

ARTIFICIAL

INTELLIGENCE AND BEYOND:

APPLIED APPROACHES IN
COMPUTER SCIENCE

Editor
Dr. Songül KARAKUŞ

Artificial Intelligence and Beyond: Applied Approaches in Computer Science
Editor: Dr. Songül KARAKUŞ

Editor in chief: Berkan Balpetek
Cover and Page Design: Duvar Design
Printing: December 2025
Publisher Certificate No: 49837
ISBN: 978-625-8698-72-5

© Duvar Yayınları
853 Sokak No:13 P.10 Kemeraltı-Konak/İzmir
Tel: 0 232 484 88 68
www.duvaryayinlari.com
duvarkitabevi@gmail.com

The authors bear full responsibility for the sources, opinions, findings, results, tables,
figures, images, and all other content presented in the chapters of this book. They are
solely accountable for any financial or legal obligations that may arise in connection with
national or international copyright regulations. The publisher and editors shall not be
held liable under any circumstances

TABLE OF CONTENTS

Chapter 1...1
Towards Intelligent Modern Agriculture: Transfer Learning-Powered Deep
Learning Models For Comparative Classification Of Lettuce Diseases
Mehmet BURUKANLI, Musa CIBUK, Davut ARI

Chapter 2...14
Prediction of Manufacturing Defects With Machine Learning-Based
Classification Models:Application of Logistic Regression,
Random Forest and Xgboost
Murat BİNİCİ

Chapter 3...41
Web Application Firewall (WAF)
Fikri AĞGÜN, Raif SİME

Chapter 4...69
Explainable AI Methods:The Example of SHAP and LIME
Bahaddin ERDEM

Chapter 5...85
Applied TinyML for Embedded Intelligence:
A Real-Time HAR Implementation on Arduino Nano 33 BLE Sense
İrfan ÖKTEN

Chapter 6...102
Outlier Analysis in Machine Learning:
Basic Approaches, Challenges, and Applicatıons
Merve AKKUŞ

Chapter 7...124
WebAssembly:An Indispensable Component of the Modern Web
Fikri AĞGÜN, Raif SİME

Chapter 8...141
Machine Learning Regression Models: Methods and Application in
Insurance Cost Prediction
Murat BİNİCİ

Chapter 1

Towards Intelligent Modern Agriculture:

Transfer Learning-Powered Deep Learning Models

For Comparative Classification Of Lettuce Diseases

Mehmet BURUKANLI1

Musa CIBUK2

Davut ARI3

ABSTRACT

Lettuce is among the most popular vegetables produced and consumed

worldwide. Unfortunately, efficient lettuce production is negatively impacted

by environmental pollution and other external physical factors. Early detection

of diseases in lettuce and preventing them from spreading to others are among

the most crucial factors in growing productive and healthy lettuce. In traditional

lettuce cultivation, this process is performed manually, with a high error rate

and difficult control. Using Artificial Intelligence (AI)-based tools is crucial to

overcome these challenges. AI-based models can help increase lettuce

productivity by detecting lettuce diseases at an early stage. Therefore, in this

study, we used 20 deep transfer learning models to detect early-stage lettuce

diseases. Among these models, the AlexNet model achieved the highest

accuracy of 97.88%. Furthermore, the explainability of deep learning

approaches was enhanced by the use of Grad-CAM-based heat maps to

demonstrate whether each model's outputs are based on meaningful regions in

the image. Experimental results support the ability of transfer learning-based

models to detect lettuce diseases at an early stage, thereby significantly

improving production efficiency.

Keywords: Lettuce disease detection, AlexNet model, Decision support

systems, Transfer learning, Grad-CAM

1Lecturer Dr., Bitlis Eren University, Rectorate, Department of Common Courses, mburukanli@beu.edu.tr,

ORCID: 0000-0003-4459-0455.
2Doc. Dr., Bitlis Eren University, Faculty of Engineering and Architecture, Computer Engineering,

mcibuk@beu.edu.tr, ORCID:0000-0001-9028-2221.
3Assist. Prof. Dr., Bitlis Eren University, Faculty of Engineering and Architecture, Computer Engineering,

dari@beu.edu.tr, ORCID:0000-0001-6439-7957.

1

1. INTRODUCTION

Agricultural production is being negatively impacted worldwide by factors

such as rapid population growth, environmental pollution, and climate change.

