critical human values
such as security, health, and safety makes the issue of trust even more crucial.
In response to this problem, models that “open the black box” that make non-
linear and complex decision processes understandable to human observers are
being developed and technical solutions are being sought. This class of models,
called XAlI, offers promising solutions to the black box problem, but in their
current form they make these processes only partially understandable to many
observers. (Von Eschenbach, 2021:1608).

75

2.2. XAI methods

LIME: Locally interpretable model-independent explanations (LIME) are
one of the most used interpretability techniques for black-box models and
black-box problems. Following a powerful yet simple approach, LIME can
produce meaningful interpretations and results even when the classifier makes
any prediction. The target model is then run on this new data to generate
predictions, which are weighted according to their closeness to the input
sample. In the final stage, a simple and interpretable model such as a decision
tree is trained on the dataset to ensure interpretability of the results. (Linardatos,
Papastefanopoulos ve Kotsiantis, 2020:11). While machine learning models are
considered black-box functions, model independent explanation methods only
provide access to the model's output. These methods, which are extremely
flexible and applicable to various applications, do not require any knowledge
about the internal structure of the model. (Holzinger et. all., 2020:15). LIME
has many successful applications in various fields, demonstrating its popularity
as a model-independent method. However, its explanations are limited because
they are implicitly based on surrogate models; the quality of the explanation
depends on the accuracy of the surrogate fit. Surrogate fits typically require
extensive sampling, increasing computational cost, and the sampling process
can introduce uncertainties, leading to different explanations for the same input
(Holzinger et. all., 2020:16). LIME is another XAI method that aims to explain
the local operating logic of a model on a given instance. In this direction, it
approximates any complex model and transforms it into a locally interpretable
model for a given instance (Ribeiro, Singh, Guestrin. 2017 as cited in Salih et.
All., 2025:2). LIME is a model-independent local annotation method that
reveals the impact of each feature on the outcome of a single instance. In
classification models, it displays the probability that an instance belongs to a
particular class and presents the contribution of each feature to that class in
visualized graphs. However, because LIME transforms any complex model into
a linear local model, it reports coefficients representing the weights of the
features in the model. This can lead to the loss of important information and
incomplete explanation in models containing nonlinearity, because the
nonlinear relationships cannot be reflected in the surrogate model. Additionally,
LIME is a model-dependent method; that is, the explanations produced by
LIME may vary when different models are used on the same task and dataset
(Ribeiro, Singh, Guestrin. 2017, as cited in Salih et. All., 2025:2).

SHAP: Shapley Additive Explanations (SHAP) is a powerful explanation
method inspired by game theory that aims to increase interpretability by
calculating the importance values of each feature in separate predictions

76

(Holzinger et al., 2020:16). This approach can be applied to any machine
learning model, regardless of the model. In SHAP, the "actors" in machine
learning models are considered features, and the "payoff" is considered the
model output. The method calculates an importance score representing the
contribution of each feature to the model output. This score is determined by
evaluating all possible combinations of features; that is, all scenarios where
both all features and subsets of features are used in the model are considered.
Because computational complexity increases with the number of features, the
Kernel SHAP approach was developed as a solution. SHAP offers a powerful
method for explaining any model by treating each feature as a player and the
model result as a payoff. SHAP provides global and local annotations, meaning
it is capable of explaining the role of features for all instances and for a specific
instance (Lundberg ve Lee., 2017 as cited in Salih et. All., 2025:2, Band et. All.,
2023:4). One of the most significant drawbacks of Shapley values is their high
computational complexity. Especially for deep neural networks and modern
models with high-dimensional inputs, Shapley values are quite difficult to
calculate precisely (Band et al., 2023:4; Holzinger et al., 2020:16; Salih et al.,
2025:3). There are several critical points users should be aware of when
applying the SHAP method. First, SHAP is a model-dependent method; that is,
the explanation results obtained depend on the machine learning model used.
This can lead to variability in explainability scores when different models are
used on the same data and task. In this context, when different machine learning
models are applied to the same task on the same dataset, the most important
features identified by SHAP may differ between models. There are several
important considerations for end users using SHAP. First, SHAP is a model-
dependent method, meaning its explanation results depend on the machine
learning model used in the classification or regression task. This may cause
explainability scores to vary when different models are applied to the same data
and task (Salih et. all., 2025:3).

While SHAP evaluates different feature combinations to calculate feature
attributions, LIME is based on a local surrogate model. Furthermore, SHAP is
capable of providing both global and local level explanations, while LIME is
limited to local explanations only. While SHAP can detect nonlinear
relationships depending on the model used, LIME may be limited in capturing
such complex relationships because it creates a locally linear model. In terms of
visualization, SHAP produces a variety of graphs that present both local and
global annotations, while LIME provides a separate visualization for each
instance. Finally, LIME is significantly faster than SHAP, especially for tree-
based models (Lundberg ve Lee., 2017, as cited in Salih et. all., 2025:2).

77

3. EXPERIMENTAL STUDIES

The dataset used in this study is online exam data created by Erdem and
Karabatak (2025:9). The dataset consists of multiple-choice questions and
student responses within a course. It also contains data from 40 attributes and
162 students.

As part of the sample application, a cheating detection study was conducted
using data from an online exam. In this study, a binary classification analysis
was performed using the XGBoost algorithm in Python to distinguish between
"cheated" and "not cheated" classes. The success rates achieved are quite high,
with remarkable accuracy (0.969), precision (0.958), and F1 score (0.929).
However, despite this high success, detailed information about the features that
affect the model's decision-making process is mnot directly accessible.
Explanatory Al methods provide interpretable results by revealing the positive
and negative effects of independent variables on the model. In this context,
SHAP and LIME analyses were applied in the study, aiming to gain a deeper
understanding of the model outputs.

High
exam_type . VAgpe 3o Apng - - VR A A .
supervision VIBAA- Y | P P oo cmtaads
AB 48 - acpgans
A13 - a{iaaEpe. .*-. .e
Al4 sl alges -
All cilithly |t ao.
A3 s Lol T
Al2 o ccubnn ’-—- .
Az oo s
ALS e J3g- E
A7) &
ne wmpe-
departmen --*. -
Al e
na i
A9 -‘4
AlO +
AS ..'..
—4 3 > 1) 1 3 3 Low

SHAP value (impact on model output)

Graph 1. XGBoost descriptive SHAP summary analysis result
SHAP analysis values for the XGBoost model are given in Graph 1.

e Horizontal axis (SHAP value): Shows the effect of features on model
prediction.

78

e Positive values: Contribute to shifting the prediction toward the
"cheated" class.

e Negative values: Contribute to shifting the prediction toward the "did
not cheat."

e Colors: Indicate the magnitude of feature values (blue = low value, red
= high value).

The direction and extent to which the features in the data set affect the
“cheated” and “did not cheat” classes are given below:

v’ exam_type

e It is one of the most important variables.

e Most of the red dots are on the positive side; some exam types seem to
direct students to the "cheated" classification.

e The concentration of blue dots on the negative side indicates that other
exam types are more likely to support the "did not cheat" classification.

v’ supervision

e It is a second-order variable.

e When the level of supervision is low (blue), the SHAP value is positive;
that is, if supervision is low, the probability of the student being assigned to the
"cheated" class increases.

e When the level of supervision is high (red), the SHAP value is negative;
that is, if supervision is tight, the probability of the student being assigned to the
"did not cheat" class increases.

v' Variables such as A6, A13, Al4, All

e Itis of moderate significance to the model.

e It has both positive and negative effects, indicating that different values
of the features can increase or decrease the likelihood of cheating.

e In particular, in variables A6 and A13, the red dots are on the positive
side; higher values support the "cheated" classification.

v' Variables such as A2, A15, A7, A8

e They have a similar effect, but slightly lower in importance.

e They contribute differently to both the cheated and non-cheated classes.

v departmen

e Itis avariable with a lower impact level.

e The fact that red dots are generally on the positive side of the SHAPE
suggests that in some sections, students are more likely to be classified as
"cheating."

e Blue values, on the other hand, support the "not cheating" classification.

79

As a result, the strongest predictors in the model are "exam type" and
"supervision." Under certain exam types and low supervision conditions, a
strong contribution is made to the "cheated" class. However, when considering
high supervision and exam types, a strong contribution is made to the "did not
cheat" class.

Figure 3 shows the LIME analysis values for the XGBoost model.

Prediction probebilities Low High
-1.09 < exam type <=... Feature Value
Low [1.0
[.93 < supervision <=...
o >

LM <Al4 <081
!

092<A3<= 109
018

-1.52 <Al <= 0.6
018

A.89<Al2<= 112
008

-141<A6<=0.71
0108

-LI2<AL5 <= 089

06

-L07<A2<=093 «

0

Figure 3. LIME analysis result for XGBoost model

According to Figure 3;

v" Prediction probabilities (box on the left):

e For this example, the model chose the "Low" class (did not cheat) with
100% probability.

e For the "High" class (did cheat), the probability is 0.00, meaning the
model's decision is very clear.

v' Middle part (contribution of features to the decision):

e Blue bars support the "did not cheat" classification.

e Orange bars support the "cheated" classification.

e The length of the bars indicates the contributing power of the feature on
the decision.

v" Table on the right (Feature — Value):

e It shows the values that the relevant student/sample received for these
variables.

The direction and extent to which the features in the data set affect the
“cheated” and “did not cheat” classes are given below:

v' exam_type (0.92)

e Itis the variable with the strongest effect.

80

¢ On the blue side, this exam type provides strong support for the student
being in the "did not cheat" class.

v' supervision (1.07)

e On the orange side, the probation conditions move this student slightly
toward the "cheated" class. But the effect is not as strong as "exam_type," so the
decision remains unchanged.

v Variables such as A14 (0.81), A3 (1.09), A1l (0.66), A12 (1.12), A6
(0.71)

e All are on the blue side; these variables contribute to the student being
in the "did not cheat" class.

e A3 and A12 are particularly strongly on the blue side.

v' Variables such as A13 (0.96), A15 (0.89), A2 (0.93)

e On the orange side, although the current values of these variables direct
the student to the “cheated” class, their contribution is relatively weaker.

4. RESULTS AND DISCUSSION

The emergence of Al tools has achieved great success in predicting system
stability in important areas such as healthcare, finance, and education. This
study examines XAl methods as solutions to the black-box problems of deep
learning and machine learning models. XAl contributes to the field by
comparing studies in the literature within the framework of transparency, trust,
fairness, interpretability, and understandability criteria. SHAP and LIME
techniques, which are widely used in the literature, are compared with all their
features and the differences between them are stated. In addition, it has been
observed that the features that can be effective in the model's decision, with the
example applications, offer solutions to understandability by showing in what
direction and to what extent they affect the model.

81

REFERENCES

Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: a survey on
explainable Al (XAl). IEEE access, 6, 52138-52160.

Ali, S., Abuhmed, T., El-Sappagh, S., Muhammad, K., Alonso-Moral, J. M.,
Confalonieri, R., ... & Herrera, F. (2023). Explainable Al (XAI): What
we know and what is left to attain Trustworthy Al. Information
fusion, 99, 101805

Band, S. S., Yarahmadi, A., Hsu, C. C., Biyari, M., Sookhak, M., Ameri, R, ...
& Liang, H. W. (2023). Application of explainable Al in medical health:
A systematic review of interpretability methods. Informatics in Medicine
Unlocked, 40, 101286.

Bearman, M., ve Ajjawi, R. (2023). Learning to work with the black box:
Pedagogy for a world with Al British Journal of Educational
Technology, 54(5), 1160-1173.

Brozek, B., Furman, M., Jakubiec, M., ve Kucharzyk, B. (2024). The black box
problem revisited. Real and imaginary challenges for automated legal
decision making. Al and Law, 32(2), 427-440.

Contreras, J., ve Bocklitz, T. (2025). Explainable Al for spectroscopy data: a
review. Pfliigers Archiv-European Journal of Physiology, 477(4), 603-
615.

Erdem, B., & Karabatak, M. (2025). Cheating detection in online exams using
deep learning and machine learning. Applied Sciences, 15(1), 400.

Gallee, L., Kniesel, H., Ropinski, T., & Goetz, M. (2023, September). Al in
radiology—beyond the black box. In R6Fo-Fortschritte auf dem Gebiet
der Rontgenstrahlen und der bildgebenden Verfahren (Vol. 195, No. 09,
pp. 797-803). Georg Thieme Verlag KG.

Ghasemi, A., Hashtarkhani, S., Schwartz, D. L., & Shaban-Nejad, A. (2024).
Explainable Al in breast cancer detection and risk prediction: A
systematic scoping review. Cancer Innovation, 3(5), e136.

Hassani, H., Silva, E. S., Unger, S., TajMazinani, M., ve Mac Feely, S. (2020).
Al (AI) or intelligence augmentation (IA): what is the future?. 4i, 1(2), 8.

Hassija, V., Chamola, V., Mahapatra, A., Singal, A., Goel, D., Huang, K., ... ve
Hussain, A. (2024). Interpreting black-box models: a review on
explainable Al. Cognitive Computation, 16(1), 45-74.

Holzinger, A., Goebel, R., Fong, R., Moon, T., Miiller, K. R., & Samek, W.
(2020, July). xxAl-beyond explainable Al. In International Workshop on
Extending Explainable Al Beyond Deep Models and Classifiers (pp. 3-
10). Cham: Springer International Publishing.

82

Hsieh, W., Bi, Z., Jiang, C., Liu, J., Peng, B., Zhang, S., ... ve Liang, C. X.
(2024). A comprehensive guide to explainable ai: From classical models
to llms. arXiv preprint arXiv:2412.00800.

Infant, S. S., Vickram, S., Saravanan, A., Muthu, C. M., ve Yuarajan, D. (2025).
Explainable Al for sustainable urban water systems engineering. Results
in Engineering, 25, 104349

Kalasampath, K., Spoorthi, K. N., Sajeev, S., Kuppa, S. S., Ajay, K., ve
Angulakshmi, M. (2025). A Literature review on applications of
explainable Al (XAl). IEEE Access.

Linardatos, P., Papastefanopoulos, V., & Kotsiantis, S. (2020). Explainable ai:
A review of machine learning interpretability methods. Entropy, 23(1),
18.

Loyola-Gonzalez, O. (2019). Black-box vs. white-box: Understanding their
advantages and weaknesses from a practical point of view. /[EEE
access, 7, 154096-154113.

Mondal, B. (2020). Al: State of the Art. In: Balas, V., Kumar, R., Srivastava, R.
(eds) Recent Trends and Advances in Al and Internet of Things.
Intelligent Systems Reference Library, vol 172. 389-425. Springer,
Cham. https://doi.org/10.1007/978-3-030-32644-9 32.

Mumuni, F., & Mumuni, A. (2025). Explainable Al (XAI): from inherent
explainability to large language models. arXiv preprint
arXiv:2501.09967.

Nasarian, E., Alizadehsani, R., Acharya, U. R., & Tsui, K. L. (2024). Designing
interpretable ML system to enhance trust in healthcare: A systematic
review to proposed responsible clinician-Al-collaboration
framework. Information Fusion, 108, 102412.

Phillips, P. J., Phillips, P. J., Hahn, C. A., Fontana, P. C., Yates, A. N., Greene,
K., ... ve Przybocki, M. A. (2021). Four principles of explainable Al.

Salih, A. M., Raisi-Estabragh, Z., Galazzo, 1. B., Radeva, P., Petersen, S. E.,
Lekadir, K., & Menegaz, G. (2025). A perspective on explainable Al
methods: SHAP and LIME. Advanced Intelligent Systems, 7(1), 2400304.

Sampson, C. J., Arnold, R., Bryan, S., Clarke, P., Ekins, S., Hatswell, A., ... &
Wrightson, T. (2019). Transparency in decision modelling: what, why,
who and how?. Pharmacoeconomics, 37(11), 1355-13609.

Schwartz, R., Schwartz, R., Vassilev, A., Greene, K., Perine, L., Burt, A., ve
Hall, P. (2022). Towards a standard for identifying and managing bias in
Al (Vol. 3, p. 00). Gaithersburg, MD: US Department of Commerce,
National Institute of Standards and Technology.

83

https://doi.org/10.1007/978-3-030-32644-9_32

Von Eschenbach, W. J. (2021). Transparency and the black box problem: Why
we do not trust Al. Philosophy & technology, 34(4), 1607-1622.
Wiewidrowski, W. European Data Protection Supervisor. URL: https.//edps.

europa. eu/about-edps/members-mission/supervisors/wojciechwiewi%
C3% B3rowski_en (last accessed: 18.09. 2025).

84

Chapter 5

Applied TinyML for Embedded Intelligence:
A Real-Time HAR Implementation on
Arduino Nano 33 BLE Sense

irfan OKTEN!

ABSTRACT

This book chapter presents an in-depth examination of Tiny Machine Learning
(TinyML) and its transformative role in enabling embedded intelligence on
resource-constrained microcontroller-based systems. TinyML brings artificial
intelligence from cloud-centered infrastructures to ultra-low-power edge devices,
offering real-time inference, enhanced privacy, reduced bandwidth requirements,
and significant energy savings. The chapter begins by outlining the conceptual
foundations of TinyML, including the characteristics of embedded systems, the
principles of edge Al, and the unique workflow required to deploy machine
learning models on devices with kilobytes of RAM and milliwatt-level power
budgets. Essential model optimization strategies—such as quantization, pruning,
and knowledge distillation—are analyzed to highlight their importance for
achieving feasible and efficient inference on restricted hardware. The chapter
further explores the software ecosystem supporting TinyML, with detailed
discussion of frameworks such as TensorFlow Lite Micro, Edge Impulse, and
MicroTVM, emphasizing their roles in data acquisition, model development, and
on-device deployment. The experimental component features a real-time Human
Activity Recognition (HAR) implementation on the Arduino Nano 33 BLE
Sense, employing a lightweight 1D CNN model trained on accelerometer data.
Through INTS post-training quantization, the model achieves a 75% reduction in
memory size, a 2.4x improvement in inference speed, and a 59% reduction in
energy consumption, while maintaining accuracy with only minimal degradation.
These results validate the practical viability of TinyML for real-world embedded
applications where efficiency and responsiveness are paramount. Finally, the
chapter identifies and discusses major research challenges—including hardware
heterogeneity, compiler limitations, security vulnerabilities, resource-aware

! Assist. Prof. ; Bitlis Eren University Faculty of Engineering and Architecture, Department of Computer
Engineering, iokten@beu.edu.tr, ORCID: 0000-0001-9898-7859

85

optimization, and the need for on-device and continual learning. Emerging trends
such as neuromorphic computing, processing-in-memory (PIM), energy-
harvesting autonomous Al systems, and integration within 6G-enabled IoT
infrastructures are explored as key opportunities shaping the future direction of
the field. Overall, the chapter provides a comprehensive framework for
understanding both the current landscape and future evolution of TinyML-driven
embedded intelligence.

Keywords: TinyML, Embedded intelligence, Model compression, Real-Time
human activity recognition

86

1. INTRODUCTION

In recent years, the trajectory of artificial intelligence (Al) has increasingly
shifted from centralized, cloud-based infrastructures toward decentralized, on-
device intelligence. Traditional machine learning (ML) applications have
primarily relied on large-scale computing resources, heavy memory and storage
capacities, and consistent connectivity to remote servers. However, today's
technological landscape demands more ubiquitous, energy-efficient, and
latency-sensitive Al solutions. In response, the field of TinyML (Tiny Machine
Learning) has emerged as a compelling paradigm: it focuses on executing ML
models directly on severely resource-constrained microcontrollers (MCUs) and
embedded systems. As articulated by Soro and Banbury, TinyML offers ultra-
low power consumption, real-time processing at the data source, and reduced
dependency on cloud connectivity (Soro, 2021; Banbury et al., 2020).

Embedded within this paradigm shift is the broader concept of “embedded
intelligence” — systems that not only collect data passively, but also make
autonomous decisions locally. As Yelchuri and R. note, TinyML is redefining
this notion: devices evolve from simple sensors or data-loggers into active
intelligent agents, capable of perception, inference and adaptation at the edge
(Yelchuri & R., 2022). This transition brings about several strategic advantages:
lower network latency (since less data must be transmitted), enhanced data
privacy (since raw data remains on the device), and favorable environmental
implications (thanks to lower energy consumption and less reliance on data-
centres).

The significance of TinyML becomes particularly salient in domains such as
the Industrial Internet of Things (IloT), wearable health-monitoring, smart city
deployments and pervasive sensing networks. In such contexts, devices operate
under strict constraints in power budget, memory size, computational
throughput and communication bandwidth. The TinyML paradigm addresses
these constraints head-on by leveraging model compression, hardware-aware
optimisations and co-design of algorithms with embedded platforms. Recent
surveys highlight the maturity of the tool-chains and frameworks supporting
TinyML (Kref et al. 2024; Loh & Guo 2025; Wilson & Singh 2025).

Despite its rapid growth and considerable promise, TinyML remains a field
rife with research challenges and unresolved questions. On the one hand, the
requirement to deploy ML inference (and eventually training) on devices with a
few kilobytes of RAM, minimal flash storage and limited power means that
novel optimisation methods (quantisation, pruning, efficient model
architectures, neural-architecture search) must be developed and tailored to the
embedded domain. On the other hand, system-level issues such as heterogeneity

87

of hardware platforms, tool-chain fragmentation, lifecycle management,
security and privacy at the edge continue to hinder wide adoption. Recent work
emphasises the need for holistic co-design approaches, benchmarking
frameworks and lifecycle automation to drive TinyML beyond prototyping
(Maldonado et al. 2025; Reddi et al. 2022).

In this book chapter, we present a rigorous and comprehensive examination
of TinyML within the context of embedded intelligence. We begin by outlining
the fundamental concepts, typical system architecture and model-optimization
techniques that make TinyML feasible on resource-limited devices. We then
survey the ecosystem of supporting tools and frameworks, and map out the
major application domains in which TinyML has already demonstrated impact.
Following that, we delve into the key challenges—both technical and
systemic—that currently impede broader deployment, and highlight ongoing
research directions and future opportunities that can propel TinyML to its full
potential. Our aim is to equip readers with both the theoretical foundation and
practical insight needed to appreciate, design and evaluate TinyML systems
within embedded contexts.

They introduce deep neural network models that classify movements such as
walking, running, and squatting using IMU data collected with the Arduino
Nano 33 BLE Sense. The authors compare architectures such as MLP, CNN-
LSTM, and CNN-GRU, reporting the best accuracy. They then demonstrate the
practicality of on-device inference, memory, and power savings by compressing
the models and running them on the same board (Kumari et al. 2024).

Lipski investigates hand gesture recognition using photodiode data on the
Arduino Nano 33 BLE (directly related to the Nano 33 BLE Sense); different
RNN-based and CNN-LSTM architectures are tested; and real-time
classification challenges on an embedded device are discussed. This paper
details practical experiences and limitations, particularly regarding MCU
constraints (TensorFlow Lite for Microcontrollers support, model sizes, and
latency estimation) (Lipski, 2022).

They focus on designing lightweight yet efficient models like DeepConv-
LSTM and deploying them to edge devices using TinyML toolchains; the
authors report that the best model delivers both high accuracy and low latency.
The paper details the deployment of the best model via Edge Impulse on an
Arduino Nano 33 BLE Sense Rev2, with positive post-quantization
size/power/latency measurements (Zhou et al. 2025).

88

2. FUNDAMENTALS OF TINYML AND EMBEDDED
INTELLIGENCE

In this section, the concepts and architectural details underlying TinyML will
be discussed from an academic perspective.

2.1. Overview of Embedded Systems and Edge Al

Embedded systems are computing units designed around microprocessors or
microcontrollers (MCUs), typically task-oriented, with real-time constraints. In
the context of TinyML, these systems are typically considered extreme edge
devices. Unlike traditional cloud-based artificial intelligence (AI) models, the
MCUs targeted by TinyML typically have constraints ranging from 256 KB to 1
MB of Flash memory, 8 KB to 512 KB of SRAM, and power consumption on
the mW level (Banbury et al., 2020). These constraints mandate hardware-
software co-design in system design. Edge Al emerged in response to the
latency, bandwidth costs, and data privacy concerns brought about by cloud
computing. Edge Al: While inference requires high processing power on server-
level or more powerful embedded systems (Single Board Computers (SBCs),
TinyML focuses on the most energy- and memory-constrained devices at the
lower end of the spectrum. This distinction forms the core philosophy of
TinyML: maximum inference efficiency with minimum energy consumption.
Embedded intelligence describes the evolution of these devices from passive
data collectors to local and autonomous decision makers. This transformation is
especially critical in applications such as real-time anomaly detection,
continuous monitoring, and local speech recognition (Yelchuri & R., 2022).

2.2. TinyML Architecture and Workflow

The TinyML workflow, unlike the traditional ML pipeline, includes an
additional optimization phase focused on deployment in a resource-constrained
environment. This pipeline represents the intersection of scientific and
engineering disciplines.

Model Training and Optimization:

Model training is typically performed on cloud servers or powerful
workstations. However, compactness is a priority in the model architecture
selection for TinyML. For example, instead of standard convolutional networks
(CNNs), architectures like MobileNet or EfficientNet, which use depthwise
separable convolutions (DEP), which significantly reduce the number of
parameters and operations, are preferred (Lin et al., 2023).

89

The optimization phase is the heart of TinyML:

e Quantization: This reduces model size by a factor of four and increases
inference speed by downsizing floating-point (FP32) weights and activations to
a low bit depth (typically INTS). However, maintaining model accuracy after
quantization requires techniques such as Quantization-Aware Training (QAT).
QAT simulates quantization effects during training, making the model more
resilient.

e Pruning: Pruning addresses over-parameterization in ML models.
Structured Pruning cleans up the network architecture by removing entire filters
or neurons, while Unstructured Pruning resets individual weights. For
embedded devices, structured pruning is more advantageous because it saves
inference time.

Deployment:

The optimized model is converted to a target hardware-specific
programming language (typically C/C++) and embedded into the target MCU
along with embedded inference engines. TensorFlow Lite Micro (TFLM) is a
critical inference engine that optimizes core functions and memory allocation
strategies for the MCU's limited architecture. Additionally, the use of hardware-
specific libraries such as CMSIS-NN, a library optimized for ARM Cortex-M
series processors, maximizes inference speed and energy efficiency (Tosun &
Erdem 2024).

Data Collection

A

Model Training

Model
P e HT' ML
Optimization e]
.

.

Deployment J

.

Figure 1. General workflow of TinyML development

90

Figure 1 illustrates the overall workflow of the TinyML development
process, encompassing the stages from data collection to deployment on
embedded microcontrollers. The process begins with the acquisition and
preprocessing of sensor data, which serves as the foundation for model training
performed on high-performance computing systems. Once a baseline model is
obtained, optimization techniques such as quantization and pruning are applied
to reduce memory footprint and computational complexity, enabling efficient
execution on resource-constrained hardware. The optimized model is then
converted and deployed onto embedded devices, where real-time inference
takes place locally. This pipeline exemplifies the integration of machine
learning with embedded intelligence, ensuring low latency, enhanced privacy,
and energy-efficient autonomous operation at the network edge.

2.3. Core Techniques for Model Compression

TinyML's fundamental viability hinges on its ability to radically reduce the
memory and computational cost of machine learning models with acceptable
accuracy loss. This section details the scientific background of the underlying
compression techniques.

2.3.1. Quantization

Quantization is the process of reducing the precision of model parameters
and calculations. Scientifically, this is the mapping of a floating-point number
(32 bits) to an integer representation (8 bits or less).

Q = round(+ 2) (1)

Here, R is the original floating-point value, S is the scale factor, Z is the zero
point, and Q is the quantized integer value. Quantization not only reduces
memory usage (the size is reduced by a factor of 4), but also increases inference
speed because integer arithmetic requires fewer cycles and energy than floating-
point operations.

Quantization Types:

e Post-Training Quantization (PTQ): This is applied after model training
is complete. It is fast but carries a high risk of accuracy loss. This risk is
mitigated by using a calibration dataset.

e Quantization-Aware Training (QAT): Quantization simulation is
included in the training cycle. This typically provides the highest performance
by allowing the model to learn more robustly against quantization-induced
information loss, but training time is longer.

91

2.3.2. Pruning

Pruning reduces the number of parameters and FLOPs (Floating Point
Operations) by increasing the sparsity of the model.

Structured Pruning vs. Unstructured Pruning:

e Unstructured Pruning: Sets the least important individual weights in the
network to zero. This offers the highest compression ratio, but requires
specialized hardware or compressed formats (sparse matrix format) and does
not provide speedups on standard MCU .

e Structured Pruning: Removes all neurons, filters, or layers. This
changes the model's architecture but provides significant speedups on
CPUs/MCUs during inference because the matrix multiplication dimensions in
the network are directly reduced.

Pruning is typically implemented using Iterative Pruning methods: the model
is pruned, the remaining weights are retrained (fine-tuned), and this cycle is
repeated until the target sparsity ratio is reached.

2.3.3. Knowledge Distillation

This technique involves training the Student model by using the probability
distributions (soft labels or "soft targets") generated by a large model (Teacher)
as an additional loss function for a small model (Student). The Student learns
not only the hard labels but also the relationships between the class probabilities
of the Teacher model (Wang & Yoon 2022).

Lpistitiation = aLSoft + (1 = a)Lyara (2)

Here, Lsott 1s a Loss function that allows the Student model to mimic the
smooth outputs of the Teacher model. Ly is the standard cross-entropy loss.
The constant o determines the relative importance of these two losses. This
allows the small Student model to operate with minimal computational
overhead while absorbing a large portion of the Teacher model's information
power.

3. TOOLS, FRAMEWORKS, AND TYPICAL APPLICATIONS

3.1. Major Frameworks for TinyML

The TinyML development environment focuses on finding the balance
between ease of use, rapid prototyping, and hardware support.

e TensorFlow Lite Micro (TFLM): Developed by Google, TFLM can run
with around 16 KB of Flash and a few KB of RAM. Written in C++, TFLM
supports efficient integer computations primarily through low-level C kemels.
TFLM's architecture uses a dedicated memory manager that ensures kernels are

92

loaded onto the device only when needed. This minimalist approach makes
TFLM indispensable for MCUSs.

e Edge Impulse: As a highly integrated platform, Edge Impulse offers
developers an end-to-end solution for data acquisition, model training,
optimization, and deployment. In particular, supporting various sensor types
(accelerometer, microphone, camera) and facilitating data flow through tools
like Data Forwarder significantly accelerates the prototyping process.

e Apache TVM and MicroTVM: TVM, an open-source machine learning
compiler framework, stands out for its ability to generate optimized code for
various hardware. By extending this capability to MCUs, MicroTVM allows
developers to deeply optimize model inference code for specialized hardware
architectures. This is a critical research topic for maximizing the synergy
between hardware architecture and software optimization.

3.2. Typical Application Areas

TinyML applications are characterized by the need to reduce the cycle time
and energy costs between sensing and inference.

e Industrial Predictive Maintenance: Local analysis of data from vibration
and acoustic sensors enables early detection of machine malfunctions. By
running anomaly detection models on the device, TinyML sends alerts over the
network only when anomalies are detected. This can reduce bandwidth and
energy consumption by up to 1000 times.

e Healthcare and Wearable Devices: Continuous vital sign monitoring
(heart rate, oxygen saturation) or activity recognition (fall detection) models
provide instant alerts while preserving privacy (Kahya & Aslan, 2024). TinyML
allows these devices to operate in an always-on but ultra-low-power mode.

e Zero-Power Al: Research is accelerating to run TinyML models on
battery-free devices powered by energy harvesting (solar, vibration, RF). This is
particularly revolutionary for remote and isolated environmental monitoring
applications.

3.3. Impact on Embedded Intelligence

TinyML has permanently changed the architecture and philosophy of
embedded systems. The fundamental paradigm of embedded intelligence now
revolves not only around efficiency but also cognitive autonomy.

e Breaking Data Silos: TinyML eliminates the need to collect data in a
centralized storage unit. This supports the transition to local data processing and

93

distributed intelligence architectures. This approach not only enhances privacy
but also increases system resilience against global network failures.

e Environmental Sustainability: While the energy footprint of cloud
computing centers is constantly increasing, TinyML's ultra-low power
consumption helps the Internet of Things (IoT) achieve its green computing
goals. Delivering Al capabilities at the milliwatt level is a key factor for an
energy-sustainable digital future (Abadade et al., 2023).

4. EXPERIMENTAL IMPLEMENTATION AND RESULTS

To further substantiate the applicability of TinyML methodologies in real-
world embedded intelligence tasks, an extended experimental implementation
was conducted focusing on real-time Human Activity Recognition (HAR). The
primary aim was to investigate how model compression strategies—particularly
post-training quantization—affect on-device latency, memory utilization, and
energy efficiency under stringent hardware constraints.

4.1. Experimental Setup

The experimental platform consisted of the Arduino Nano 33 BLE Sense, a
representative low-power microcontroller board frequently used in TinyML
research. The device features a 64-MHz ARM Cortex-M4F processor with 256
KB SRAM and 1 MB Flash, making it suitable for evaluating memory-sensitive
inference tasks. The board’s built-in 3-axis accelerometer (sampling at 50 Hz)
served as the sole sensor input.

A custom HAR dataset was collected with three activity classes—walking,
running, and standing—each recorded for 10 minutes. The raw accelerometer
readings were pre-processed using a 100-sample sliding window with 50%
overlap, producing fixed-size feature segments suitable for lightweight time-
series modeling.

Model development was carried out in TensorFlow using a compact 1-D
CNN architecture composed of:

Conv1D layer: 16 filters, kernel size = 3

Conv1D layer: 32 filters, kernel size = 3

Dense layer: 32 units

e Softmax output: 3 classes

Training achieved 94.7% accuracy on the wvalidation set. To enable
microcontroller deployment, the model underwent INT8 post-training
quantization with TensorFlow Lite, resulting in a significant memory footprint
reduction. Deployment was performed via TensorFlow Lite Micro (TFLM)
using the Arduino IDE.

94

For power profiling, a Nordic Power Profiler Kit (PPK2) was connected
inline with the Arduino board to capture instantaneous current draw during
inference, enabling precise computation of energy per inference.

4.2. Performance Evaluation
Table 1. Performance evaluation of the system

Metric Float32 Model INT8 Quantized Improvement
Model

Model Size 236 KB 59 KB =75 %

Inference Time (ms) 14.2 5.8 ~2.4x faster

@64 MHz

Peak RAM Usage (KB) | 98 42 =57 %

Classification Accuracy | 94.7 % 93.8 % —0.9 % loss

Energy Consumption 0.62 0.25 =59 %

(mJ/inference)

The results demonstrate that INT8 quantization yields substantial
improvements in every resource-sensitive metric. The compressed model fits
comfortably within the MCU’s memory limits while accelerating inference by a
factor of 2.4%. The marginal 0.9% accuracy reduction illustrates the robustness
of quantization for time-series classification tasks. The effects of INTS
quantization on model size, latency, memory usage, and energy consumption
are presented in detail in Table 1.

Energy measurements from the PPK2 show a 59% reduction in per-inference
energy cost, confirming the advantages of running compressed neural networks
locally on embedded devices.

4.3. Discussion

The experiment validates the theoretical claims of TinyML: through
quantization and hardware-aware optimization, ML inference can be performed
efficiently on microcontrollers. The observed trade-off between model
compactness and accuracy remains manageable, particularly for classification
tasks tolerant of small accuracy loss. Furthermore, edge-based inference
eliminates the need for continuous wireless transmission, providing an
estimated 70-80 % reduction in total system energy consumption during
operation.

95

Future enhancements could include exploring structured pruning and
quantization-aware training (QAT) to further optimize accuracy-efficiency
balance. Integrating energy-harvesting circuits may also extend operational
lifetime toward battery-free TinyML scenarios.

5. CHALLENGES AND RESEARCH ISSUES

While the TinyML paradigm brings embedded intelligence to constrained
devices, it also brings with it significant scientific and engineering challenges.
These challenges constitute the focus of academic research in the field.

5.1. The Resource Bottleneck: Optimization and Accuracy Trade-offs

The key limitations of TinyML are both memory (SRAM/Flash) and
compute capacity (MIPS/DMIPS). While traditional ML models require
gigabytes of memory, TinyML devices can have less than 1/1000th that amount
of memory (Banbury et al., 2020).

e Model Accuracy-Efficiency Tradeoff: While model compression
techniques (quantization, pruning) are critical, they often result in a decrease in
the overall model accuracy. A primary goal of academic research is to develop
methods that minimize or compensate for this decrease. Hardware-aware
quantization algorithms are needed to prevent accuracy loss, particularly in
cases of excessive quantization (e.g., 4-bit or binary quantization).

e Dynamic Resource Management: TinyML devices are typically battery-
powered and subject to environmental conditions (temperature, humidity). In
these dynamic environments, the development of adaptive inference
mechanisms that can instantly manage power consumption and computational
resources, even adjusting the model compression level based on task intensity,
is an important research topic (Kallimani et al., 2023).

5.2. Hardware Heterogeneity and Specialized Accelerators

The world of embedded systems includes a wide variety of microcontroller
families (ARM Cortex-MO to Cortex-M7), digital signal processors (DSPs), and
custom-designed Al accelerators. This heterogeneity creates challenges for
portability and optimization.

e Compiler Challenges: Re-optimizing and compiling an ML model to
run most efficiently on different hardware architectures is complex. Compiler
frameworks like MicroTVM aim to address this issue by converting the ML
model to a hardware-specific intermediate representation and then optimizing it
for hardware kernels. However, developing efficient compilers and runtime

96

environments for next-generation neuromorphic chips remains an open area of
research.

e Hardware-Software Co-Design: To further advance the capabilities of
TinyML, specialized, low-power hardware accelerators (e.g., Edge TPU)
designed with the constraints of ML models in mind are crucial. Research is
focused on developing new architectures that provide the best balance between
power consumption and computational efficiency, particularly event-driven
architectures like Spiking Neural Networks (SNNs).

5.3. Security and Privacy Implications at the Edge

Although processing data locally increases privacy, TinyML devices face
new security and privacy threats.

e Model Intellectual Property and Attacks: The optimized ML model
stored in the MCU is an intellectual property (IP) asset. If the device is
physically compromised, there is a risk of model parameters being stolen
through model extraction attacks. Secure boot, hardware encryption, and
obfuscation techniques are being investigated to mitigate this risk.

e Data Poisoning and Reliability: TinyML devices can receive data from
low-cost sensors. Malicious actors can manipulate sensor data (data poisoning)
or use adversarial attacks during the inference phase to cause the model to
produce inaccurate results. Hardening techniques need to be developed to
ensure TinyML devices are resilient to such attacks while minimizing
computational overhead.

5.4. Learning Paradigm Shifts: From Inference to On-Device Learning

TinyML's current focus is on a model trained in the cloud performing
inference on-device, but future systems should have limited on-device learning
capabilities.

e On-Device Learning and Continual Learning: The device requires small
amounts of local retraining (fine-tuning) to adapt to changing environmental
data (data drift) over time. Given memory and power constraints, high-
efficiency, memory-friendly optimization algorithms for updating model
weights (e.g., minimized versions of Stochastic Gradient Descent) are a critical
research topic.

e Federated Learning (FL): Multiple devices train the model with their
own local data and send only the updated weight differences (gradients) to a
central server, enabling global model improvement while preserving privacy.
While TinyML is an ideal endpoint for FL, ensuring FL algorithms operate

97

efficiently in the context of ultra-low power and unreliable network connections
presents significant engineering challenges.

6. FUTURE TRENDS AND OPPORTUNITIES
The future of TinyML offers both exciting trends that push the boundaries of
technology and new market opportunities.

6.1. Next-Generation Hardware and Architectures

The biggest factor that will shape the future of TinyML will be the leaps in
hardware.

e Neuromorphic and Event-Driven Computing: Neuromorphic chips (e.g.,
Intel Loihi) bring Al closer to the principles of biological brains: computation
and memory are unified, with processing power triggered by events (spikes).
These architectures promise picojoule (pJ) energy consumption, making it
possible to achieve Zero-Power Al. The integration of Event-Based Vision (EV)
and TinyML with these architectures is a significant focus of academic
research.

e Data-Aware Computing (PIM): PIM technologies, which move the
computation unit into memory, eliminate the energy cost of data transfer. PIM
for TinyML will significantly alleviate memory constraints, enabling larger,
more complex models to be run on constrained devices. Data-Aware Computing
(In-Memory Computing/Processing-in-Memory) technologies eliminate the
energy cost of data transfer. PIM for TinyML will significantly alleviate
memory constraints, enabling larger, more complex models to run on
constrained devices.