To address these challenges, modern technologies such as artificial intelligence,

which enable more efficient and sustainable production, are essential. Adverse

physical conditions, particularly high temperatures and low humidity, lead to

significant yield losses. Consequently, disease detection takes time, and the

spread of disease to healthy lettuce plants is accelerated.(Nafil et al.,

2023)(Rathor, Choudhury, Sharma, Nautiyal, et al., 2025). Deep learning-based

architectures, especially for disease detection, classification, and real-time

object detection, such as YOLO(Upadhyay et al., 2025)(Qadri et al.,

2025)(Wang et al., 2024)(Zhang & Li, 2022) and Convolutional Neural

Networks (CNNs) (Qadri et al., 2025)(Gang et al., 2022)(Rathor, Choudhury,

Sharma, Shah, et al., 2025), are frequently preferred. However, since they

consist of millions of parameters, their training takes some time. For this reason,

it has become possible to come across lightweight architectures in the literature

(Lin et al., 2022). Artificial intelligence-based decision support systems are

frequently preferred in lettuce disease detection, as in almost every field (Qin et

al., 2025)(Rathor, Choudhury, Sharma, Nautiyal, et al., 2025).

This proved that deep learning models could be used in lettuce detection.

Nafil et al. (Nafil et al., 2023) proposed a CNN-based model for the early

detection of lettuce diseases. Using this model, they achieved 94% accuracy.

Kumaratenna et al. (Kumaratenna & Cho, 2024) achieved high performance on

a lettuce dataset using a deep learning-based model. Yang et al. (Yang et al.,

2023) classified lettuce leaves using machine learning-based models such as

Multiple Linear Regression (MLR), K-Nearest Neighbors (KNN), and SVM.

They observed that the SCM model provided satisfactory performance. Rathor

et al. (Rathor, Choudhury, Sharma, Nautiyal, et al., 2025) proposed the Conv-7

DCNN model for the detection of lettuce diseases. They compared this model

with other deep learning models. Their proposed model achieved significant

results. Rathor et al. (Rathor, Choudhury, Sharma, Shah, et al., 2025) proposed

the CNN-WOPNet model for the detection of nutrient deficiencies in lettuce

diseases. They also compared this model with other deep learning models. The

model they proposed has achieved remarkable results. Flores et al. (Flores et al.,

2023) used deep learning-based models to classify lettuce samples. Their

MobileNet+SVM-based hybrid model achieved remarkable results. Pratondo et

al.(Pratondo et al., 2023) classified lettuce leaves using deep learning-based

models. They also achieved significant results with the support of transfer

learning. Upadhyay et al. (Upadhyay et al., 2025) detected plant diseases with

2

high accuracy using deep learning-based approaches. Zhang et al. (Zhang & Li,

2022) proposed the VOLO-D1 model to classify five different lettuce varieties.

This model achieved very successful results.

In this study, 20 artificial intelligence-based models (AlexNet, VGG16,

VGG19, GoogLeNet, Places365, ResNet18, ResNet50, ResNet101,

Inceptionv3, Inception-ResNet v2, Xception, MobileNetv2, DenseNet201,

ShuffleNet, Darknet19, Darknet53, SqueezeNet, EfficientNet-B0, NASNet-

Mobile, and NASNet-Large) were used to detect healthy and unhealthy leaves

on lettuce. These models were compared with each other in terms of accuracy,

precision, recall, specificity, and F1 scores. 20 deep learning models were

compared with each other on a lettuce dataset. The results showed that the

AlexNet model outperformed the other models.

 2. MATERIALS AND METHODS
2.1. Lettuce Dataset
The Lettuce dataset used �n th�s study cons�sts of two classes: "Healthy" and

"Unhealthy." The "Healthy" class conta�ns 326 �mage samples, wh�le the
"Unhealthy" class conta�ns 381 �mage samples (Kaggle, n.d.). Some of these
�mage samples �n the Lettuce dataset are shown �n F�gure 1.

Figure 1. Some of these image samples in the Lettuce dataset (Kaggle, n.d.)

2.2. Deep Transfer Learning Models

In this section, we used the following models, AlexNet, VGG16, VGG19,

GoogLeNet, Places365, ResNet18, ResNet50, ResNet101, Inceptionv3,

Inception-ResNet v2, Xception, MobileNetv2, DenseNet201, ShuffleNet,

Darknet19, Darknet53, SqueezeNet, EfficientNet-B0, NASNet-Mobile, and

NASNet-Large, which are frequently used and have proven successful in the

literature for lettuce disease detection. These models are particularly successful

in classification and computer vision tasks.