6.2. Integration with Edge-Cloud Continuum and 6G IoT

TinyML is no longer an isolated technology, but part of a larger edge-cloud
continuum architecture.

e 6G IoT and Cognitive Networks: Future 6G networks aim to integrate
local and hyper-fast computing capabilities. TinyML devices will serve as
cognitive sensors in these networks, providing local Al inference to manage and
optimize network resources (Scribd, 2023). TinyML will play a critical role in
meeting the low latency and high reliability requirements of 6G.

e Hierarchical Inference: Some data is processed on the most constrained
TinyML device (layer Lo), more complex data is processed on the local gateway
(layer L;), and the most complex analysis is processed in the cloud (layer L,).
This hierarchical model maximizes both energy efficiency and depth of
analysis.

98

6.3. Novel Application Domains and Societal Impact

e Biomedical and Personalized Healthcare: TinyML-powered implantable
devices and smart biosensors will enable continuous and autonomous
monitoring of chronic diseases. Real-time diagnostic and alert capabilities have
the potential to revolutionize patient care (Scribd, 2023).

e Sustainable Development and Environmental Monitoring: TinyML
offers the opportunity to directly contribute to the United Nations Sustainable
Development Goals (SDGs) by providing cost-effective and energy-efficient
solutions for areas such as monitoring natural habitats, localized detection of
climate change impacts, and increasing agricultural productivity (Abadade et
al., 2023).

7. CONCLUSION

TinyML for Embedded Intelligence is a rapidly evolving, interdisciplinary
field that represents the marriage between machine learning and embedded
systems. Initially launched with the mission of enabling Al with limited
resources, TinyML now forms the foundation of cognitive systems that offer
real-time autonomy, superior privacy, and environmental sustainability.

Continuous advances in model compression techniques (quantization and
pruning) and optimized software frameworks like TFLM have made TinyML
widely applicable to applications ranging from Industrial IoT to healthcare.
However, issues such as hardware heterogeneity, adaptive resource
management, cybersecurity threats, and on-device learning capabilities remain
pressing challenges for academic research. The future holds the promise of
further expanding TinyML's capabilities through integration with neuromorphic
hardware, PIM technologies, and 6G infrastructure. Ultimately, TinyML defines
the future of distributed and planet-friendly intelligence, enabling the digital
world to intelligently interpenetrate the physical world.

99

REFERENCES

Abadade, Y., Temouden, A., Bamoumen, H., Benamar, N., Chtouki, Y., &
Hafid, A. S. (2023). A Comprehensive Survey on TinyML. /[EEE Access:
Practical Innovations, Open Solutions, 11, 96892-96922.
https://doi.org/10.1109/access.2023.3294111

Adlakha, A., & Kabbar, M. (2024). The Challenges of TinyML
Implementation: A Literature Review. CITRENZ2023 Proceedings, 1-7.
Unitec ePress.

Banbury, C., et al. (2020). MLPerf tiny benchmark. Proceedings of Machine
Learning and Systems, 1-16.

Bulutistan, Retrieved November 7, 2025, from https://bulutistan.com/blog/ai-
model-compression-nedir-yapay-zeka-modellerini-optimize-etme-
teknikleri/

Kahya, E., & Aslan, Y. (2024). Derin Ogrenme Destekli Ger¢cek Zamanli Zeytin
Tespiti Uygulamasi. Osmaniye Korkut Ata Universitesi Fen Bilimleri
Enstitiisti Dergisi, 7(4), 1438-1454.
https://doi.org/10.47495/okufbed.1392386.

Kallimani, R., Yelchuri, A., & Soro, F. (2023). Performance Evaluation of
TinyML Algorithms on Resource-Constrained Devices.

KreB3, P., et al. (2024). A review on resource-constrained embedded vision

systems-based Tiny Machine Learning for robotic applications.
Algorithms, 17(11), 476. https://doi.org/10.3390/a17110476.

Kumari, N., Yadagani, A., Behera, B., Semwal, V. B., & Mohanty, S. (2024).
Human motion activity recognition and pattern analysis using

compressed deep neural networks. Computer Methods in Biomechanics
and Biomedical Engineering: Imaging & Visualization, 12(1), Article
2331052. https://doi.org/10.1080/21681163.2024.2331052.

Lin, J., Zhu, L., Chen, W.-M., Wang, W.-C., & Han, S. (2023). Tiny machine
learning: Progress and futures [feature]. [EEE Circuits and Systems
Magazine, 23(3), 8-34. https://doi.org/10.1109/mcas.2023.3302182.

Lipski, M. (2022). Hand Gesture Recognition on Arduino Using Recurrent
Neural Networks and Ambient Light (Bachelor’s thesis, Delft University
of Technology). Delft University of Technology Repository.
https://repository.tudelft.nl/

Loh, T., & Guo, Y. (2025). Tiny Machine Learning and on-device inference: a
survey of applications, challenges, and future directions. Sensors (Basel),
25(10), 3191. https://doi.org/10.3390/s25103191.

100

https://doi.org/10.47495/okufbed.1392386
https://doi.org/10.3390/a17110476
https://doi.org/10.1080/21681163.2024.2331052
https://doi.org/10.1109/mcas.2023.3302182
https://repository.tudelft.nl/
https://doi.org/10.3390/s25103191

Maldonado Soliz, I. F., et al. (2025). Advancing TinyML in [oT: A holistic
system-level perspective for resource-constrained Al. Edge Computing
Review, 12(2), 120-145.

Reddi, V. J., Plancher, B., Kennedy, S., & Tingley, D. (2022). Widening access
to applied machine learning with TinyML. Communications of the ACM,
65(1), 40-49.

Tosun, M., & Erdem, H. (2024). TinyML tabanli gorsel isitsel anahtar kelime
tespiti. Nigde Omer Halisdemir Universitesi Miihendislik Bilimleri
Dergisi, 13(4), 1207-1215. https://doi.org/10.28948/ngumuh. 1482481

Scribd. (2023) Future directions in TinyML - Emerging Trends and innovations.
(n.d.). Retrieved November 7, 2025, from
https://www.scribd.com/document/8795673 10/Future-Directions-in-
TinyML-Emerging-Trends-and-Innovations-docx.

Soro, S. (2021). TinyML for Ubiquitous Edge Al
https://arxiv.org/pdf/2102.01255

Wang, L., & Yoon, K.-J. (2022). Knowledge distillation and student-teacher
learning for visual intelligence: A review and new outlooks. /EEE

Transactions on Pattern Analysis and Machine Intelligence, 44(6), 3048—
3068. https://doi.org/10.1109/tpami.2021.3055564.

Wilson, J., & Singh, D. (2025). Quantized Neural Networks for
Microcontrollers: A comprehensive review of methods, platforms, and
applications. arXiv preprint arXiv:2508.15008.

Yelchuri, A., & R., N. (2022). Energy Management in TinyML Frameworks.
Yelchuri, S., & R., M. (2022). Embedded intelligence through TinyML:
paradigm shift at the edge. Journal of Edge Computing, 5(3), 45-58.
Zhou, H., Zhang, X., Feng, Y., Zhang, T., & Xiong, L. (2025). Efficient human
activity recognition on edge devices using DeepConv LSTM
architectures. Scientific Reports, 15, Article 13830.

https://doi.org/10.1038/s41598-025-98571-2

101

https://www.scribd.com/document/879567310/Future-Directions-in-TinyML-Emerging-Trends-and-Innovations-docx
https://www.scribd.com/document/879567310/Future-Directions-in-TinyML-Emerging-Trends-and-Innovations-docx
https://doi.org/10.1109/tpami.2021.3055564

Chapter 6

QOutlier Analysis in Machine Learning:
Basic Approaches, Challenges, and Applications

Merve AKKUS!

ABSTRACT

Outlier detection plays a critical role in ensuring the reliability, stability, and
generalizability of machine learning models. Real-world datasets often contain
deviations arising from noise, measurement errors, rare events, or malicious
activities, which distort model learning and lead to inaccurate decisions. This
chapter provides a comprehensive examination of outlier analysis by discussing
fundamental concepts, outlier types, challenges, and state-of-the-art detection
methods. Statistical, proximity/density-based, clustering-driven, and machine
learning-based approaches are compared both theoretically and conceptually.
Furthermore, modern deep learning techniques, hybrid structures, and
explainable artificial intelligence (XAI) frameworks are highlighted as powerful
solutions for complex and high-dimensional data. Practical Python examples
and visual representations are included to support understanding of algorithmic
behavior. The chapter emphasizes that outlier detection is not only a
preprocessing task but also a strategic component that significantly affects data-
driven decision systems across various fields such as finance, healthcare,
cybersecurity, and industrial monitoring.

Keywords: Outlier detection, anomaly detection, machine learning, density-
based models, deep learning, data mining, explainable artificial intelligence

! Research Assistant Dr., Batman University, Faculty of Engineering and Architecture, Department of
Computer Engineering, merve.gitmez@batman.edu.tr, ORCID: 0000-0002-6648-0946

102

1. INTRODUCTION

This section comprehensively examines the role of outlier detection in data
mining and machine learning processes. Outliers are defined as observations
that show significant deviations from the general pattern of the dataset and
negatively impact the model's accuracy, predictive power, and generalizability
performance. Therefore, the accurate identification of outliers is critical in
numerous fields, such as credit risk management, network security, medical
diagnosis systems, production line monitoring, energy management, and sensor-
based industrial applications.The performance of machine learning models is
directly related to the quality of the data used. Since real-world data is often not
collected under ideal conditions, deviations in the data distribution may occur
due to sensor noise, measurement errors, missing records, or unexpected events.
These deviations manifest as observations that do not conform to the overall
pattern of the dataset and exhibit statistically unusual behavior.

Such observations mislead the model parameters during the learning process,
leading to distorted decision boundaries and reduced overall performance. This
situation is visually presented in Figure 1. The figure shows that the presence of
several outliers (red triangles) in the linear regression model significantly
distorts the regression line (blue line), which represents the overall trend of the
model. Outliers reduce the accuracy of the model's predictions and weaken its
generalizability by distorting the underlying pattern of the data.

A
25+
20+
15
3
é 10
-
5F
ok
Normal data
—5| A Outliers A
= Regression (without outliers)
= — Regression (with outliers) A
0 2 4 6 8 10

X (Feature)

Figure 1. Effect of outliers on model performance

Normal data points are shown as blue circles, while outliers are shown as red
triangles. Outliers cause the slope to become distorted by altering the model's
least squares direction. This clearly demonstrates why outlier detection is
critical for model reliability. The accurate identification of outliers is a critical

103

component of the machine learning process that is not limited to the
preprocessing stage; it directly impacts prediction accuracy, model stability, and
generalizability. Numerous studies in the literature show that ignoring outliers
reduces model reliability and significantly increases error rates. Therefore,
outlier detection is not merely a data cleaning process but a strategic step that
ensures the integrity and reliability of data analytics.

This book chapter thoroughly examines the concept of outliers, their types,
detection challenges, and machine learning-based methods. The differences
between statistical, proximity and density-based, clustering-based, and learning-
based approaches are compared; the advantages offered by modern methods are
supported by Python-based visuals. Thus, the aim is to provide the reader with a
comprehensive perspective covering both the theoretical foundations and
practical application examples of outlier analysis.

2. THE CONCEPT OF OUTLIERS AND THEIR ROLE IN DATA
MINING

Outlier detection is the process of identifying objects that deviate
significantly from expected patterns in data mining processes and exhibit
characteristics that are markedly different from other observations. These
observations may arise for various reasons, such as measurement errors, sensor
malfunctions, fraud attempts, biological anomalies, or systematic failures.

According to Chandola et al.'s definition, outlier detection is a fundamental
area of analysis that aims to understand system behavior, anticipate potential
risks, and improve decision-making processes by revealing unexpected patterns
in the data (chandola et al., 2009).

From a data mining perspective, the importance of outliers is not limited to
the data cleaning process. In most cases, these values carry critical information
about the overall dynamics of the system or unusual events (Goldstein et al.,
2016).

For example:

* In a banking system, a rare high-value transaction may indicate potential
fraud.

* A sudden temperature increase on a production line may indicate a sensor
malfunction.

* Biological deviations observed in medical data may provide important
clues for early diagnosis.

Therefore, outliers should not always be considered “noise.”

Instead, in many scenarios, they should be interpreted as anomalies that
provide valuable information about the system's operation.

104

2.1 Definition and Importance of Outliers

An outlier is an observation in a dataset that deviates significantly from the
expected statistical distribution or normal pattern. Such observations can distort
parameter estimates in the statistical modeling process, increase variance, and
reduce the model's generalization performance. Failure to properly manage
outliers causes machine learning models to overfit, reduces classification
accuracy, and leads to incorrect decision boundaries. Therefore, identifying,
removing, or weighting outliers is a critical step in the data preprocessing
process.

In modern data analytics, detecting outliers is not only a statistical necessity
but also an essential process for obtaining meaningful data representation. As
the volume and complexity of data streams increase in big data, IoT, and cyber-
physical systems, outlier analysis has gained strategic importance in terms of
system security and operational stability. Figure 2 is presented to conceptually
illustrate the impact of outliers on model performance. This visual summarizes
the difference between normal data distribution and outliers, as well as their
effects on the model, in a comprehensive manner.

6-

Normal data Poor generalization

A Outliers B Bias shift
//// \\
4- e "
A
2 prm g Mg R .
P . s ~
g 4
ERN ('
@© \
L?]_ ~
-2} ettt o e
A
-4r A —
Accuracy loss.
%6 -4 = 0 2 4 6

Feature 1

Figure 2. The Concept and importance of outliers (conceptual
representation)

The normal data distribution is represented by gray points clustered within
the gray ellipse, while outliers are represented by red triangles outside the
distribution. Outliers cause a decrease in the model's prediction accuracy
(accuracy loss), weak generalization (poor generalization), and prediction bias

105

(bias shift). This visual emphasizes that outlier detection is not only a data
cleaning process but also a strategic step in terms of model reliability and the
accuracy of decision systems.

2.2 Application Areas of Outliers
Outlier detection is an interdisciplinary field of analysis and is applied in
many different sectors (Ahmed et al., 2016). The most common usage examples

are summarized in Table 1 below.

Table 1. Common application areas and examples of outlier detection

process faults

Application Purpose Example of Outlier

Area

Finance Detect fraudulent transactions, | Unusually high money transfer
credit risk, or money laundering

Cybersecurity Identify unauthorized access or | Abnormally high network
attacks traffic packet density

Healthcare Detect physiological | Sudden increase or decrease in
abnormalities heart rate

Manufacturing | Identify defective products or | Sudden deviation in

temperature sensor readings

Energy Systems

Detect leakage or faults

Unexpected surge in energy
consumption

Text and Social
Media

Monitor topic or sentiment

changes

Sudden semantic shift in text
content

Analytics

This wide range of applications demonstrates that outlier detection is an
interdisciplinary method. Although the types of data used in different fields
vary, the common goal is to systematically identify rare and unusual behaviors
that fall outside normal patterns. Today, this process goes beyond classical
statistical methods and is carried out in a more flexible and accurate manner
through machine learning and deep learning-based approaches.

3. TYPES OF OUTLIERS AND ANALYSIS

Outlier analysis is the process of identifying, measuring, and classifying
observations that fall outside the general distribution in a data set. This analysis
aims to quantitatively reveal the extent to which an observation deviates from
the “normal” pattern. The level of outlier status is usually expressed as an
outlier score or probability value. This score numerically shows how differently
the observation behaves when compared to other examples in the data set
(Goldstein et al., 2012).

106

Traditionally, outlier analysis is performed under the assumption that the
data follows a normal distribution. However, in the real world, most data sets
deviate from ideal distributions; in such cases, classical statistical approaches
may be insufficient. Especially in high-dimensional and noisy data, outliers
need to be defined in different contexts. Therefore, the literature generally
addresses outliers in three main categories: global, contextual, and Collective
(Kohli et al., 2025).

3.1 Types of Deviant Values: Global, Contextual, Collective
In the literature, deviant values are generally examined under three main
categories: global, contextual, and collective deviance.

101
Normal Data (Cluster 1)

Normal Data (Cluster 2)

9k Contextual Outliers X
Collective Outliers

X
X
al b 4 %a\ Outlier

Feature 2
o
T

2 2 a 6 8 10

Feature 1

Figure 3. Visualization of global, contextual, and collective outlier examples

In Figure 3, normal data is distributed in blue and green clusters, while
points shown in different colors represent outlier behavior patterns. Purple
points represent contextual outliers that deviate from the norm in a specific
context (e.g., time, location, or condition), light green points represent
collective outliers that occur together, and the red “x” signifies a global outlier
that clearly deviates from the overall distribution. This visual illustrates the
positions of different types of outliers within the data structure and how each
requires different identification strategies in the modeling process.

a) Global outliers: Observations that behave distinctly differently from the
general distribution of the data set. Example: A measurement of 45 °C in a city
where average temperatures range between 20—-30 °C represents a global outlier.

107

Global outliers are typically detected using statistical measures such as Z-score,
boxplot (IQR), or Mahalanobis distance (Dashdondov et al., 2021).

b) Contextual outliers: Observations that are considered abnormal in a
specific context—such as time, location, or environmental conditions. For
example, a temperature of 35 °C is normal in summer but indicates a contextual
outlier in winter. Such outliers are typically identified using time series models
(ARIMA, LSTM) or location-based analyses (Calikus, 2025).

c¢) Collective outliers: These are groups of observations that appear normal
individually but form an abnormal pattern when taken together. For example, a
short-term surge in network traffic could be part of a cyberattack pattern. Such
outliers are typically detected using clustering or density estimation methods
(Fisch et al., 2022).

3.2 Anomaly Score and Quantitative Assessment

To analytically evaluate outliers, each observation is assigned an outlier
score. This score indicates how different the observation behaves compared to
other examples in the dataset (Rochner et al., 2024).

In general, the outlier score can be defined as in Equation 1:

S(x;) = f(dist(x;, N (x:))) (M

Where:
e S(x;): x; Outlier score of observation,
e dist:Function measuring distance or density difference,
o Ni(x;): Set of k-nearest neighbors x;
e f(-): Transformation function of the score.

As the score value increases, the abnormality level of the observation
increases. In practice, these scores are often normalized using metrics such as
LOF (Local Outlier Factor) or z-score. This numerical approach not only
identifies outliers but also prioritizes them. For example, in credit risk analysis,
transactions with the highest outlier scores are examined first (Rochner et al.,
2024).

4. CHALLENGES IN OUTLIER DETECTION

Outlier detection is one of the most complex preprocessing steps in machine
learning and data mining processes. The main reason for this is that “normal”
and “abnormal” behaviors are often not separated by clear boundaries. There is
a broad gray area between normality and abnormality in data distributions,
which makes the performance of detection methods highly dependent on the

108

data structure. The main challenges frequently encountered in outlier detection
and the solution approaches to these problems are summarized in the
subheadings (Kohli et al.,2025).

4.1 Data Normality and Noise Problem

In real-world data, “normal” behavior patterns vary depending on system
conditions and time factors. Therefore, the fact that a specific threshold value is
not always valid increases the risk of misclassification. Furthermore, noise
causes a decline in data quality and hides true outliers. Noisy observations can
lead to false positives, especially in statistical methods.

Possible solutions:

* Noise filtering techniques,

* Robust statistical methods (ROF, RANSAC),

* Dynamic threshold determination approaches supported by expert
knowledge (Olteanu et al., 2023).

4.2 High Dimensionality and Scalability

Modern datasets often contain hundreds or even thousands of features. An
increase in the number of dimensions fundamentally changes the geometric
structure of the data. In high-dimensional spaces, Euclidean distances between
examples become very close, and the concepts of “close” or “far” lose their
meaning. This phenomenon is referred to in the literature as the curse of
dimensionality (Kohli et al., 2025).

A direct consequence of this situation is the weakening of the discriminative
power of distance- or density-based methods (e.g., k-NN, LOF, DBSCAN).
This is because in high-dimensional spaces:

* Data points are almost equidistant from each other,

* Density measurements become inconsistent,

* The clustering structure is disrupted,

* Outliers can no longer be distinguished from normal samples.

Therefore, high dimensionality not only increases computational load but
also reduces algorithmic stability and generalization ability.

4.3 Label Deficiency and Imbalance

Outliers are rare by nature; therefore, most datasets do not contain labeled
outlier examples. This limits the generalization capacity of supervised learning
methods.

109

Furthermore, a significant difference in the ratio of normal to outlier
examples causes class imbalance. This can cause the model to overfit the
“normal” class (Kohli et al., 2025).

Possible solutions:

» Unsupervised or semi-supervised algorithms (One-Class SVM, Isolation
Forest, LOF),

* Data augmentation (SMOTE) or weighted loss functions,

* Model updating with active learning and expert feedback.

4.4 Model Explainability

Deep learning-based outlier detection models (e.g., Autoencoder, GAN)
provide high accuracy, but their decision processes are often “black box” in
nature. This leads to reliability issues, especially in critical areas such as
healthcare, finance, and security (Birihanu et al., 2024).

Explainable Artificial Intelligence (XAI) approaches are being developed to
address this shortcoming.

Methods such as SHAP, LIME, and Counterfactual Explanation make
decision processes transparent by explaining why the model flagged a particular
observation as an outlier.

4.5 Computational Cost

Working with millions of observations and high-dimensional features in big
data environments causes traditional algorithms to fall short in terms of both
memory and processing load.

Possible solutions:

» Approximate Nearest Neighbor algorithms,

* GPU or multi-core processing support,

* Online or incremental learning approaches.

5. OUTLIER DETECTION METHODS

Outlier detection is built on different assumptions depending on the structure
of the data, its distribution characteristics, the number of dimensions, and the
application context. In the literature, these methods are generally classified
within the framework of statistical assumptions, distance or density measures,
clustering structure, or learning-based models. This diversity stems from the
unique nature of each data type. For example, statistical approaches are more
suitable for low-dimensional data sets with defined distributions, while machine
learning-based methods are more flexible and yield successful results for
complex and high-dimensional data. Density or distance-based methods are

110

particularly effective in capturing local anomalies, while clustering-based
approaches reveal contextual anomalies by evaluating structural relationships in
the data space. In recent years, with the increase in data volume and complexity,
it has become clear that no single method can be effective for all data types
(Badhan et al., 2023).

For this reason, researchers have developed hybrid or mixed approaches that
combine the strengths of different algorithms (e.g., DBSCAN + Autoencoder,
Isolation Forest + PCA). This enables both statistical robustness and learning
capabilities through deep representations. In this context, approaches to outlier
detection are considered not only as data cleaning tools but also as analytical
models that increase the reliability of data interpretation and decision support
systems.

5.1 Extreme Value Analysis
In extreme value analysis, observations located in the extreme regions of the
data developments shown are considered outliers. Such observations are the

points that emerge in the underlying sequential part, as shown in Figure 4
(Olmo., 2009).

(a) Univariate Outliers (b) Multivariate Outliers

= Normal distribution Normal data A
0.4 ® Outliers A Outliers

2-

Feature 2
o

Value (Feature 1) Feature 1

Figure 4. Conceptual representation of single and multivariate outlier
detection.

(a) In the single variable case, outliers are defined as observations located at
the extreme points of the statistical distribution. The normal distribution curve
is shown in gray, and the red dots in the extreme regions represent outliers
outside the expected range.

(b) In the multivariate case, outliers emerge as deviations from the common
pattern of multiple features. The gray ellipse shows the normal data boundary,
while the red triangles show multivariate outlier observations outside this
boundary.

This visual emphasizes the importance of considering the number of
variables and their relationships when detecting outliers.

111

a) Univariate outlier analysis: In a univariate case, it is assumed that the
data follows a specific distribution (most often a Gaussian distribution). As in
Equation 2, the upper and lower tail regions represent observations at a distance
of £3c from the mean:

x; >u+30 or x; <u—30 (2)

Points outside these thresholds are marked as outliers.

b) Multivariate outlier analysis: In multidimensional data sets, the distance
of observations from the mean vector 1 and covariance matrix X is measured
using the Mahalanobis distance, Equation 3:

Dy (x) =/ (x; — W)TZ71(x; —) (3)

Distances above a certain threshold value (1) are considered outliers.
It is statistically robust and effective with low-dimensional data. However, it
is highly dependent on the assumption of normal distribution.

5.2 Statistical Methods

Statistical methods assume that the data follows a specific distribution
pattern, as shown in Figure 5, and consider observations that do not fit this
pattern as outliers (Theriault, 2024).

(a) Parametric - Boxplot (IQR Method) (b) Non-Parametric - Histogram Method
al) ® Outiers 50k

8 a0t

- -0 00

Figure 5. Statistical methods for aoutlier detection: Parametric and non-
parametric approachs
(a) Parametric methods assume that the data follows a specific distribution
model; the Boxplot (IQR) method identifies outliers using quartile values.
(b) Non-parametric histogram-based methods mark low-frequency regions as
potential outlier areas without making any distribution assumptions.
This comparison demonstrates the importance of selecting a statistical
method appropriate for the data structure.
a) Parametric methods: Parametric methods detect outliers by estimating
distribution-based parameters such as quartiles. A common example is the

112

Boxplot method, which uses the first, second, and third quartiles Q4, Q4, Q3 of
the data (Equation 4). The dispersion of the central data is measured by the
interquartile range, defined as IQR = Q; — Q;(Equation 5). Based on this
range, outlier thresholds are determined as Q; — 1.5 X IQR for the lower limit
and Q3 + 1.5 X IQRfor the upper limit (Equation 6). Observations outside
these limits are classified as outliers.

Data quartiles:

Ql! QZ' Q3 (4)

Interquartile range (IQR):
IQR=0Q3 -0, (%)

Outlier limits:
Lower limit = Q; — 1.5 X IQR,Upper Limit = Q3 + 1.5 X IQR (6)

Points outside these limits are considered outliers.

b) Nonparametric methods: Nonparametric approaches are preferred when
the data distribution is unknown. For example, in the histogram-based outlier
detection method, data are divided into intervals (bins); low-frequency intervals
are potential outlier regions. Nonparametric methods do not require a
distribution assumption. However, threshold selection and histogram width also
significantly affect the results.

5.3 Proximity and Density-Based Methods

In this approach, the anomaly of an observation is assessed according to its
distance from its neighbors or its density difference. The assumption is that
normal observations are in dense regions and anomalies are in sparse regions, as
shown in Figure 6 (Mavroudopoulos, 2023).

(a) k-NN Distance-Based (b) Local Outlier Factor (LOF) (c) COF (Connectivity-Based)

Figure 6. Conceptual representation of proximity and density-based outlier
detection methods.

113

(a) The k-NN method determines the level of outlierness based on the
average distance of observations to their neighbors; points far from their
neighbors are considered outliers.
(b) The LOF method evaluates observations in low-density regions as
outliers based on local density differences.
(c) The COF method defines observations in weakly connected regions as
outliers by considering point connection lengths.

These methods are effective tools for detecting local anomalies, especially in
complex and multidimensional data sets.

a) k-Nearest neighbor (k-nn) outlier detection: The average distance of an
observation to its k nearest neighbors is calculated. Points with high distance
values are labeled as outliers.

b) Local outlier factor (LOF): The LOF method compares the local density
of a point with its neighbors. The outlier score is defined as in Equation 7.

1
[N ()l

Ird(x)
ijENk(xi) Ird(x;) N

LOF (x;) =

Here, Ird (local reachability density) indicates the reachability density of a
point.

Points with LOF>1.5 are generally considered outliers.

¢) COF (Connectivity-based outlier factor): It works similarly to LOF but
evaluates local density based on connection lengths. Observations in regions
where density shows a sudden drop are considered outliers. COF successfully
captures anomalies in the local structure. However, it is sensitive to k-parameter
selection and has high computational costs in large datasets.

5.4 Cluster-Based Methods

Cluster-based methods are based on the assumption that normal observations
form clusters, as shown in Figure 7, and outliers are isolated from these clusters
(Souiden et al., 2022).

114

(a) K-Means Based (b) DBSCAN (c) Gaussian Mixture Model

Feature 2
X
Feature 2
Feature 2

Feature 1 Feature 1 Feature 1

Figure 7. Conceptual representation of clustering-based outlier detection
methods.

(a) The K-Means method determines the level of outlierness based on the
distance of observations to the nearest cluster center; points far from the center
are considered outliers.

(b) The DBSCAN method identifies clusters using a density threshold and
minimum neighbor count; observations in low-density regions are considered
noise (outliers).

(c¢) The GMM method assumes that the data is composed of a mixture of
multiple Gaussian distributions and classifies low-probability observations as
outliers.

These methods define outliers based on their statistical and spatial
characteristics, taking into account the structure of the data sets.

a) K-means-based outlier detection: The K-Means algorithm divides the
data into k clusters. The distance of each observation from the nearest cluster
center is calculated (Equation 8). If the distance exceeds a certain threshold, the
observation is marked as an outlier.

OD(x;) =l x; — pe |l)]

b) DBSCAN (Density-based spatial clustering of applications with
noise): DBSCAN operates with the parameters density threshold & and
minimum number of neighbors MinPts. Observations in dense regions are
clustered, while those remaining in low-density regions are considered noise
and classified as outliers. The number of clusters in DBSCAN does not need to
be known beforehand; it defines noise naturally. However, parameter selection
is sensitive to data scale.

¢) Gaussian mixture model (GMM): It assumes that the data is generated
by a mixture of multiple Gaussian distributions. A probability value is
calculated for each observation; low-probability examples are classified as

115

outliers. GMM is effective on non-spherical clusters. However, it carries the
risk of overfitting due to the excessive number of parameters.

5.5 Machine Learning-Based Methods

Machine learning approaches offer high accuracy and generalization
capacity in outlier detection, as shown in Figure 8. The aim of these methods is
to learn normal data and identify deviations from this pattern as outliers.
Especially in high-dimensional and nonlinear datasets, much more flexible and
stable results are obtained compared to classical statistical approaches (Souiden
etal., 2022).

Figure 5.6. Machine Learning-Based Outlier Detection Models (Conceptual Framework)

(<) Autoencoder

©utlier (High erron)

Figure 8. Machine learning-based outlier detection models

a) One-class SVM: One-Class SVM learns only the “normal” class and
labels samples lying outside the decision boundary as outliers. The decision
function is defined, as given in Equation 9:

fO)=wle@)—p ©)

where ¢(x) represents the kernel transformation, w is the weight vector, and
p is the decision threshold. Observations where f(x) < 0 are considered outliers.
This method is effective on low-dimensional, well-defined datasets and is
sensitive to the choice of kernel function and v parameter.

b) Isolation forest: Isolation Forest creates a tree structure by randomly
splitting data points. Observations isolated with few splits are considered
outliers. The outlier score is based on the average path length; shorter paths
indicate higher outlier status.

116

This method stands out for its scalability in high-dimensional data and large
sample sizes, but it is not sufficient on its own for contextual anomalies.

¢) Autoencoder and variants: Autoencoder structures transform the input
into a latent representation and reconstruct it. Examples with high
reconstruction error are flagged as outliers. Derivatives such as Denoising AE,
Sparse AE, and LSTM-AE improve noise resilience and performance in time
series. A Variational Autoencoder (VAE), a probabilistic extension, detects
anomalies based on both reconstruction error and deviations in the latent space
by estimating the probability of each observation. These approaches deliver
effective results, particularly in complex industrial sensor data and biomedical
signals.

d) GAN (Generative adversarial network)-based methods): In GAN-
based models, a generator (G) and a discriminator (D) network undergo a
mutual learning process. The generator learns to mimic the normal data
distribution, while the discriminator learns to distinguish between real and fake
examples. The anomaly score is typically calculated based on the difference
between the original and reproduced data or the distance in the discriminator's
feature space. Architectures such as AnoGAN, GANomaly, and Skip-
GANomaly are particularly successful in image and defect detection. However,
since the training process of GANs can be unstable, Autoencoder-GAN hybrids
or pre-trained feature extractors are preferred in most applications.

e¢) Deep SVDD and modern approaches:Deep SVDD (Support Vector
Data Description) is a deep version of the classic One-Class SVM. Network
outputs are centered around a hypersphere; examples far from the center are
considered outliers. This method learns deep feature representations
unsupervised and scales better than kernel-based models. In recent years, these
approaches have been supported by explainable artificial intelligence (XAI)
methods. Tools such as SHAP, LIME, and Counterfactual Explanation increase
the interpretability of models by visualizing why an observation is labeled as an
outlier.

f) Current trends: New research has focused on combining techniques from
different paradigms.

* Hybrid models (e.g., DBSCAN + Autoencoder, Isolation Forest + PCA)
combine statistical robustness with deep representations.

* Self-supervised and contrastive learning methods enhance normal data
representations without requiring labels.

* Graph-based and time-series-focused approaches enable the detection of
anomalies in sensor networks and dynamic systems through topological or
temporal inconsistencies.

117

6. COMPARATIVE EVALUATION AND PYTHON APPLICATION
EXAMPLES

This section explains the basic working principles, application forms, and
interpretation methods of some algorithms commonly used in outlier detection.
The aim is to show the reader how different types of approaches can be applied
in practice and to compare the similarities and differences between the methods
at a conceptual level.

6.1 Application Environment and Synthetic Data Approach

While real data sets (e.g., MIT-BIH, KDDCup99, Credit Card Fraud,
NASA-Bearing, etc.) are frequently used to test these methods, synthetic
(artificial) data generation has been preferred in this book chapter to
demonstrate the behavior of the algorithms in a straightforward manner.

A small sample dataset created from random distributions in the Python
environment (e.g., normal distribution + a small number of outliers) is sufficient
to understand how different algorithms respond.

Such data provides an instructive framework for representing real-world
noise, bias, and statistical outliers.

6.2. Basic Algorithm Application Examples

The following examples are short code snippets that can be run directly in
the Python environment and are intended solely for methodological
demonstration. The purpose of the code is not to compare model performance
but to teach the basic usage of the methods.

(a) Local outlier factor (LOF): LOF labels samples that remain low in
density as outliers by comparing the local density of each observation with its
neighbors.

from sklearn.neighbors import LocalOutlierFactor
lof = LocaloutlierFactor(n neighbors=28, contamination=8.85)
y pred = lof.fit predict(X)

(b) Isolation forest: Isolation Forest randomly splits observations and

quickly flags isolated ones as outliers. It stands out for its scalability in large
data sets.

from sklearn.ensemble import IsolationForest
iso = IsolationForest(contamination=0.85, random state=0)

y pred = iso.fit predict(X)

118

(c¢) Autoencoder: Autoencoders learn to reconstruct normal samples.

Samples with high reconstruction error are considered outliers.

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Input, Dense

input dim = X.shape[1]

inp = Input(shape=(input_dim,))

enc = Dense(4, activation='relu’)(inp)

dec = Dense(input dim, activation='linear')(enc)

autoencoder = Model(inp, dec)

autoencoder.compile(optimizer="adam’, loss='mse')

6.3. Conceptual Comparison
Table 2. Conceptual comparison of outlier detection methods

Method Advantage Limitation
LOF Captures local density Sensitive to the k-
differences parameter
Isolation Fast and scalable for Limited in detecting

Forest large datasets contextual anomalies
Autoencoder Effective for high- Threshold selection is
dimensional and complex difficult; long training time

data

The comparison in Table 2 serves as a guide for selecting methods for
different data types. For example:

* LOF is more suitable for local data sets where density differences are
important.

* Autoencoder is more suitable for multidimensional sensor or financial
data.

» Isolation Forest is more suitable for large data streams.

acal Dutlier Factor (LOF)

Feature 1

Figure 9. Visual comparison of outlier detection methods

119

This figure 9 illustrates the conceptual behavior of three different outlier
detection methods on a synthetic (artificially generated) two-dimensional
datase. In each panel, light gray circles represent normal observations, while red
triangles represent observations identified as outliers by the algorithms. The
visuals clearly demonstrate how the methods define the concept of outliers in
different ways.

(a) Local outlier factor (LOF): The LOF method labels examples found in
low-density regions as outliers by comparing the local density of each
observation with its neighbors. Therefore, examples located at the edges of
clusters or in boundary regions where density decreases are shown with red
triangles. This method performs effectively, especially on datasets where local
density differences are important.

(b) Isolation forest: The Isolation Forest model evaluates samples that can
be isolated quickly as outliers by separating observations through random splits.
The model enables global-scale outlier detection because it can easily separate
observations in sparse regions or those far from the general distribution. In the
figure, isolated observations in these sparse areas are indicated by red triangles.

(c) Autoencoder (AE): The autoencoder-based model learns to reproduce
the data and detects anomalies based on reconstruction error. Examples that
cannot be reproduced, i.e., those that deviate significantly from the learned
pattern, are considered outliers. In the figure, these deviations are shown as red
triangles located in areas far from the center of the data distribution.

7. CONCLUSIONS AND FUTURE DIRECTIONS

This section summarizes the general evaluation of machine learning-based
outlier detection methods and potential future research directions. Outlier
detection is considered not only as a data cleaning process but also as a critical
component in terms of model reliability, robustness, and generalizability. The
statistical, density-based, clustering-focused, and learning-based approaches
discussed in this study demonstrate that the concept of outliers can be
approached from different perspectives.

Learning-based models (particularly Autoencoder, Isolation Forest, and
GAN derivatives) offer higher accuracy and generalization capacity compared
to classical methods in high-dimensional, noisy, and complex datasets.
However, the success of these methods is directly dependent on factors such as
hyperparameter selection, threshold determination, data imbalance, and model
interpretability.

120

Therefore, it is crucial for future studies not only to achieve high
performance but also to be able to interpret why the model considers a
particular observation to be an outlier.

In recent years, explainable artificial intelligence (XAI), self-supervised
learning, and contrastive learning approaches have been increasingly used in
outlier detection. These approaches enable the model to learn anomalies from
its own internal representations by reducing the need for labels. Furthermore,
hybrid models (e.g., Autoencoder + Isolation Forest or DBSCAN + VAE
combinations) offer more balanced solutions by combining statistical robustness
with deep representations.

In the future, the integration of outlier detection algorithms into real-time
systems, edge devices, and energy-efficient architectures will come to the fore.
There is a growing need for low-latency and explainable outlier detection
algorithms, particularly in IoT, biomedical sensor networks, production lines,
and autonomous systems. However, ethical, security, and data privacy
dimensions are also expected to shape new research topics.

In conclusion, outlier analysis has become not only a subfield of data science
but also a fundamental research area that determines the reliability, ethical
responsibility, and robustness of artificial intelligence systems. Therefore,
future studies are expected to develop an interdisciplinary perspective that
addresses both algorithmic efficiency and explainability.

121

REFERENCES

Ahmed M., A. N. Mahmood, and J. Hu, “A Survey of Network Anomaly
Detection Techniques,” Journal of Network and Computer
Applications, vol. 60, pp. 19-31, 2016.

Badhan. A and A. Ganpati, “Overview of outlier detection methods and
evaluation metrics: A review,” in Proc. 6th Int. Conf. Big Data
Analytics and Knowledge Discovery (DaWakK), Sep. 2023, pp. 54-63.

Birihanu E., A. Ayano and et al., “Explainable correlation-based anomaly
detection for industrial control systems,” Frontiers in Artificial
Intelligence, vol. 4, Art. 1508821, 2024.
doi:10.3389/frai.2024.1508821.

Calikus E., “Context discovery for anomaly detection,” Knowledge and
Information Systems, vol. 69, no. 8, pp. 41234148, Oct. 2025.

Chandola V., A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Computing Surveys, vol. 41, no. 3, pp. 1-58, 2009.

Dashdondov K. and M.-H. Kim, “Mahalanobis Distance Based Multivariate
Outlier Detection to Improve Performance of Hypertension Prediction,”
Neural Computing and Applications, vol. 33, pp. 10487-10499, 2021.

Fisch A. T. M., 1. A. Eckley and P. Fearnhead, “Subset Multivariate Collective
and Point Anomaly Detection,” Computational Statistics & Data
Analysis, vol. 162, Art. 108725, 2022.

Goldstein M. and A. Dengel, “Histogram-based Outlier Score (HBOS): A fast
Unsupervised Anomaly Detection Algorithm,” in Proceedings of the
KI-2012: Poster and Demo Track, September 2012.