3

3. RESULTS

3.1. Performance Metrics and Evaluation Methods

In this work, to quantify the performance of each AI-based model, we used

the following performance metrics: Accuracy, Precision, Recall, Specificity,

and F1 score. The formulas for these metrics are given in Equations 1, 2, 3, 4,

and 5, respectively (Burukanlı & Ari, 2025)(Burukanlı & Çıbuk, 2024).

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1)

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2)

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3)

Specificity =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (4)

𝐹1 = 2 ⋅
Precision⋅Recall

Precision+Recall
 (5)

3.2. Experimental Setup

In this study, the optimizer was set to stochastic gradient descent with

momentum (SGDM), learning rate to 0.001, epochs to 25, and batch size to 32

during training of all deep learning models. For the experimental computation

of this study, HP-Z840 workstation with 10 cores, 2 x Intel CPU (Xeon

E52687Wv3), 64 GB Ram and Quadro P5000 GPU was used.

3.3. Dataset-Level Heatmap Analysis of the Models

In this study, we used the Grad-CAM heat mapping technique to analyze in

detail the regions of the image where the deep transfer learning models focused

during the training phase and to understand the explainability of the models.

This technique allows us to obtain more information about the reliability of the

models. Visualizing the regions of the image where each model focused is

known to increase the explainability of the methods (Raghavan et al., 2023).

Dataset heatmap of models is given in Figure 2.

4

Figure 2. Dataset heatmap of models

3.4. Experimental Results

As illustrated in Figure 3, the AlexNet model demonstrated a high level of

discriminatory capability by correctly classifying 320 out of 326 samples in the

‘healthy’ class, resulting in only 6 misclassifications. Likewise, the model

accurately identified 372 out of 381 samples in the ‘unhealthy’ class, with

merely 9 instances incorrectly predicted. These outcomes underscore the

robustness and reliability of AlexNet in distinguishing between healthy and

diseased lettuce leaves. As seen in Figure 3, the lettuce dataset consists of two

classes, comprising 326 healthy and 381 unhealthy samples. Due to the VGG16

architecture producing NaN outputs in the Fold-1, Fold-4, and Fold-5 stages,

these sublayers were excluded from the evaluation and were not included in the

corresponding confusion matrix analyses. Similarly, the NaN values observed in

the Fold-3 and Fold-4 stages of the VGG19 architecture indicate that the model

was unable to perform reliable classification in these layers; therefore, these

results were excluded from the confusion matrix analysis. In addition,

DenseNet201 and DarkNet53 exhibit the lowest misclassification rates and the

highest overall performance, while GoogLeNet, EfficientNetB0, NASNet-

Large, and MobileNetV2 maintain stable accuracy levels around 94–95%. In

contrast, Inception-based architectures show noticeably higher false prediction

counts, particularly for the healthy class, indicating reduced generalization

capability. Furthermore, a comparative evaluation of the accuracy performance

of all models assessed on the lettuce dataset is provided in Figure 3.

5

Figure 3. Confusion matrices obtained by selected CNN architectures,

including AlexNet, DarkNet53, DarkNet19, and DenseNet20 etc. on the lettuce

dataset.

The accuracy-loss graph obtained on the lettuce training dataset for each

Fold of the AlexNet model depending on the number of epochs is shown in

Figure 4.

6

Figure 4. Accuracy-Loss graph for each Fold of the AlexNet model

depending on the number of epochs

As shown in Figure 4, the accuracy value of the AlexNet model increased,

especially after the 40th epoch, and the loss decreased accordingly. This means

that the AlexNet model was quite successful in detecting the lettuce dataset. The

resulting roc curve graph obtained on the lettuce training dataset for each Fold

of the AlexNet model is shown in Figure 5.

7

Figure 5. The resulting roc curve graph for each Fold of the AlexNet model

As shown in Figure 5, the AUC value obtained by the AlexNet model for

Fold 1 was 0.9970, while the AUC value obtained for Fold 2 was 0.9962.