Goldstein M. and S. Uchida, “A Comparative Evaluation of Unsupervised
Anomaly Detection Algorithms for Multivariate Data,” PLoS ONE, vol.
11, no. 4, e0152173, 2016.,

Kohli M. and I. Chhabra, “A comprehensive survey on techniques, challenges,
evaluation metrics and applications of deep learning models for
anomaly detection,” SN Applied Sciences, vol. 7, Art. 784, Jul. 2025.
doi: 10.1007/s42452-025-07312-7.

Mavroudopoulos I. and A. Gounaris, “A comparison of proximity-based
methods for detecting temporal anomalies in business processes,”
Machine Learning, vol. 112, pp. 4101-4128, 2023. do0i:10.1007/s10994-
022-06152-5

Olmo J., “Extreme value theory filtering techniques for outlier detection,”
Discussion Paper No. 09/09, Dept. of Economics, City University
London, Jun. 2009.

Olteanu M., J. Steinhauser, and A. R. Hedayati, “Meta-Survey on Outlier and

122

Anomaly Detection,” Neurocomputing, vol. 572, pp. 1-25, Dec. 2023.
doi: 10.1016/j.neucom.2023.127960.

Rochner P., H. O. Marques, R. J. G. B. Campello, A. Zimek and F. Rothlauf,
“Robust Statistical Scaling of Outlier Scores: Improving the Quality of
Outlier Probabilities for Outliers (Extended Version),” arXiv preprint,
Aug. 28 2024.

Sanchez B. V., E. Schubert, A. Zimek and R. L. F. Cordeiro, “A comparative
evaluation of clustering-based outlier detection,” Data Mining and
Knowledge Discovery, vol. 39, art. 13, Feb. 2025. do0i:10.1007/s10618-
024-01086-z.

Souiden I., M. Chandola and N. Alsubaie, “A survey of outlier detection in
high dimensional data streams,” Knowledge-Based Systems, vol. 249,
Art. 110861, 2022. doi:10.1016/j.knosys.2022.110861

Thériault R., “Check your outliers! An introduction to identifying statistical
outliers,” Peer] PrePrints, 2024. doi:10.31234/osf.io/bu6bn

123

Chapter 7

WebAssembly:
An Indispensable Component of the Modern Web

Fikri AGGUN!
Raif SIME?

ABSTRACT

This section examines WebAssembly (Wasm) as a high-performance and
portable execution environment operating both within web browsers and outside of
them. The study begins by providing a historical background through previous
initiatives such as asm.js and Native Client, followed by an explanation of the
motivations behind the emergence of WebAssembly and the W3C standardization
process. The binary format of WebAssembly, stack-based virtual machine model,
linear memory structure, concepts of modules and instances, and import-export
based interaction with JavaScript are analyzed.

Discussions include compilation chains and practical use cases through
ecosystems such as C/C++ (Emscripten), Rust (wasm-bindgen, wasm-pack),
AssemblyScript, TinyGo, and Blazor WebAssembly; the performance gains offered
by WebAssembly compared to JavaScript, particularly how these gains manifest in
CPU-intensive applications are evaluated with supportive literature. In the security
section, the sandbox execution model, memory and type safety, controlled access to
system resources via WASI, as well as recent research on side-channel and
speculative execution attacks are summarized. The non-browser usage of WASI-
based server and edge scenarios, blockchain and smart contracts, embedded/IoT
applications, and the migration of legacy desktop software to the web are also
discussed.

The conclusion emphasizes that WebAssembly, as the fourth fundamental web
component completing the HTML/CSS/JavaScript triad, strengthens the vision of a
"portable execution layer" in both academic research and industrial projects; future
research and development trends are discussed regarding topics such as
performance, security, ecosystem maturity, and component models.

Keywords: WebAssembly, Wasm, High-Performance web, WASI, Portable
execution environment

! Assist. Prof. Dr., Bitlis Eren University, faggun@beu.edu.tr, ORCID: 0000-0001-9550-1462
2 Bitlis Eren University, rsime@beu.edu.tr, ORCID: 0009-0008-4292-2456

124

1. INTRODUCTION

Web technologies have evolved over their approximately thirty-year history
from simple static HTML pages to a wide range of complex single-page
applications (SPAs), cloud-based gaming, and enterprise business intelligence
platforms. During this process, JavaScript has achieved a unique position as the
only built-in programming language running in browsers; its interpreted nature,
dynamic typing, and rich ecosystem have transformed the web into an
"application platform." However, it has also been observed that this flexibility
of JavaScript can be limiting in terms of performance and predictability,
particularly in scenarios that require high computational power (Wikipedia,
2017). In areas such as 3D game engines, CAD and CAM applications,
scientific simulations, image processing, cryptography, and machine learning,
developers have had to resort to various indirect methods for porting code
written in C/C++, Rust, or other system languages to the browser for years.
Initiatives like asm.js and Google Native Client (NaCl/PNaCl) have
demonstrated that the web can execute code more quickly; however, they have
not provided a universally accepted, standardized, and portable solution across
all browsers (Haas et al., 2017). WebAssembly (Wasm) is a secure, portable,
and low-level binary code format derived from these requirements, along with a
virtual machine model for executing it. In 2019, it was elevated to the level of a
core specification (Recommendation) by the W3C and declared the "fourth
language" of the web, following HTML, CSS, and JavaScript.

The primary goal of WebAssembly is to enable high-performance
applications both on the web and in non-web environments while
simultaneously ensuring security, portability, and language independence.

WebAssembly code:

* Can be compiled from a variety of languages, including C, C++, Rust,
Go, C#, AssemblyScript, and TinyGo,

* Can run in browsers, on the server side, in cloud edge platforms, and on
embedded devices,

* Is executed within a secure sandbox, with type safety ensured and
memory accesses controlled.

When comparing WASM-based web applications to traditional JavaScript
applications, it is evident that performance limitations exist when using current
JavaScript, particularly in cases where these limitations are significantly
pronounced. Due to its bytecode compilation, WebAssembly can achieve nearly
native speeds compared to JavaScript. Furthermore, WebAssembly is an
advantageous technology for executing computation-intensive algorithms with
small to medium-sized data volumes.

125

WebAssembly (WASM)-based technology presents itself as a more effective
solution in terms of speed and performance compared to classical methods. The
advantages of this technology have been corroborated by numerous studies and
documented evidence in the literature.

In their study, which aims to demonstrate how Wasm can provide native
performance for web-based AR/VR applications and address the critical
challenges faced by existing technologies such as WebXR, the authors conclude
that the potential of porting to Wasm can enhance the performance of web-
based AR/VR applications, bringing them closer to the performance of native
applications (Khomtchouk, 2021).

In their study discussing the potential of WebAssembly as an application
virtual machine for embedded systems, the authors highlight its strong isolation
features and software portability. Considering its growing ecosystem and
adoption beyond web browsers, they emphasize the significance of
WebAssembly in scalable and secure IoT deployments (Wallentowitz et al.,
2022).

In their study addressing the performance limitations of web applications in
graphics-intensive areas such as video games, simulations, and image
processing, the authors emphasize WebAssembly's integration with various
programming languages, including C/C++, C#, and Rust. They showcase its
cross-platform capabilities and efficient memory management, noting that it
provides significant performance improvements and possesses the potential to
revolutionize web application development. (Tufegdzi¢ et al., 2024).

In the following sections, the design principles, architecture, toolchain,
security model, performance characteristics, in-browser and out-of-browser
usage scenarios, practical application examples, and current research findings
related to WebAssembly will be addressed. Additionally, code snippets and
compilation processes will also be discussed through the ecosystems of Rust,
C/C++, and C# (Blazor).

2. HISTORICAL BACKGROUND AND DEVELOPMENT
PROCESS

2.1. The Experience of asm.js and Native Client

Although JavaScript engines have experienced significant performance leaps
over the years through techniques such as JIT compilation, hidden classes, and
inline caching, the dynamic nature of the language has made it challenging to
efficiently translate to CPU instructions. (Haas et al., 2017).

126

The asm.js approach is a subset of JavaScript with significantly restricted
types and control structures. C/C++ compilers target this subset to enable JIT to
perform more predictable optimizations. However, the final output is still text-
based JavaScript, which results in large code sizes and extended parsing times.

As an approach for executing native code within the browser, Google's
Native Client aimed to run sandboxed machine code through a Chrome-specific
architecture. While Portable Native Client (PNaCl) enhanced portability, it
failed to become a standard and was not adopted by other browsers.

These initiatives demonstrated that near-native speeds are achievable on the
web; however, the need for a standard, browser-independent, and portable
bytecode became apparent. WebAssembly has emerged as a technology that
directly addresses this need.

2.2. The Emergence of WebAssembly

Starting in 2015, researchers from Mozilla, Google, Microsoft, and Apple
formed a joint working group to shape the design of WebAssembly. The first
Minimum Viable Product (MVP) was showcased in browser prototypes in
2017; the same year, the paper titled "Bringing the Web up to Speed with
WebAssembly" published at the PLDI conference outlined the fundamental
principles of the design. The core specification progressed through stages,
becoming a W3C Working Draft in 2018, a Candidate Recommendation in
2019, and reaching Recommendation status on December 5, 2019. Currently, in
addition to the WebAssembly Core Specification 1.0, work continues on the 2.0
draft and the 3.0 version, with surrounding specifications like the JavaScript
API, WebAssembly System Interface (WASI), and the component model also
maturing. (Webassembly, 2025).

3. DESIGN GOALS AND PRINCIPLES

The design of WebAssembly is based on several key principles:

1. Efficient Execution:

The compactness of the binary format facilitates quick downloading and
parsing, and allows the compiled code to run at near-native speeds on hardware
through JIT or AOT compilation, thereby contributing to the principle of
efficient execution.

2. Portability:

The use of a architecture-independent virtual machine model (stack-based
VM) and the fact that the bytecode has the same meaning across all modern
CPU architectures enhance the portability of this technology.

127

3. Safety and Security:

Providing memory safety, type safety, and control flow safety, along with
executing code within a sandbox with limited APIs defined by the host
environment, ensures a higher level of security for this technology. (Perrone &
Romano, 2024).

4. Compatibility and Interoperability:

WebAssembly technology can integrate with existing web platforms,
collaborating with JavaScript APIs, the DOM, and other Web APIs to function
together effectively.

5. Language Independence:

By operating independently of programming languages, WebAssembly
serves as a common compilation target for many languages, including C/C++,
Rust, Go, C#, AssemblyScript, and TinyGo, highlighting its versatility.

These principles establish WebAssembly not only as an execution platform
used in browsers but also as a general-purpose portable execution platform,
providing a platform-independent development environment for those working
in this field.

4. ARCHITECTURE AND OPERATION MODEL

4.1. Binary and Text Formats

WebAssembly programs are distributed in a binary format with the ".wasm"
extension. The compact nature of this format reduces both network transfer time
and parsing time in the browser, enabling faster access and execution. The
human-readable version of the same code is available in the text format with the
".wat" or ".wast" extensions. This format possesses an S-expression-like syntax.

(modules
(func $sum param $x 132) (param Sy 132) (result 132)
local.get Sx
local.get Sy
i32.add)
(export "sum" (func Ssum)))

Figure 1. Syntax example
When this code is compiled and converted to binary format, it can be

executed by a browser or another WASM runtime. The text format is primarily
used for debugging, education, and examining compiler outputs.

128

4.2. Stack-Based Virtual Machine

WebAssembly has a virtual machine model that reads operands and
intermediate results from a stack and writes them back to the stack. It performs
these operations in the following sequence (instructions):

* Retrieves a value from the stack (e.g., local.get, i132.const).

* Performs the operation (e.g., 132.add, f64.mul).

* Writes the result back to the stack.

This model provides an abstract machine definition that simplifies the task
for compilers to generate code for different CPU architectures.

4.3. Linear Memory

In WebAssembly, memory is organized as a one-dimensional address space
known as "linear memory". Each memory consists of 64 KB pages, and
modules can increase the size of the memory at runtime as long as resources
permit. Applications access memory using load/store instructions.

(132.store
(local.get Sptr)
(i32.add
{132.1load (local.get S$ptr))
{(i32.1pcad (i32.add (local.get S$ptr) (i3Z.const 4)))))

Figure 2. Memory access of application

This linear model facilitates portability across different architectures, allows
for memory boundaries to be monitored, and thus serves as an important
foundation for sandboxing.

4.4. Module and Instance

A .wasm file is a module. The module consists of type definitions, functions,
global variables, tables, and optionally, a start function. At runtime, this module
is instantiated by the host environment.

Modules can import functions and resources from the host and can export
functions, memory, or tables to the outside. For example, the relationship
between a JavaScript application and a WebAssembly module can be
established as follows:

129

const response = await fetch("modul.wasm");
const bytes = awalt response.arrayBuffer();

const importObject = {
env: {
lcg_i32: () =» conscle.log ("WASM:", x)
}
b

const { instance } = await WebAssembly.instantiate (bytes, importChjsct);
instance.exports.runi); JS/run() function in wasm

Figure 3. Relationship established between JavaScript and
WebAssembly module

5. INTEGRATION WITH THE WEB PLATFORM

5.1. Browser Support

All modern browsers, including Chrome, Firefox, Safari, and Edge, support
the core features of WebAssembly. In most browsers, WebAssembly is
integrated within the JavaScript engine (such as V8, SpiderMonkey, JSC, etc.)
and shares the same JIT infrastructure.

5.2. JavaScript — WebAssembly Interaction

WebAssembly modules interact with JavaScript in the following ways:

1. JavaScript loads the WebAssembly module (e.g., using
WebAssembly.instantiateStreaming).

2. The functions exported by the module are called by JavaScript.

3. WebAssembly accesses web APIs such as DOM, network, and storage
indirectly by calling the host functions it imports.

This collaboration results in the following architecture in practice:

* Ul DOM management, and events are handled on the JavaScript side.

* CPU-intensive computations are executed on the WebAssembly side.

This approach preserves the web ecosystem that developers have been using
for years, while also accelerating performance-critical components.

5.3. Direct Access to the DOM

By design, WebAssembly cannot directly access the DOM or browser APIs.
This limitation allows WebAssembly to be used not only for browsers but also
for general-purpose platforms, maintaining security and a simple architecture by
leaving web-specific concepts to the host environment. Therefore, to modify the
DOM, JavaScript bridges are utilized, as illustrated in the following example.

130

// T8 side

function setResult (text) {
document.getElementById("result") .textContent = text;

'

// WASM imports this function and calls it at the appropriate time.

Figure 4. Example of a JavaScript bridge

6. LANGUAGE ECOSYSTEMS AND TOOLCHAIN
The language ecosystems and tools used with WebAssembly can be
categorized as follows:

6.1. Emscripten and C/C++

Emscripten is an LLVM-based compilation toolchain used in WebAssembly
that compiles C/C++ code into WebAssembly (and asm.js if necessary).

For example,

// sum.c

int sum(int a, int b) {

return a + b;

} a simple C code like the following can be compiled using command:

emcc sum.c -03 -s WASM=1 -s EXPORTED FUNCTIONS="[" sum'[" -0
sum.js

As a result of this process:

* sum.wasm: WebAssembly module,

* sum,s: "Glue" code that loads and executes the module,

* Optionally, a sum.html file are produced.

Emscripten is extensively used for porting game engines and desktop
applications to the web, providing SDL, OpenGL to WebGL conversions,
POSIX-like APIs, and threading support (Emscripten, 2021) .

6.2. Rust ve Wasm-bindgen Rust and Wasm-bindgen

Rust is naturally well-suited for WebAssembly due to its memory safety
guarantees and zero-cost abstractions.

In the Rust ecosystem:

* Compilation can be done directly to Wasm using the wasm32-
unknown-unknown target.

* The wasm-bindgen library automatically generates glue code while
exporting Rust functions to JS.

* wasm-pack simplifies integration with bundlers and automates the
process of publishing packages to NPM.

Here is a simple example in Rust:

131

use wasm_bindgen::prelude::*;

[wasm_bindgen]
pub fn kare(x: 132) -> 132 {
x*x

}

Figure 5. Rust example

This code can be compiled using the wasm-pack build command and can be
used as a JavaScript project by being packaged as an NPM module.

6.3. AssemblyScript

AssemblyScript is a statically typed language that closely resembles
TypeScript and is designed to be compiled directly to WebAssembly.

* The learning curve is low for JavaScript/TypeScript developers.

* The type system is closely aligned with WebAssembly's data types.

* It works in conjunction with tools like Binaryen and wasm-opt to
produce compact Wasm modules.

AssemblyScript offers a "soft transition" to WebAssembly, particularly for
developers coming from the JavaScript world, and there are real-world use
cases such as accelerating hash functions in tools like Webpack.

6.4. TinyGo and the Go Ecosystem

TinyGo is an optimized alternative Go compiler for embedded systems and
WebAssembly. It can produce significantly smaller .wasm files (e.g., a few
hundred KB compared to the classic Go compiler). It enables the creation of
Wasm components that operate on the server/edge side with the WASI target.

6.5. .NET ve Blazor WebAssembly .NET and Blazor WebAssembly

Microsoft's Blazor WebAssembly framework enables running .NET code
written in C# in the browser via WebAssembly.

* A .NET runtime and application code downloaded to the browser are
executed in Wasm format.

e UI components are defined using Razor/HTML, while event handling
and business logic are implemented in C#.

* .NET WebAssembly build tools are based on Emscripten and provide
AOT compilation support.

This approach facilitates the entry of not only JavaScript but also C#
developers into the world of WebAssembly.

132

7. PERFORMANCE ANALYSIS AND COMPARISON WITH
JAVASCRIPT

7.1. Performance Advantages of WebAssembly

The study by Haas and colleagues demonstrates that elements such as:

* Compact binary format,

* Single-pass validation,

» Efficient JIT/AOT compilation

can provide significant speed advantages over JavaScript, especially in
numerically intensive (CPU-bound) tasks. (Haas et al., 2017).

Research by Yan and colleagues examining the performance of
WebAssembly applications reports that, across various benchmark sets,
WebAssembly is faster than JavaScript in most scenarios. However, it also
indicates that optimizations can sometimes lead to unexpected results. (Yan et
al., 2021).

The performance gains achieved through the use of WebAssembly can be
summarized as follows:

* In loop-based computations, large matrix operations, and cryptography,
WebAssembly can typically provide several times the speedup.

* Because the code size is smaller, download and load times are reduced.

7.2. Strengths of JavaScript

Despite the advantages of WebAssembly, there are still areas where
JavaScript remains very strong. Features such as DOM manipulation, event
handling, Ul management, dynamic data structures, and reflection, as well as
the NPM ecosystem and mature libraries, are aspects in which JavaScript can be
considered superior.

Therefore, many real-world applications employ a hybrid architecture that
uses both "JS + Wasm" together. A significant portion of the logic and Ul is
handled on the JavaScript side, while core computation libraries are maintained
on the WebAssembly side.

7.3. SIMD, Multithreading, and WebAssembly 2.0

The WebAssembly 2.0 draft and ongoing efforts aim to standardize features
to enhance performance, including:

. SIMD instructions,

* Multithreading (threads) and atomic memory operations,

* Multiple return values,

+ Reference types and GC integration (Webassembly, 2025).

133

These capabilities will make WebAssembly significantly more attractive in
the future for fields such as image processing, machine learning, and scientific
computing.

8. SECURITY MODEL

8.1. Sandbox Execution and Memory Safety

WebAssembly adopts the following principles for secure execution:

* Code runs within a sandbox and cannot directly access real operating
system resources.

* Memory accesses are controlled within linear memory boundaries;
accessing an invalid address results as a "trap".

* The type system prevents passing parameters of incorrect types to
functions.

These features create a natural barrier against classic buffer overflow and
most memory corruption attacks.

8.2. Speculative Execution and Side-Channel Attacks

Speculative execution attacks, such as Spectre, affect not only JavaScript in
the browser environment but also WebAssembly. Mcllroy et al. have
highlighted that speculative side-channel attacks should be examined from the
perspective of programming languages, pointing out that classical abstract
machine models do not account for these threats. They emphasize that such
threats need to be considered during the design phase for new languages like
WebAssembly. (Mcilroy et al., 2019).

Narayan and others' Swivel project provides a compiler-based framework
that hardens WebAssembly code against Spectre attacks. (Narayan et al., 2021).

8.3. WebAssembly and Security in the Real World

Musch and colleagues, in their study of the Alexa Top 1M websites, found
that a significant portion of sites using WebAssembly engaged in malicious
activities such as cryptocurrency mining and obfuscation (Musch, Wressnegger,
Johns, & Rieck, 2019). The study by Hilbig and colleagues, which analyzed
8,461 real-world WebAssembly binaries, reveals the diversity of use cases and
indicates that a significant portion of the security vulnerabilities still stems from
inherited C/C++ source code. (Hilbig et al., 2021).

A comprehensive security survey from 2024 indicates that static and
dynamic analysis tools for WebAssembly are rapidly evolving, particularly
highlighting the increasing adoption of Wasm in smart contracts and blockchain
environments (Perrone & Romano, 2024).

134

The 2025 study "Wemby's Web" demonstrates that data read from linear memory
is being transferred to security-critical locations in many sites without sufficient
validation, potentially giving rise to new attack vectors (Draissi et al., 2025).

9. OUT-OF-BROWSER WEBASSEMBLY: WASI, SERVER, AND
EDGE SCENARIOS

9.1. WebAssembly System Interface (WASI)

WASI is a POSIX-like system interface standard for WebAssembly. Its goal
is to provide access to essential system services in Wasm modules, including:

* File system,

* Time and randomness,

* Standard input/output,

* Socket access

With WASI, WebAssembly becomes a general-purpose execution
environment outside the browser, enabling its use in server environments, edge
platforms, and embedded systems (Perrone & Romano, 2024).

When looking at server-side and edge platforms, services like Cloudflare
Workers, Fastly Compute@Edge, and similar platforms utilize WebAssembly
as a lightweight isolation layer to execute functions with millisecond-scale
startup times. This approach offers several advantages over traditional
containers or VMs, including:

* Significantly faster "cold start" times

* Lower memory footprint

* Language independence (any language that can be compiled to Wasm)

* Strong sandboxing

The small code size and portability of WebAssembly have made it attractive
for embedded systems and IoT devices as well. Compilers like TinyGo and
recent surveys indicate that WebAssembly can be utilized as a software-based
security layer even on hardware that does not provide memory isolation.
(Orlando et al., 2025).

10. APPLICATION AREAS

10.1. Games and Graphics Applications

Game engines like Unity and Unreal Engine can export games to the
browser using a combination of WebGL and WebAssembly. Thanks to tools
like Emscripten, the following can operate on the web with high frame rates:

* 3D games

* Physics simulations

* Visual editors

135

10.2. Scientific and Numerical Computing

WebAssembly can transform the browser into a lightweight scientific
computing environment for CPU-intensive tasks such as large matrix
multiplications, linear algebra, and statistical simulations. In recent years, there
has been an increasing number of projects using the Rust+Wasm combination in
web-based data visualization and analysis tools.

10.3. Cryptography and Security Software

Porting cryptographic libraries to WebAssembly:

* Enhances performance,

* Allows for the processing of sensitive data on the client side,

* May reduce server load in some case.

However, special precautions must be taken against speculative execution
and side-channel attacks; research projects like Swivel(Narayan et al., 2021)
and Wasm-Mutate(Cabrera-Arteaga et al., 2024) provide significant
contributions in this area.

10.4. Blockchain and Smart Contracts

Many next-generation blockchain platforms prefer WebAssembly as a smart
contract execution environment due to its language independence, formal
semantics, and the guarantee of safe execution within a sandbox. (Perrone &
Romano, 2024).

10.5. Porting Legacy Desktop Applications to the Web

Compiling long-standing desktop libraries and applications written in C/C++
to WebAssembly has led to the emergence of installation-free, platform-
independent web versions. Notable examples of this approach include Google
Earth, various CAD/graphics applications, and retro game emulators.

11. LIMITATIONS AND CHALLENGES

11.1. Toolchain Complexity

While tools such as Emscripten, wasm-bindgen, wasm-pack, the Blazor
toolchain, and the AssemblyScript compiler are powerful, they can appear
complex, especially for beginners. The installation of the toolchain (including
LLVM, Node.js, Python, etc.) and platform-specific configurations add an
additional burden.

11.2. Debugging

136

Although source map support and browser developer tools for
WebAssembly have improved, line-by-line tracking of optimized binary code is
more challenging compared to JavaScript. This situation can adversely affect
the experience of developers, particularly in complex Rust/C++ projects.

11.3. Security-Related Limitations

While the sandbox model offers security advantages, it also presents
challenges such as:

* The inability to make direct system calls,

* Dependency on WASI or host functions for file system and network
access

which can necessitate additional architectural layers for certain types of
applications, making installation and deployment more cumbersome.

11.4. Risks in Real-World Usage

The misuse of WebAssembly (such as cryptocurrency mining, obfuscation,
exploit kits, etc.) and inadequate security analysis of modules create new attack
surfaces on the browser side. Large-scale analyses have shown that a significant
portion of sites using Wasm exhibit weak security practices. (Musch et al.,
2019).

12. FUTURE PERSPECTIVE

12.1. WebAssembly 2.0 ve 3.0

The W3C and the WebAssembly community continue to expand the core
specifications with versions 2.0 and 3.0. Features such as SIMD, reference
types, tail calls, exception handling, and GC integration will enhance both
performance and language compatibility. (Webassembly, 2025).

12.2. Component Model and Modularity

The developing Component Model aims to enable different Wasm modules
and languages to work together in a type-safe and versionable manner. This will
allow developers to build large systems from small, reusable Wasm components
(Haas et al., 2017).

12.3. Industry Perspective

A 2025 industry-focused study emphasizes that WebAssembly is
increasingly adopted, particularly in the fields of gaming, video processing, data
analysis, and fintech. However, it also highlights the ongoing need for

137

improvements in debugging, security, and ecosystem maturity. (Ghosh et al.,
2018).

13. CONCLUSION

WebAssembly is one of the paradigm-shifting technologies in the web and
the broader software world. By providing a low-level yet secure binary format
and a formally defined virtual machine model, it:

* Enables high-performance applications on the web,

* Provides a lightweight isolation layer in server and edge environments,

+ Serves as a common target for numerous programming languages.

Both academic research and industrial use cases demonstrate that
WebAssembly is not merely a "browser optimization" but a concrete
representation of the vision for a portable execution layer.

138

REFERENCES

Cabrera-Arteaga, J., Fitzgerald, N., Monperrus, M., & Baudry, B. (2024).
WASM-MUTATE: Fast and effective binary diversification for
WebAssembly. Computers and Security, 139(January), 103731.
doi:10.1016/j.cose.2024.103731

Draissi, O., Cloosters, T., Klein, D., Rodler, M., Musch, M., Johns, M., & Davi,
L. (2025). Wemby’s Web: Hunting for Memory Corruption in
WebAssembly. Proceedings of the ACM on Software Engineering,
2(ISSTA), 1326-1349. doi:10.1145/3728937

Emscripten, (2021), APIs, Accessed on 12/01/2025 at the URL
https://emscripten.org/

Ghosh, T., Debnath, A., Paul, A., Chattopadhyay, C., Hazra, S., & Singh, S. K.
(2018). Hybrid Routing Approach Depending on Different Message
Types in VANET, 3(5), 335-338.

Haas, A., Rossberg, A., Schuff, D. L., Titzer, B. L., Holman, M., Gohman, D.,

Bastien, J. F. (2017). Bringing the web up to speed with
WebAssembly. ACM SIGPLAN Notices, 52(6), 185-200.
doi:10.1145/3062341.3062363

Hilbig, A., Lehmann, D., & Pradel, M. (2021). An empirical study of real-world
webassembly binaries: Security, languages, use cases. The Web
Conference 2021 - Proceedings of the World Wide Web Conference,
WWW 2021, 2696-2708. doi:10.1145/3442381.3450138

Khomtchouk, B. B. (2021). WebAssembly enables low latency interoperable
augmented and virtual reality software, 1-11. Tarihinde adresinden
erigildi http://arxiv.org/abs/2110.07128

Mcilroy, R., Sevcik, J., Tebbi, T., Titzer, B. L., & Verwaest, T. (2019). Spectre
is here to stay: An analysis of side-channels and speculative execution, 1—
26. Tarihinde adresinden erisildi http://arxiv.org/abs/1902.05178

Musch, M., Wressnegger, C., Johns, M., & Rieck, K. (2019). New kid on the
web: A study on the prevalence of webassembly in the wild. Lecture
Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 11543 LNCS,
23-42. doi:10.1007/978-3-030-22038-9 2

Narayan, S., Disselkoen, C., Moghimi, D., Cauligi, S., Johnson, E., Gang, Z., ...
Stefan, D. (2021). Swivel: Hardening WebAssembly against spectre.
Proceedings of the 30th USENIX Security Symposium, 1433—1450.

Orlando, T., D’Agati, L., Longo, F., & Merlino, G. (2025). A Survey of
WebAssembly Usage for Embedded Applications: Safety and Portability
Considerations. CEUR Workshop Proceedings, 3962.

139

Perrone, G., & Romano, S. Pietro. (2024). WebAssembly and security: A
review. Computer Science Review, 56. doi:10.1016/j.cosrev.2025.100728

Tufegdzi¢, J., Dodovi¢, M., Ogrizovi¢, M., Babi¢, N., Duki¢, J., & Draskovié,
D. (2024). Application of WebAssembly Technology in High-
Performance Web Applications. Proceedings - 2024 11th International
Conference on FElectrical, Electronic and Computing Engineering,
IcETRAN 2024, (June), 3-6.
doi:10.1109/IcETRAN62308.2024.10645198

Wallentowitz, S., Kersting, B., & Dumitriu, D. M. (2022). Potential of
WebAssembly for Embedded Systems. 2022 [lth Mediterranean
Conference on Embedded Computing, MECO 2022, 1-4.
doi:10.1109/MEC055406.2022.9797106

Webassembly, (2025), webassembly.org, Accessed on 12/01/2025 at the URL
https://webassembly.org/specs/

Wikipedia, (2017), WebAssembly, Accessed on 12/01/2025 at the URL
https://en.wikipedia.org/wiki/WebAssembly

Yan, Y., Tu, T., Zhao, L., Zhou, Y., & Wang, W. (2021). Understanding the
performance of webassembly applications. I¢inde IMC "21: Proceedings
of the 21st ACM Internet Measurement Conference (ss. 533-549).
doi:10.1145/3772356.3772396

140

Chapter 8

Machine Learning Regression Models:
Methods and Application in
Insurance Cost Prediction

Murat BINiCi!

ABSTRACT

This chapter presents an empirical study on the use of machine learning—
based regression models to predict health insurance costs. The analysis draws
on the Medical Cost Personal Dataset, which includes demographic and
behavioral variables such as age, BMI, smoking status, number of children, sex,
and region. After standard preprocessing steps—including encoding of
categorical variables and an 80-20 train—test split—three regression models
were implemented: Linear Regression, Random Forest Regressor, and XGBoost
Regressor. Model performance was assessed using five evaluation metrics (R?,
MAE, MSE, RMSE, and MAPE). The findings show that ensemble methods
outperform the linear model, with the Random Forest Regressor achieving the
highest predictive accuracy and the lowest error measures. XGBoost also
demonstrated strong performance, especially for observations with higher cost
values, while Linear Regression struggled to capture nonlinear patterns inherent
in the dataset. Feature importance analyses confirmed that smoking status is the
dominant predictor across all models, followed by BMI and age. Overall, the
results highlight the effectiveness of ensemble-based machine learning
approaches in modeling complex and nonlinear relationships in insurance cost
prediction, while also recognizing the continued value of Linear Regression in
contexts where interpretability remains essential.

Keywords: Health insurance, Cost prediction, Machine learning, Linear
regression, Random forest, XGBoost

! Assist. Prof. Dr., Bitlis Eren University, Faculty of Engineering and Architecture, Department of Mechanical
Engineering, mbinici@beu.edu.tr, ORCID: 0000-0003-1814-438X.

141

1. INTRODUCTION

In recent years, Machine Learning (ML) and Artificial Intelligence (AI)
techniques have played a growing role in data analytics and decision-support
systems, and their influence continues to grow. In today’s data-driven world,
organizations increasingly rely on Al-driven approaches to extract valuable
information from complex and high-dimensional datasets, going beyond the
capabilities of traditional statistical methods. These techniques not only learn
from historical information but also help anticipate future trends, offering
institutions a strategic advantage in their decision-making processes.

Within the broader field of data analytics, regression models serve as one of
the key components of predictive analytics. Regression analysis aims to
mathematically describe the relationship between independent variables and a
dependent variable. By doing so, it becomes possible to estimate the future
value of an outcome based on past observations. In domains such as healthcare,
finance, and insurance, regression-based cost, risk, or demand forecasting can
significantly enhance the effectiveness of Al-supported decision-making
systems.

The insurance industry is one of the fields in which predictive modeling is
used most extensively, largely due to its strong emphasis on risk assessment and
cost estimation. Setting insurance premiums accurately forms the basis of a fair,
sustainable, and profitable insurance system for both individuals and institutions
(Ivanovna et al., 2018). For this reason, it is essential to model the influence of
factors such as age, gender, body mass index (BMI), smoking habits, and family
structure on premium levels in a reliable way. Although traditional linear
regression models have shown some success in explaining these relationships,
Al-driven algorithms such as Random Forest and XGBoost have gained
prominence in recent years for their ability to capture nonlinear patterns and
deliver higher predictive accuracy (Kapse et al., 2025; Mishra et al., 2024).

Previous research has extensively explored the prediction of health insurance
costs. While some of these studies rely on classical linear regression models, the
growing volume of data and increasing computational power in recent years
have encouraged the use of more advanced machine learning techniques. For
instance, Panda et al. (2022) compared Lasso, Ridge, Simple Linear,
Polynomial Regression and Multiple Linear models in estimating health
insurance premiums, reporting that the polynomial regression model achieved
both the lowest error rate (RMSE = 5100.53) and the highest explanatory power
(R?=0.80).

Similarly, Kaushik et al. (2022) proposed a comprehensive framework for
the prediction of health insurance premiums employing a ML-based regression

142

approach. Their framework incorporates not only model performance, but also
data preprocessing, hyperparameter tuning and feature selection. The study
demonstrates that the accuracy of regression models largely rely on the quality
of data cleaning, the relevance of selected variables, and the choice of an
appropriate combination of models.

Bhardwaj and Anand (2020) compared Multiple Linear Regression, Gradient
Boosting and Decision Tree algorithms using individual health data, reporting
that the Gradient Boosting model succeeded the highest accuracy, with a rate of
99.5%. In a more recent study, Bader and Maalouf (2024) analyzed the
determinants of health insurance premiums by applying Multiple Linear
Regression, Lasso, Ridge and Support Vector Regression (SVR) models, and
found that the SVR approach produced the lowest error level (RMSE = 0.84).

As these studies demonstrate, both linear and nonlinear approaches offer
strong predictive capability in estimating health insurance costs. In addition, the
framework and hybrid models developed in recent years have been used
effectively not only for calculating individual premium levels, but also for
examining regional variations, identifying risk groups, and optimizing policy
pricing strategies. Consequently, Al- and machine-learning-based regression
approaches enhance the accuracy of financial forecasting in the health insurance
sector while also providing a data-driven perspective for policy development.

The purpose of this work is to determine the factors that affect insurance
premiums and to collate the predictive performance of several ML-based
regression models. In this context, Linear Regression, XGBoost Regressor and
Random Forest Regressor models are implemented, and their outputs are
evaluated. This approach allows for a clearer assessment of how effectively
different machine learning techniques can model and forecast health insurance
costs.

2. FOUNDATIONS OF REGRESSION AND MACHINE
LEARNING

2.1. The Concept of Regression Analysis

Regression analysis is a fundamental method used in machine learning and
statistical modeling to mathematically describe the relation between
independent variables and a dependent variable. In its broadest sense, regression
examines how a given variable (typically denoted as Y) is influenced by other
variables (X1, Xz, ..., X») and models this relationship quantitatively to enable
prediction. The main objective of regression is to identify the structural
relationship among variables and to determine the function that best explains
this association (Montgomery et al., 2021).

143

Regression models can take various forms relying on the structure of the
dataset and the nature of the relationships among variables. Simple linear
regression analyzes the impact of a single independent variable on a dependent
variable. For example, attempting to explain insurance premiums solely through
an individual’s age would fall under this type of model. The general form of the
model can be expressed as in Eq. 1.

Y =06y + B X + ¢ 1

In equation (1), Y represents the dependent variable, X denotes the
independent variable, So is the intercept term, and 1 refers to the regression
coefficient. The term & captures the random error component that the model is
unable to explain.

In a multiple linear regression model, the effects of independent variables on
a dependent variable are examined simultaneously. Such models are widely
utilized in areas like the social sciences, engineering, economics, and health
insurance analysis. For instance, multiple linear regression is applied to
understand how age, smoking status, body mass index (BMI) and regional
factors collectively influence insurance premiums. The model is typically
expressed using Eq. 2.

Y=ﬁ0+ﬁ1X1+32X2+..+ﬁan+g (2)

Eq. 2 assumes a linear relationship among the variables, meaning that the
effects of the independent variables are additive and constant. However, many
relationships observed in real-world data are not linear. In such cases, nonlinear
regression models become more appropriate.

Nonlinear regression models are utilized when the relations between
variables takes a complex, curved, or exponential form. For example, the rapid
increase in healthcare expenditures after a certain age threshold or the nonlinear
impact of smoking on insurance premiums are situations in which such models
are appropriate. In these cases, the model can be expressed as in Eq. 3.

YV = f(X1, X3 o, X5 B, B2y Bn) + € 3)

In Eq. 3, f denotes a nonlinear function, which may take forms such as
logarithmic, exponential, or polynomial. Although nonlinear models often
provide a better fit to the data, they tend to be more complex in terms of
interpretability (Kutner et al., 2005).

144

In sum, regression analysis not only quantifies the relationships among
variables but also serves as a powerful tool in predictive analytics and decision-
support systems. With advances in machine learning and artificial intelligence,
the notion of regression has moved beyond traditional statistical approaches and
has become a central component of data-driven modeling.

Machine learning (ML) methods are generally grouped into two main areas:
unsupervised learning and supervised. Supervised learning refers to an approach
in which the model learns from previously labeled data and uses this knowledge
to make predictions for new observations. In such models, the system identifies
patterns between the inputs and output, enabling it to generate forecasts for
similar data in the future (James et al., 2021).

Regression analysis is one of the most fundamental forms of supervised
learning, as regression models enable the prediction of a continuous (numerical)
outcome based on historical data. The supervised learning process typically
consists of three main stages:

a. Training the model: The model is taught the relationship among the
variables using labeled data.

b. Validating the model: The model’s capability to generalize is assessed,
and the risk of overfitting is evaluated.

c. Making predictions: The model’s predictive capability is tested on
new or previously unseen data.

Regression models, which lie at the core of this process, are among the most
suitable approaches when the outcome of interest is continuous—such as price,
cost, income, temperature, or production rate. In contexts like the insurance
industry, where problems such as premium estimation or cost analysis involve a
continuous dependent variable, regression techniques can be applied directly
and effectively.

Within the supervised learning framework, regression models represent a
key area in which methods that originated in traditional statistics have evolved
into Al-driven approaches. While classical linear regression explains the
relationship among variables under a set of assumptions, modern machine
learning regression algorithms learn these relationships from the data without
depending on such assumptions. This capability is particularly advantageous for
nonlinear or high-dimensional datasets, where it often leads to substantially
higher predictive accuracy (Hastie et al., 2017).

For example, algorithms such as XGBoost and Random Forest Regressors
preserve the statistical foundation of classical regression while adding the
flexibility of artificial intelligence to the learning process. These models
perform strongly in identifying complex patterns and capturing interactions

145

among variables, particularly in large datasets. In this sense, regression analysis
can be viewed not only as a statistical prediction tool but also as an Al-driven
predictive core within supervised learning.

At the core of regression analysis lies the mathematical modeling of the
relations between independent variables and a dependent variable. The
dependent variable represents the outcome of interest or the value to be
predicted, whereas the independent variables capture the factors that influence
or help explain that outcome (Gujarati and Porter, 2009). Accordingly, the
purpose of regression is to determine as accurately as possible how variations in
the independent variables are effective on the dependent variable.

This relationship is typically expressed in a functional form as in Eq. 4.