Similarly, the AUC value obtained by the AlexNet model for Fold 3 was

0.9896, while the AUC value obtained for Fold 2 was 1.000. In addition, the

AUC value obtained by the AlexNet model for Fold 5 was 0.9998. The resulting

average roc curve graph obtained on the lettuce dataset of the AlexNet model is

shown in Figure 6.

8

Figure 6. The resulting average roc curve graph of the AlexNet model

As shown in Figure 6, the average ROC curve obtained from the AlexNet

model on the lettuce dataset is nearly equal to 1.000, indicating the model’s

strong robustness and its ability to achieve highly reliable discrimination

between healthy and diseased samples. The confusion matrix produced by the

AlexNet model for the same dataset is presented in Figure 3, further illustrating

its accurate classification capability with minimal false positives and false

negatives. These results collectively demonstrate that AlexNet is one of the

most stable and effective architectures for lettuce disease identification within

the scope of this study. Comparison of all models in terms of accuracy on the

lettuce dataset is given in Figure 7.

Figure 7. Comparison of all models in terms of accuracy on the lettuce data set

As shown in Figure 7, among 20 models on the lettuce dataset, the AlexNet

model achieved the best result with an accuracy rate of 97.8823%, while the

VGG19 model achieved the worst result with an accuracy rate of 78.487%.

9

Furthermore, the performance rates of the other models were between AlexNet

and VGG19. Detailed comparison and Radar image of 20 deep learning based

models on lettuce dataset is shown in Figure 8.

Figure 8. Detailed comparison of 20 deep learning-based models on lettuce

dataset

As shown in Figure 8, 20 transfer learning models were comparatively

evaluated using performance metrics including Accuracy (Acc), F1-score (F1),

Specificity (Spe), Precision (Pre), and Recall (Rec). A detailed examination of

the results reveals that the AlexNet model outperformed all other architectures,

achieving 0.9788 Acc, 0.9771 F1, 0.9841 Spe, 9816 Pre and 0.9726 Rec values.

In contrast, the VGG19 model obtained noticeably weaker performance relative

to the other models, with 0.7849 Acc value, 0.8043 F1 value and 0.6926 Rec

10

value. Additionally, NASNet-Mobile achieved the lowest both Spe values at

0.9373 and Pre values at 0. 9264.

4. CONCLUSION

In this study, 20 deep transfer learning models were used to detect lettuce

leaf diseases. These 20 DL models were compared with each other on a lettuce

dataset. The results obtained indicated that the AlexNet model outperformed the

other models with an accuracy of 97.88%. Additionally, the Grad-CAM

technique was used to identify the significant regions obtained by each deep

learning model on the dataset. Experimental findings indicate that AI-based

models, particularly the AlexNet model, achieve significant results in lettuce

disease detection. In the next study, we plan to perform disease detection using

state-of-the-art DL models on different lettuce datasets.

11

REFERENCES

Burukanlı, M., & Ari, D. (2025). BRAIN CANCER PREDICTION USING

DEEP TRANSFER LEARNING MODELS. ASES IX. INTERNATIONAL

SCIENTIFIC RESEARCH CONGRESS, 184–192.

https://www.researchgate.net/publication/392208728_BRAIN_CANCER

_PREDICTION_USING_DEEP_TRANSFER_LEARNING_MODELS

Burukanlı, M., & Çıbuk, M. (2024). Intrusion Detection and Performance

Analysis Using Copula Functions. Bitlis Eren Üniversitesi Fen Bilimleri

Dergisi, 13(4), 1335–1354. https://doi.org/10.17798/bitlisfen.1561354

Flores, E. J. C., Gonzaga, J. A., Augusto, G. L., Chua, J. A. T., & Gan Lim, L.

A. (2023). Deep Learning-Based Vision System for Water Stress

Classification of Lettuce in Pot Cultivation. 2023 IEEE 15th

International Conference on Humanoid, Nanotechnology, Information

Technology, Communication and Control, Environment, and

Management, HNICEM 2023, 1–6.

https://doi.org/10.1109/HNICEM60674.2023.10589156

Gang, M.-S., Kim, H.-J., & Kim, D.-W. (2022). Estimation of Greenhouse

Lettuce Growth Indices Based on a Two-Stage CNN Using RGB-D

Images. Sensors, 22(15), 5499. https://doi.org/10.3390/s22155499

Kaggle. (n.d.). Lettuce NPK dataset. Retrieved December 2, 2025, from

https://www.kaggle.com/datasets/baronn/lettuce-npk-dataset/data

Kumaratenna, K. P. S., & Cho, Y. Y. (2024). Detection of Tipburn Stress on

Lettuce Grown in a Plant Factory using Artificial Intelligence (AI)