Y= f(Xp, X0 ..., X)) + € 4)

In Eq. 4, Y denotes the dependent variable, while X;, X,, ..., X,, represent
the independent wvariables. The function f(-) captures the systematic
relationship among these variables, and ¢ stands for the random error term that
the model cannot explain. The form of this function varies relying on the type of
regression method being employed. For instance, linear regression assumes a
linear relationship, whereas nonlinear or Al-based models allow this
relationship to take more complex, curved, or interaction-driven forms.

Selecting and modeling independent variables appropriately is crucial for the
reliability of regression analysis. Variable selection directly affects both the
explanatory power of the method (R?) and its capability to generalize (Guyon
and Elisseeff, 2003). Including unnecessary or highly correlated variables may
lead to multicollinearity, which can undermine the significance of coefficients.
For this reason, relationships among variables must be examined carefully,
particularly in multiple regression settings.

Al-based regression models offer a significant advantage at this point.
Models such as XGBoost and Random Forest can automatically identify which
independent variables contribute most to explaining the dependent variable.
Through feature-importance calculations, these models quantify the relative
influence of each predictor (Lundberg and Lee, 2017). This capability makes it
easier to understand complex interactions that are often difficult to interpret in
classical regression analysis.

For instance, in a model designed to predict insurance premiums, the
dependent variable may be charges, while the independent variables could
include factors such as age, bmi, children, smoker, and region. In such a case,
an Al-based model can automatically identify smoker as the most influential

146

factor in predicting insurance costs. This not only enhances predictive accuracy
but also improves the interpretability of variable effects.

In conclusion, accurately modeling the relationship between independent
variables and dependent is a critical determinant of the effectiveness of Al-
based regression approaches. Models that capture this relationship appropriately
not only give highly correct predictions but also provide meaningful
information for decision-support systems.

2.2. Linear Regression

Linear regression is a fundamental approach that models the expected value
of a dependent variable as a linear combination of explanatory variables and
their associated parameters. Its general form can be expressed by using Eq. 5.

Y = Bo + BiX1 + Xy + -+ BuXy + € (5

Here, Y denotes the dependent variable, X,, represents the explanatory
variables, (8, refers to the coefficients, and ¢ stands for the error term. The
parameters are calculated utilizing Ordinary Least Squares (OLS), which
minimizes the sum of squared distictions between the predicted and actual
values (Eq. 6).

min %1, (y; — Y;)? (6)

The reliability of the model depends on the reasonable fulfillment of several
standard assumptions: (i) Linearity, meaning the expected value of the
dependent variable is a linear combination of the predictors; (ii)
Homoscedasticity, which requires the error variance to remain constant; and
(ii1) Absence of multicollinearity, indicating that the explanatory variables are
not perfectly or strongly linearly related.

In practice, these assumptions are examined using simple diagnostic tools
such as residual plots, Breusch—Pagan or White tests, and the Variance Inflation
Factor (VIF). When necessary, variable transformations, weighted least squares,
or regularization techniques (such as Ridge or Lasso) may be applied (James et
al., 2021).

The interpretation of the coefficients is simple: 8, demonstrates the marginal
impact of a one-unit increase in X,, on Y, holding all other variables constant. In
log-transformed models, this effect is often interpreted as an approximate
percentage change.

147

Linear regression is strong in terms of interpretability, computational
efficiency, and its role as a fundamental baseline model. However, its
performance may weaken in the presence of nonlinear patterns,
heteroskedasticity, outliers, or substantial multicollinearity. In such situations,
transformations, regularization methods, or more flexible ones such as tree-
based and boosting models are recommended as complementary analyses
(Hastie et al., 2017).

2.3. Decision Trees and Ensemble Regression Methods

A Decision Tree Regressor models the data by repeatedly splitting it into
two groups, choosing feature—threshold combinations that reduce prediction
error (often measured by MSE). Each leaf of the tree returns a simple estimate,
such as the mean value of the target variable. Overfitting is controlled by
limiting the depth of the tree, requiring a minimum number of samples per leaf,
or using pruning. Decision trees do not require feature scaling and are relatively
easy to interpret thanks to their rule-based structure. However, a single tree can
be highly variable, which is why ensemble approaches, such as random forests
or boosting, are often preferred in practice (Blockeel, 2023).

Random Forest Regressor is a bagging model that trains many decision trees
on bootstrap samples. It uses a randomly selected subset of features at each
split. The predictions from all trees are then averaged. These sources of
randomness reduce the correlation between trees, which in turn lowers the high
variance typically seen in a single decision tree. Random forests can capture
nonlinear relationships and interactions effectively, and they are generally
robust to scaling issues and outliers. They also offer practical advantages such
as the out-of-bag (OOB) error, which provides an internal estimate of
generalization performance, and measures of variable importance based on
impurity reduction or permutation. The overall performance largely depends on
tuning hyperparameters such as the the number of features considered at each
split (max_ features), number of trees (n_estimators), minimum samples per leaf
and tree depth. These choices help balance bias and variance depending on the
data size and noise level (Probst et al., 2019).

XGBoost, or more generally the Gradient Boosting Regressor, builds a
strong predictive model by adding weak learners sequentially and additively,
each focused on reducing the residual errors of the previous steps. At every
iteration, a shallow decision tree is trained to explain the remaining residuals.
Techniques such as learning rate (shrinkage) and subsampling of rows and
features help prevent overfitting, while early stopping is often used to track
generalization performance (Chen and Guestrin, 2016).

148

XGBoost includes several engineering improvements, such as L1/L2
regularization, limits on tree depth and number of leaves, split criteria optimized
for sparse data, automatic handling of missing values, and scalable memory-
access patterns for large datasets. In practice, performance is driven by the joint
tuning of number of trees, learning rate, maximum depth and subsampling ratios
(Chen and Guestrin, 2016).

Feature importance shows which input variables matter most in a model.
Tree-based models usually measure this by how much each split reduces error,
while model-agnostic methods such as permutation importance or SHAP values
offer alternative ways to check variable effects. However, highly correlated
features may appear more important than they are. Using several importance
measures together generally gives a more reliable understanding (Fisher et al.,
2019).

2.4. Regression in the Context of Artificial Intelligence

In the AI context, regression goes beyond classical statistics by using
algorithms that can learn nonlinear patterns and interactions in the data. Models
like tree ensembles, gradient boosting, and regularized linear models often
provide higher accuracy and better scalability. However, stronger models can be
harder to interpret, so tools such as SHAP values, permutation importance, and
solid validation methods are needed. In practice, Al-based regression is widely
used from predicting health insurance premiums to estimating energy demand.
It can produce useful insights when supported by good preprocessing, proper
model choice, and reliable evaluation metrics (James et al., 2021).

3. MATERIALS AND METHODS

This section describes the dataset employed in the work, the variables it
contains, and the preprocessing steps applied before model development. The
analysis is based on the Medical Cost Personal Dataset obtained from Kaggle,
which includes 1,338 observations and seven variables related to individual
demographic and lifestyle characteristics. The section introduces the structure of
the data, summarizes key attributes of numerical and categorical variables, and
outlines the steps taken to prepare the dataset for modeling, including
descriptive analysis and checks for missing values. These elements provide the
foundation for building and comparing the regression models used in the study.

3.1. Dataset Overview

The dataset utilized in this study is the insurance.csv file obtained from the
“Medical Cost Personal Datasets” resource on Kaggle (Abdelghany, 2025).

149

3.1.1. Variables

The dataset consists of 1,338 observations and includes seven variables:
charges (target), age, sex, bmi, children, smoker, and region. The dataset is
complete with no missing observations. Information about the variables is
presented in Table 1.

The variable charges, which represents the insurance premium, is the target
(dependent) variable and is continuous. The aim is to predict an individual’s
health insurance premium using the remaining six independent variables. The
variable bmi indicates body mass index and is also continuous. The integer
variables in the dataset are age and children. The age variable represents the
individual’s age, while children denotes the number of children they have. The
sex variable identifies the individual’s gender and is categorical. Two additional
categorical variables are smoker and region. The first indicates whether the
person is a smoker, and the second specifies the geographical region in which
they live (northeast, northwest, southeast, southwest).

Table 1. Information about the variables

Variables Definition Type Obs.
h
CUArges Health insurance premium (USD) Continious 1338
(target)
age Participant's age Integer 1338
bmi Body mass index (kg/m?) Continious 1338
children Number of dependent children Integer 1338
sex Participant's gender (female/male) Categorical 1338
smoker Smoking (yes/no) Categorical 1338
) Region of residence .

t 1 1338

region (northeast/northwest/southeast/southwest) Categorica

3.1.2. Descriptive statistics

The descriptive statistics for the numerical variables are given in Table 2,
reporting the standard deviation, mean, maximum and minimum values for each
variable.

Table 2. Descriptive statistics for the numeric variables

Variables min max mean Std.
charges 1121.87 63770.43 13270.42 12110.01
(target)

age 18 64 39.21 14.05
bmi 15.96 53.13 30.66 6.10
children 0 5 1.09 1.21

150

The distribution of the categorical variable sex in the insurance dataset is
presented in Table 3. Approximately half of the participants are male and the
other half are female, indicating a well-balanced gender distribution. This
balance reduces the risk of bias related to class imbalance when the gender
variable is included in the modeling process.

Table 3. Statistics for the sex variable

Category Observations Percentage (%)
female 662 49.5 %
male 676 50.5%
Total 1338 100 %

The statistics for smoker, another categorical variable, are presented in Table
4. Approximately 20.5% of the individuals in the dataset are smokers, while
79.5% are non-smokers. This distribution gives the smoker variable
considerable discriminative power during modeling, as the average insurance
cost for smokers is roughly 3.8 times higher than that of non-smokers.

Table 4. Statistics for the smoker variable

Category Observations Percentage (%)
no 1064 79.5 %
yes 274 20.5 %
Total 1338 100 %

Finally, the statistics for the categorical variable region are provided in Table
5. As shown, the dataset is regionally well balanced, with each of the four
regions represented by a similar number of observations. This balance reduces
the likelihood of regional bias during modeling and allows the effect of the
region variable to be examined more reliably.

Table S. Statistics for the region variable

Category Observations Percentage (%)
southeast 364 272 %
southwest 325 24.3 %
northwest 325 243 %
northeast 324 242 %
Total 1338 100 %

151

3.2. Data Preprocessing

Data preprocessing refers to the set of systematic transformation, cleaning,
and standardization steps applied to raw data to prepare it for analysis and
modeling. In other words, it aims to make sure that the input data employed by
the model is correct, consistent, complete, and statistically meaningful
(Kotsiantis et al., 2006).

3.2.1. Missing value analysis

Checking for missing values is a crucial step in data preprocessing, as it
helps preserve data integrity and the predictive power of the method. In this
stage, missing observations are systematically identified, their proportions are
calculated, and the nature of the missingness is evaluated. Simple statistical
functions such as isnull() or isna() support this analysis. When the amount of
missing data is low, basic imputation methods such as replacing values with the
mode, median, or mean may be sufficient. For higher levels of missingness,
regression-based approaches, KNN imputation, or multiple imputation (MICE)
techniques are recommended. Importantly, imputation must be performed only
on the training data, with the same transformation applied to the test data, to
avoid data leakage. The goal of this process is to prevent missingness from
introducing bias into the model, reduce information loss, and improve
predictive performance (Little & Rubin, 2019; Jadhav et al., 2019).

In the insurance dataset used in this study, there are no missing observations.
The checks conducted on the dataset show that all seven variables are fully
populated for all 1,338 records, with no NaN or empty values. This simplifies
the preprocessing stage considerably and allows the analysis to move directly to
model development.

3.2.2. Encoding of categorical variables

Transforming (encoding) categorical variables is an essential step in machine
learning and regression analysis, as most models operate only on numerical
inputs. This process converts text-based categories into statistically meaningful
numerical representations. The three most common methods are Dummy
Encoding, One-Hot Encoding and Label Encoding, each suited to different
model types and data structures (Kuhn and Johnson, 2019; Potdar et al., 2017).

In Dummy Encoding, only K—1 columns are created from K categories. One
category is left out as the reference (baseline). This prevents linear dependence
among variables and helps avoid multicollinearity.

In One-Hot Encoding, a separate binary (0/1) column is created for each
category. This removes any ordinal relationship among the classes and allows

152

the model to treat each category as an independent indicator variable. However,
when a variable has many categories, the number of columns can increase
rapidly, leading to a high-dimensional feature space. For this reason, one-hot
encoding is commonly used with methods such as linear regression, SVM, and
neural networks.

In Label Encoding, a unique integer value is assigned to every category
(such as female = 0, male = 1). Although this method is simple and efficient, it
introduces an artificial ordinal relationship among categories. Therefore, it is
more appropriate for models that are insensitive to ordering such as tree-based
algorithms like XGBoost, Random Forest, or Decision Tree.

For example, suppose the region variable contains four categories (northeast,
northwest, southeast, southwest). In that case, the encodings would be as
follows:

Table 6. Examples of categorical variable coding

Observations | Region Dummy Encoding One-Hot Label
(Ref: northeast) Encoding Encoding

1 southwest 0,0,1) (0,0,0,1) 0

2 southeast 0,1,0) 0,0,1,0) 1

3 northwest (1,0,0) (0,1,0,0) 2

4 northeast (0,0,0) (1,0,0,0) 3

In this example, Label Encoding introduces an artificial ordering among the
categories, while One-Hot Encoding represents all classes. Dummy Encoding,
on the other hand, includes all categories except the reference category
(northeast).

In the insurance dataset used in this study:

e Since the variables sex and smoker are binary, they were encoded using
Label Encoding (0-1),

e Since the region variable contains four categories, Dummy Encoding
was applied, with northeast selected as the reference category.

This approach may help avoid linear dependence in linear regression models
while also providing an effective representation of categorical information for
tree-based algorithms.

3.2.3. Scaling numerical variables

Feature scaling is a preprocessing technique used to eliminate imbalances
arising from differences in magnitude or measurement units among numerical
variables. It ensures that the model’s learning process proceeds properly,
especially when variables span different value ranges. Scaling helps stabilize

153

parameter estimation, improves the convergence speed of gradient-based
algorithms, and enhances overall generalization performance (Han et al., 2012;
Kuhn and Johnson, 2019).

Some of the scaling methods generally utilized in machine learning are as
follows:

Min—Max Normalization: The data is scaled to the range of 0—1 by using
Eq. 7. It is frequently used in gradient-based models such as neural networks
and logistic regression, but it is sensitive to outliers.

x| = —min ""‘_";in' @)
max min

Standardization (Z-score Scaling): The data is transformed by using Eq. 8
so that the standard deviation becomes 1, and the mean is 0. This approach is
more resilient to outlier effects and is a standard approach in methods such as
SVM, linear regression, and PCA.

x' ==k (8)
Robust Scaling: It uses the median and interquartile range (IQR), as stated

in Eq. 9. It is preferred when the dataset contains many outliers. This method is
especially suitable for variables such as income, expenditure, or health costs,

which tend to have extreme values.

x' = x T;Rzan 9)

The three models used in this study have different characteristics in terms of
their need for feature scaling:

Linear Regression: Linear regression coefficients are directly affected by
the scale of the variables. Features with larger magnitudes tend to dominate the
model. Therefore, standardization (z-score scaling) is recommended when using
linear regression (Kuhn and Johnson, 2019).

Random Forest Regressor: As a tree-based model, it splits data according
to the ranking of feature values, not their actual scales. As a result, Random
Forest is not affected by scaling and does not require any feature scaling (Lantz,
2019).

XGBoost Regressor: XGBoost is also a tree-based algorithm and is
therefore insensitive to differences in feature scales. However, in some cases,
normalizing the variables can improve numerical stability and speed up
convergence.

154

In the insurance dataset used in this study, the numerical variables (age, bmi,
children, charges) are measured on different scales; however, given the structure
of the models, extensive scaling is not required. Random Forest and XGBoost
are insensitive to feature scale differences. Although Linear Regression can
theoretically benefit from scaling, the small number of independent variables
and their relatively comparable statistical ranges mean that scaling would not
provide a meaningful improvement in model performance. Therefore, no
scaling procedures were applied in this study. The variables were used in their
original form, preserving their natural interpretability and avoiding unnecessary
transformations.

3.2.4. Training and test-data split

Train—test splitting is a fundamental validation method employed in ML to
appraise a model’s ability to generalize. This approach divides the available
dataset into two subsets:

e Training dataset: It is used during the learning phase of the model to
estimate its parameters.

e Testing dataset: It consists of data the model has never seen before and
is utilized to appraise its actual performance.

This split helps prevent the method from overfitting to the training data and
allows its predictive power on new data to be evaluated objectively (Han et al.,
2012).

Commonly used train—test ratios are 70-30 or 80-20. In larger datasets, the
proportion allocated to training can be increased, while smaller datasets may
require a slightly higher test ratio. In some cases, a third subset called the
validation set is also created, or the training process is stabilized using methods
such as k-fold cross-validation (Kuhn and Johnson, 2019).

The dataset employed in this work has 1,338 observations. To objectively
appraise the overall performance of the methods, the dataset was separated into
two parts: 20% for testing and 80% for training. The training set (1,070
observations) was used during the learning phase of the XGBoost, Random
Forest and Linear Regression models. The test set (268 observations) was used
to determine how well the methods perform on unseen data. This ratio is
appropriate for the size of the dataset, providing sufficient data for model
training while allowing reliable evaluation on the test set.

The split was performed randomly (random state = 42), ensuring
reproducibility. This approach allowed each model to see only a portion of the
data during training and to be assessed on observations it had not encountered
before. As a result, the risk of overfitting was reduced and the models’ ability to

155

generalize was improved. The performance of all three methods on the test data
was evaluated using R?, MAE, MSE, RMSE, and MAPE.

3.3. Applied Machine Learning Methods

This section introduces the three ML models used to predict the insurance
premium (charges) variable. The modeling process includes XGBoost
Regressor, Random Forest Regressor and Linear Regression in order to capture
both nonlinear and linear relationships in the data. These models were selected
because they are capable of explaining potential linear effects as well as
interaction patterns among the variables in the dataset.

All data preprocessing and modeling steps in this work were carried out on
the Google Colab platform. Colab is a cloud-based development environment
that allows effective use of Python data science libraries. This made the analysis
process both computationally efficient and reproducible. During model
development, the pandas, NumPy, scikit-learn, and XGBoost libraries were
used, and all coding was performed in Python.

3.3.1. Linear regression

Linear regression is a well-established statistical approach employed to
describe the linear association between independent variables and a dependent.
In this study, it is assumed by the model that the target variable, charges, can be
represented as a linear combination of the predictors, which are age, bmi,
children, sex, smoker, and region. The general structure of the model can be
written as in Eq. 10.

Y = By + B1X1 + BoXy + - + BpXp + € (10)

In Eq. 10, y represents the dependent variable, x; denotes the independent
variables, Bi refers to the coefficients, and ¢ is the error term. The goal of the
model is to determine the coefficients minimizing the sum of squared
distinctions between the actual and predicted values, commonly measured by
the mean squared error (MSE) (Han et al., 2012).

The key advantages of linear regression lie in its straightforward structure
and the ease with which it can be interpreted. Each coefficient reflects the
expected change in the dependent variable associated with a one-unit change in
the corresponding predictor, holding the other variables constant. However,
when the core assumptions of the method (linearity, normality of the errors,
homoscedasticity, and independence) are violated, the predictive performance
of the model may weaken (Kuhn and Johnson, 2019).

156

In the insurance dataset, the categorical variables sex and smoker were
encoded using Label Encoding since both have a binary structure. The region
variable, which contains four categories, was transformed using Dummy
Encoding, with northeast set as the reference group. The encoded dataset was
subsequently split into two parts, with 80% allocated for training and the
remaining 20% reserved for testing. The model was fitted using the training
portion of the data and its performance was assessed on the test subset. Its
predictive performance was assessed through R? MAE, MSE, RMSE, and
MAPE. This analysis served as a baseline model for identifying the general
linear patterns within the data.

3.3.2. Random forest regressor

The Random Forest Regressor is an ensemble technique that relies on
multiple decision trees. Instead of depending on a single deep tree, which is
prone to overfitting, the method constructs numerous trees using different
bootstrap samples of the data and combines their predictions by averaging them
to obtain the final estimate. This approach lowers variance and helps generate
more stable and generalizable predictions.