Models. Horticultural Science and Technology, 42(6), 711–724.

https://doi.org/10.7235/HORT.20240059

Lin, Z., Fu, R., Ren, G., Zhong, R., Ying, Y., & Lin, T. (2022). Automatic

monitoring of lettuce fresh weight by multi-modal fusion based deep

learning. Frontiers in Plant Science, 13.

https://doi.org/10.3389/fpls.2022.980581

Nafil, K., Saufi, A., Hdili, O., Faqihi, S., Maghraoui, H., Kobbane, A., &

Koutbi, M. El. (2023). Lettuce Leaf Disease Protection and Detection

Using Image Processing Technique. Proceedings - 10th International

Conference on Wireless Networks and Mobile Communications,

WINCOM 2023, 1–6.

https://doi.org/10.1109/WINCOM59760.2023.10323013

Pratondo, A., Novianty, A., & Fauzi, H. (2023). Classification of Lettuce Leaf

Variants Using Transfer Learning. Proceedings - 2023 3rd International

Conference on Electronic and Electrical Engineering and Intelligent

System: Responsible Technology for Sustainable Humanity, ICE3IS 2023,

12

August, 349–353. https://doi.org/10.1109/ICE3IS59323.2023.10335452

Qadri, S. A. A., Huang, N.-F., Wani, T. M., & Bhat, S. A. (2025). Advances

and Challenges in Computer Vision for Image-Based Plant Disease

Detection: A Comprehensive Survey of Machine and Deep Learning

Approaches. IEEE Transactions on Automation Science and Engineering,

22, 2639–2670. https://doi.org/10.1109/TASE.2024.3382731

Qin, Y. M., Tu, Y. H., Li, T., Ni, Y., Wang, R. F., & Wang, H. (2025). Deep

Learning for Sustainable Agriculture: A Systematic Review on

Applications in Lettuce Cultivation. Sustainability (Switzerland), 17(7).

https://doi.org/10.3390/su17073190

Raghavan, K., B, S., & V, K. (2023). Attention guided grad-CAM : an

improved explainable artificial intelligence model for infrared breast

cancer detection. Multimedia Tools and Applications, 83(19), 57551–

57578. https://doi.org/10.1007/s11042-023-17776-7

Rathor, A. S., Choudhury, S., Sharma, A., Nautiyal, P., & Shah, G. (2025). A

Novel Deep Convolutional Neural Network for Efficient Classification of

Lettuce Diseases. Procedia Computer Science, 258, 755–764.

https://doi.org/10.1016/j.procs.2025.04.308

Rathor, A. S., Choudhury, S., Sharma, A., Shah, G., & Nautiyal, P. (2025). A

mathematical modelling-based interpretable deep learning approach for

lettuce disease detection in extreme environmental conditions. Physics

and Chemistry of the Earth, 141(August).

https://doi.org/10.1016/j.pce.2025.104080

Upadhyay, A., Chandel, N. S., Singh, K. P., Chakraborty, S. K., Nandede, B.

M., Kumar, M., Subeesh, A., Upendar, K., Salem, A., & Elbeltagi, A.

(2025). Deep learning and computer vision in plant disease detection: a

comprehensive review of techniques, models, and trends in precision

agriculture. Artificial Intelligence Review, 58(3), 92.

https://doi.org/10.1007/s10462-024-11100-x

Wang, Y., Wu, M., & Shen, Y. (2024). Identifying the Growth Status of

Hydroponic Lettuce Based on YOLO-EfficientNet. Plants, 13(3), 372.

https://doi.org/10.3390/plants13030372

Yang, R., Wu, Z., Fang, W., Zhang, H., Wang, W., Fu, L., Majeed, Y., Li, R., &

Cui, Y. (2023). Detection of abnormal hydroponic lettuce leaves based on

image processing and machine learning. Information Processing in

Agriculture, 10(1), 1–10. https://doi.org/10.1016/j.inpa.2021.11.001

Zhang, P., & Li, D. (2022). YOLO-VOLO-LS: A Novel Method for Variety

Identification of Early Lettuce Seedlings. Frontiers in Plant Science, 13.