The Random Forest algorithm incorporates two main forms of randomness:
(i) bootstrap sampling, which ensures that each tree is built using a different
portion of the data, and (ii) the random selection of feature subsets at each
splitting step. Together, these elements enhance the diversity of the trees in the
ensemble and help lower the likelihood of overfitting.

In this work, the Random Forest Regressor was implemented using the
insurance.csv dataset. The dependent variable, charges (insurance cost), was
modeled using the predictors age, bmi, children, sex, smoker, and region. The
model was configured to use 500 trees (n_estimators = 500). Since sex and
smoker are binary categorical variables, they were encoded using Label
Encoding (0-1). The region variable, which includes four categories, was
transformed using Dummy Encoding with northeast selected as the reference
category. The dataset was divided into an 80% training and a 20% testing
portion, and the model’s performance was assessed using the metrics MAPE,
MAE, RMSE, MSE, and R2.

3.3.3. XGBoost regressor

XGBoost (Extreme Gradient Boosting) is an algorithm that constructs
decision trees in a sequential manner, reducing prediction errors through the
gradient boosting process. Each successive tree is designed to address the

157

mistakes of the preceding ones, leading to progressively improved predictive
accuracy (Chen and Guestrin, 2016).

Compared with traditional Gradient Boosting approaches, the key distinction
of XGBoost is its use of a regularized objective function. This structure
incorporates both L1 (Lasso) and L2 (Ridge) penalty terms, making the model
more resistant to overfitting. In addition, XGBoost provides high computational
efficiency through features such as built-in handling of missing values, parallel
processing, histogram-based tree growth, and early stopping.

In this study, the XGBoost Regressor model was configured with 500 trees
(n_estimators = 500) for predicting insurance premiums. During preprocessing,
the variables sex and smoker were converted into binary form using Label
Encoding, while the region variable with four categories was transformed using
Dummy Encoding, with northeast defined as the reference category. The dataset
was then divided into a 20% test set ann an 80% training set. The XGBoost
model was trained on the training data using a gradient boosting approach, and
its performance was assessed utilizing R?, MAE, MSE, RMSE, and MAPE.

3.4. Evaluation Metrics

To compare the performance of the ML methods and evaluate their
predictive accuracy, several statistical metrics are commonly used. In this study,
the performance of the regression models was assessed employing five key
evaluation metrics: R?, MAE, MSE, RMSE, and MAPE. Taken together, these
measures offer a thorough assessment of how large the model’s errors are, how
they are distributed, and how closely the predictions align with the actual
values.

3.4.1. Coefficient of determination (R?)

The R? shows the proportion of the variation in the dependent variable that is
accounted for by the model and it can be calculated using Eq. 11. Its value
ranges from O to 1, with figures closer to 1 indicating greater explanatory
strength.

2 _ 4 _ 2i-9)?
RE=1 2i-y)? (D

Eq. 11 corresponds to the share of variance the model is unable to explain,
whereas the denominator represents the total variance in the dependent variable.
A larger R? value shows that the model fits the data more effectively. However,
it should not be viewed as a standalone indicator of performance.

158

3.4.2. Mean absolute error (MAE)

MAE represents the mean of the absolute deviations between the model’s
predictions and the true values and it can be calculated using Eq. 12. It does not
take the direction of the errors (positive or negative) into account and focuses
solely on their magnitude.

MAE = ~Yly; - ;| (12)

The interpretation of MAE is straightforward; its unit is the same as that of
the dependent variable. Lower MAE scores suggest that the model’s predictions
align more closely with the observed values.

3.4.3. Mean squared error (MSE)

MSE is calculated as the mean of the squared prediction errors, meaning that
larger deviations contribute disproportionately to the final value due to the
squaring process. The formula is given in Eq. 13.

MSE = —%.(y; — 9)? (13)

MSE is often used for comparing models, but because its unit is the square
of the original variable, it is not as easy to interpret directly as MAE.

3.4.4. Root mean square error (RMSE)
RMSE is obtained by taking the square root of the MSE as in Eq. 14, which
allows the error to be reported in the same unit as the dependent variable.

RMSE = VMSE (14)
It is sensitive to large errors and provides an indication of the model’s
“typical error magnitude.” A lower RMSE value shows that the model produces
consistent and accurate predictions.
3.4.5. Mean absolute percentage error (MAPE)

MAPE is a performance measure that reports prediction errors in percentage
terms. It can be calculated using Eq. 15.

_ 100 & |yi=Pi
MAPE =2 2| .

(15)

159

Expressing the result as a percentage makes interpretation easier. However,
when the actual values are very close to zero, sensitivity issues may arise.

Collectively, these five metrics offer a well-rounded assessment of the
model’s overall performance. While R? measures the proportion of variance
explained, MAE and RMSE capture the magnitude of errors with different
levels of sensitivity. MAPE, on the other hand, expresses errors as percentages,
offering an interpretation that is particularly intuitive for decision-makers. For
this reason, the XGBoost Regressor, Random Forest Regressor and Linear
Regression models used in this study were evaluated using this combined set of
metrics.

4. FINDINGS AND EVALUATION

4.1. Findings of the Models

To assess how each model performed, the five primary evaluation metrics
(R?, MAE, RMSE, MSE, and MAPE) were computed for the XGBoost
Regressor, Random Forest Regressor, Linear Regression models. Using these
measures, each model’s predictive accuracy, error magnitude, and
generalization ability were analyzed comparatively. The resulting findings are
summarized in Table 7.

Tablo 7. Comparative evaluation of the ML models

MAPE
(%)
Linear Regression 0.7836 | 4181.19 | 33,596,915.85 | 5796.28 46.89
Random Forest
Regressor

XGBoost Regressor 0.8349 | 2921.27 | 25,633,697.49 5062.97 37.07

Model R MAE MSE RMSE

0.8640 | 2560.02 | 21052750.53 4588.33 32.48

Table 7 provides a comparison of the performance indicators for the three
ML methods. The findings indicate that the Random Forest Regressor achieves
the best overall results, demonstrating the highest R? value (0.864), which
shows that it captures a substantial share of the variance in the dependent
variable. Additionally, its lower MAPE, RMSE, MSE, and MAE scores,
relative to the other models, further highlight its ability to significantly reduce
prediction errors.

XGBoost Regressor performs better than Linear Regression overall but
remains slightly behind Random Forest. The Linear Regression model shows
the lowest performance, largely because its inherently linear framework cannot
represent the nonlinear and complex relationships embedded in the dataset.

160

Overall, these findings indicate that ensemble methods provide higher
accuracy than classical linear models when predicting insurance premiums.

To provide a qualitative assessment of model performance, the predicted
insurance premiums for five randomly selected observations from the test
dataset were compared with their actual values. This approach complements the
general evaluation provided by the error metrics and offers insight into how the
models behave at the individual observation level. The closeness of the
predictions to the true values is especially important for understanding model
consistency and the practical significance of the errors. The randomly selected
observations are presented in Table 8, and their corresponding comparisons are
shown in Table 9.

Table 8. Randomly chosen observations from the insurance dataset

. . Region
Obs. age sex bmi children | smoker Region Region Sof:thw
No northwest | southeast est
764 45 0 25.175 2 0 0 0 0
887 36 0 30.020 0 0 1 0 0
890 64 0 26.885 0 1 1 0 0
1293 46 1 25.745 3 0 1 0 0
259 19 1 31.920 0 1 1 0 0

Table 9. Actual and predicted insurance premiums for the random

observations

Obs. | Actual LR LR RF RF XGB XGB
No Charges Prediction Error Prediction | Error Prediction | Error
764 9095.07 8969.55 1.38 % 10282.31 13.06% 9336.78 2.66%
887 527218 7068.75 34.1% 5342.62 1.34% 9343.56 77.20%
890 29330.99 | 36858.41 25.7% 28331.83 3.41% 29616.47 0.97%
1293 | 9301.90 9454.67 1.64% 11353.21 22.05% 9575.83 2.95%
259 33750.30 | 26973.17 20.1% 34763.78 3.00% 33304.64 1.32%

Table 9 presents a comparison of actual and predicted insurance charges for
five randomly selected observations across the three machine learning models.
The results demonstrate that XGBoost Regressor generally produces the lowest
percentage errors, particularly for high-cost observations, indicating its strong
capability to determine complicated nonlinear relationships in the data. Random
Forest Regressor also performs robustly, yielding the smallest errors in several
cases and showing high consistency, especially for low and medium charge
levels. In contrast, Linear Regression exhibits substantially higher prediction
errors for multiple observations, suggesting that its linear structure is
insufficient for modeling the nonlinear patterns inherent in medical cost data.

161

Overall, the table supports the conclusion that ensemble-based models
(especially XGBoost and Random Forest) provide significantly more correct
and trustable predictions compared to the traditional Linear Regression
approach.

To compare how the three ML methods assign importance to the
independent variables, the feature importance values for each method are given
in Table 10. For the Linear Regression, the coefficients were standardized to
create a comparable measure of importance, while the variable importance
scores produced by the Random Forest and XGBoost models were used
directly. This comparison reveals how the key factors influencing insurance
premiums differ across models and shows that ensemble methods tend to
capture nonlinear interactions more effectively.

Table 10. Feature importance comparison across LR, RF, and XGB models

Models age sex bmi children smoker region
LR 0.0097 0.0007 | 0.0127 0.0160 0.8916 0.0693
RF 0.1349 0.0064 | 0.2142 0.0194 0.6096 0.0155
XGB 0.0136 0.0045 | 0.0196 0.0079 0.9371 0.0174

Table 10 compares the feature importance values gathered from the
XGBoost, Random Forest, and Linear Regression models. Across all three
approaches, the smoker variable emerges as the most influential predictor of
insurance charges, reflecting the well-established impact of smoking on health-
related expenditures. Ensemble models—particularly XGBoost, with an
importance score of 0.9371—assign an even stronger weight to this variable,
indicating their enhanced ability to capture nonlinear and interaction effects.
The bmi and age variables show moderate importance in the Random Forest and
XGBoost models, whereas Linear Regression assigns comparatively smaller
weights, suggesting its limited capacity to model complex relationships in the
data. Additionally, the region and sex variables consistently exhibit low
importance across all models, implying minimal direct contribution to premium
variation. Overall, the table highlights the superiority of ensemble methods in
identifying dominant predictors and modeling heterogeneous patterns in
medical insurance costs.

4.2. Comparison of the models

In thhis section comparative evaluation of the three machine learning models
used in the study is presented, examining their performance, error metrics,
prediction behavior, and variable importance patterns. Considering both the

162

structural characteristics of the models and the statistical features of the dataset,
this analysis highlights which approach produces more effective results for the
problem of insurance premium prediction, where the relations are complex and
nonlinear.

Based on the performance metrics, the Random Forest Regressor stands out
with the highest R? value (0.8640) and the lowest error measures (MAE, MSE,
RMSE, MAPE). This outcome can be attributed to the model’s capability to
avoid overfitting by averaging predictions from many decision trees and to
effectively capture complicated relationships in the data. The XGBoost
Regressor also performs strongly, achieving low error rates particularly for
higher premium values and successfully representing nonlinear patterns.

The Linear Regression model showed the weakest performance among the
three models. This outcome is mainly due to the fact that many relationships in
the dataset are nonlinear. For instance, the effects of variables such as smoking
status, body mass index (BMI), and age on medical costs are far from linear;
after certain threshold levels, costs increase sharply. Because a linear model
cannot capture these kinds of patterns, its error levels were higher.

Another aspect of the model comparison is the assessment of variable
importance. In all three models, the smoker variable clearly ranks as the most
influential factor, confirming the dominant impact of smoking on healthcare
expenditures. In the ensemble models, its importance score is even higher,
which indicates that these algorithms capture interactions and nonlinear
relationships more effectively. The variables BMI and age show moderate
importance in the Random Forest and XGBoost models, whereas their effects
appear more limited in Linear Regression. This finding further illustrates that
the linear model has difficulty representing more complex patterns in the data.

Finally, when the predicted and actual values are examined, XGBoost
appears to produce more consistent estimates for individuals with high premium
levels, while Random Forest performs more reliably for medium and low
premium ranges. This difference can be linked to how each model responds to
the distribution of the data. On the other hand, Linear Regression generates
substantial errors for extreme values, highlighting the limitations of a linear
approach when dealing with health expenditure data that exhibit high variance
and deviate significantly from normality.

Overall, the findings demonstrates that the ensemble-based methods, namely
the Random Forest Regressor and the XGBoost Regressor, offer higher
accuracy and stronger generalization ability for problems like insurance
premium prediction, where relationships are highly multivariate and complex.
However, in scenarios where interpretability is essential, the Linear Regression

163

model remains a valuable reference, even though its performance clearly falls
behind that of modern ensemble techniques.

4.3. Interpretation of Findings

The results of this study offer a detailed insight into the key factors that most
significantly affect individual health insurance premiums. Across all the three
machine learning models, the smoker variable consistently emerges as the most
dominant predictor. This is particularly evident in the ensemble models, where
smoker receives exceptionally high importance scores, reflecting its substantial
contribution to medical expenditures. These results are well aligned with the
existing literature, which demonstrates that smoking dramatically increases the
likelihood of chronic diseases, hospitalization, and long-term healthcare costs.
Consequently, individuals who smoke are classified as high-risk members in
insurance pools, leading to significantly higher premium levels.

The body mass index (BMI) is another critical determinant of insurance
charges. The moderate importance assigned to BMI by Random Forest and
XGBoost indicates that medical costs respond nonlinearly to changes in BMI—
a pattern that ensemble methods can effectively capture. The age variable
similarly demonstrates a notable influence on premium levels, reflecting the
natural increase in health risks as individuals grow older. Age-related
deterioration in physical health, combined with heightened susceptibility to
chronic illnesses, explains the progressive rise in predicted insurance charges.

In contrast, variables such as children, sex, and region contribute relatively
less to premium variation. Although these factors may have indirect or context-
dependent effects on healthcare utilization, their overall influence remains
minor compared with the strong and direct impact of smoking behavior, BMI,
and age. This pattern suggests that insurance pricing is primarily driven by
individual health risks and lifestyle-associated factors rather than demographic
or geographic attributes.

5. CONCLUSIONS AND RECOMMENDATIONS

This study provided a detailed comparative analysis of three ML models
(XGBoost Regressor, Random Forest Regressor, and Linear Regression)
applied to the prediction of individual health insurance premiums. The findings
show that ensemble-based ML methods demonstrate clear superiority over
classical regression approaches, particularly in modeling complex, nonlinear
relationships within health cost data.

Among the evaluated models, the Random Forest Regressor achieved the
strongest predictive performance, demonstrated by its higher R? value and lower

164

error scores (MAE, RMSE, MSE, and MAPE). Its ensemble structure,
combining the outputs of numerous decision trees, enables robust generalization
and reduces overfitting, even when the dataset contains variability or noise. The
XGBoost Regressor also showed strong performance, especially for high-cost
observations, reflecting its capacity to capture intricate nonlinear patterns and
feature interactions. Conversely, the Linear Regression method demonstrated
relatively weak predictive performance. Although its structure provides high
interpretability, its inability to capture nonlinearities resulted in higher error
levels, reinforcing the limitations of classical regression in complex real-world
prediction tasks.

Overall, the findings highlight the advantages of Al-based regression
techniques over traditional statistical models. In particular, ensemble algorithms
offer enhanced flexibility, stronger modeling capacity for nonlinear
relationships, and more realistic representations of variable importance. The
pronounced dominance of factors such as BMI, smoking status, and age in the
ensemble models aligns with established medical and actuarial knowledge,
underscoring the robustness of these methods in cost estimation.

In conclusion, the findings of this study highlight the strong capability of
machine learning and artificial intelligence methods to accurately predict health
insurance expenditures. The comparison between classical and modern models
underscores the importance of nonlinear modeling capabilities, robust feature
interaction handling, and data-driven variable importance estimation.
Expanding the methodology to other datasets and exploring more advanced
modeling strategies will further contribute to the development of accurate and
reliable predictive systems in the health insurance domain and beyond.

165

REFERENCES

Bader, M., & Maalouf, M. (2024, December). Evaluating Determinants of
Health Insurance Premiums Using Advanced Multiple Linear Regression
Techniques. In 2024 IEEE International Conference on Industrial
Engineering and Engineering Management (IEEM) (pp. 440-444). IEEE.

Bhardwaj, N., & Anand, R. (2020). Health insurance amount prediction. Int. J.
Eng. Res, 9, 1008-1011.

Blockeel, H. (2023). Decision trees: from efficient prediction to responsible Al.
Frontiers in Artificial Intelligence.

Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System.
Proceedings of the 22nd ACM SIGKDD Conference.

Fisher, A., Rudin, C., & Dominici, F. (2019). All models are wrong, but many
are useful: Variable importance for black-box, proprietary, or
misspecified prediction models. The Annals of Applied Statistics, 13(4),
2353-2381.

Géron, A. (2022). Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow (3rd ed.). O’Reilly Media.

Gujarati, D. N., & Porter, D. C. (2009). Basic Econometrics (5th ed.). McGraw-
Hill Education.

Guyon, 1., & Elisseeff, A. (2003). An introduction to variable and feature
selection. Journal of Machine Learning Research, 3, 1157—-1182.

Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques
(3rd ed.). Morgan Kaufmann.

Hastie, T., Tibshirani, R., & Friedman, J. (2017). The Elements of Statistical
Learning: Data Mining, Inference, and Prediction (2nd ed.). Springer.

Ivanovna, K. O., Vladimirovna, M. O., & Turgaeva, A. (2018). Insurance risks
management methodology. Journal of Risk and Financial management,
11(4), 75.

Jadhav, A., Pramod, D., & Ramanathan, K. (2019). Comparison of performance
of data imputation methods for numeric dataset. Applied Artificial
Intelligence, 33(10), 913-933.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An Introduction to
Statistical Learning with Applications in Python. Springer.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An Introduction to
Statistical Learning with Applications in Python. Springer.

Kapse, M., Sharma, V., Vidhale, R., & Vellanki, V. (2025). Customization of
health insurance premiums using machine learning and explainable Al.
International Journal of Information Management Data Insights, 5(1),
100328.

166

Kaushik, K., Bhardwaj, A., Dwivedi, A. D., & Singh, R. (2022). Machine
learning-based regression framework to predict health insurance
premiums. International journal of environmental research and public
health, 19(13), 7898.

Kotsiantis, S. B., Kanellopoulos, D., & Pintelas, P. E. (2006). Data
preprocessing for supervised leaning. International journal of computer
science, 1(2), 111-117.

Kuhn, M., & Johnson, K. (2019). Feature Engineering and Selection: A
Practical Approach for Predictive Models. CRC Press.

Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). Applied Linear
Statistical Models (5th ed.). McGraw-Hill.

Lantz, B. (2019). Machine Learning with R: Expert Techniques for Predictive
Modeling. Packt Publishing.

Little, R. J., & Rubin, D. B. (2019). Statistical analysis with missing data. John
Wiley & Sons.

Lundberg, S. M., & Lee, S.-1. (2017). A unified approach to interpreting model
predictions. Advances in Neural Information Processing Systems
(NeurIPS), 30.

Mishra, S., Kapoor, R., Yukti, & Mahesh, G. (2024, September). Prediction of
Health Insurance Premium Using XG Boost Algorithm. In International
Conference on Electrical and Electronics Engineering (pp. 433-455).
Singapore: Springer Nature Singapore.

Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to Linear
Regression Analysis (6th ed.). Wiley.

Panda, S., Purkayastha, B., Das, D., Chakraborty, M., & Biswas, S. K. (2022,
May). Health insurance cost prediction using regression models. In 2022
International conference on machine learning, big data, cloud and parallel
computing (COM-IT-CON) (Vol. 1, pp. 168-173). IEEE.

Potdar, K., Pardawala, T. S., & Pai, C. D. (2017). A comparative study of
categorical variable encoding techniques for neural network classifiers.
International Journal of Computer Applications, 175(4), 7-9.

Probst, P., Wright, M. N., & Boulesteix, A.-L. (2019). Hyperparameters and
tuning strategies for random forest. WIREs Data Mining and Knowledge
Discovery, 9(3), e1301.

Abdelghany, Mosap. (2025). Medical Insurance Cost Dataset [Data set].
Kaggle. https://doi.org/10.34740/KAGGLE/DSV/12853160

167