https://doi.org/10.3389/fpls.2022.806878

13

Chapter 2

Prediction of Manufacturing Defects With Machine

Learning-Based Classification Models:

Application of Logistic Regression,

Random Forest and Xgboost

Murat BİNİCİ1

ABSTRACT

This chapter investigates the prediction of manufacturing defects using machine

learning–based classification models on a multivariate, synthetic dataset representing

daily operational performance in a smart manufacturing context. The dataset

comprises 3,240 observations and 17 numerical variables, including indicators related

to production volume and cost, supplier quality, delivery delays, maintenance and

downtime, inventory performance, labor productivity, energy consumption, additive

processes, and a binary target variable (DefectStatus) indicating high- versus low-

defect production days. After a structured preprocessing phase involving missing data

checks, feature scaling where appropriate, and a two-level strategy for handling

severe class imbalance (SMOTE-based oversampling and class weighting), three

models—Logistic Regression (LR), Random Forest (RF), and XGBoost—are trained

and evaluated. Model performance is assessed on a stratified train–test split using

accuracy, precision, recall, F1-score, ROC–AUC, confusion matrices, and feature

importance analyses. The results show that tree-based ensemble models outperform

LR, with RF achieving the highest accuracy (0.94) and recall for the high-defect class,

whereas XGBoost yields the best ROC–AUC, indicating superior discriminative

power. Feature importance rankings consistently highlight maintenance-related

indicators, defect rate, quality score, and production volume as key drivers of defect

risk. The chapter concludes that ML-based classification, particularly with ensemble

methods, provides an effective decision-support framework for early defect detection

and quality improvement in manufacturing systems.

Keywords: Machine learning–based classification, Manufacturing defects, Smart

manufacturing, Logistic Regression, Random Forest, XGBoost

1 Assist. Prof. Dr., Bitlis Eren University, Faculty of Engineering and Architecture, Department of Mechanical

Engineering, mbinici@beu.edu.tr, ORCID: 0000-0003-1814-438X.

14

1. INTRODUCTION

In the contemporary manufacturing sector, where global competition is

intensifying, product quality and process reliability are of strategic importance

for the sustainability of enterprises. Defects occurring in production systems

result in a wide range of direct and indirect costs, including rework, scrap,

delivery delays, warranty expenses, and customer dissatisfaction. Accordingly,

rather than detecting defects only at the end of the production line, it has

become increasingly critical to predict and prevent them at earlier stages. In this

regard, artificial intelligence and machine learning approaches that rely on the

effective analysis of multidimensional data collected from manufacturing

processes are emerging as more flexible, scalable, and powerful predictive tools

than classical statistical methods (Tercan and Meisen, 2022).

With the advent of Industry 4.0 and the smart manufacturing paradigm, vast

amounts of data are being generated from production lines through sensors, the

Internet of Things (IoT), and cyber-physical systems. These datasets

simultaneously encompass multiple dimensions such as production volume,

supplier quality, maintenance activities, energy consumption, inventory

movements, labor productivity, and quality control results. Within this complex

data structure, the relationships between process parameters and quality

outcomes are not expected to be linear, stable, or simple. The literature,

particularly in the domain of smart manufacturing, shows that Machine

Learning (ML)–based quality prediction models are widely employed to handle

such high-dimensional and complex datasets (Deokar et al., 2025).

Recent systematic reviews have shown that the range of ML algorithms used

for quality assurance and defect prediction in manufacturing has expanded;

however, tree-based ensemble methods and logistic regression stand out in a

substantial portion of applications. In particular, tree-based approaches such as

Random Forest (RF) and Extreme Gradient Boosting (XGBoost) are reported to

be widely preferred in manufacturing quality and defect classification problems,

owing to their ability to capture complex, nonlinear relationships, handle

heterogeneous types of variables (continuous, integer, ratio, etc.), and reveal

variable importance scores (Kausik et al., 2025). Logistic Regression (LR), on

the other hand, is commonly employed as a comparison (baseline) model in

many studies due to the interpretability of its coefficients and its relatively low

computational cost (Tercan and Meisen, 2022).

However, the class imbalance problem, which is frequently encountered in

production and maintenance data, emerges as one of the most significant

methodological challenges in defect prediction studies. In real manufacturing

environments, defective products typically occur as “rare events” whose

15

proportion within total production is relatively low. This situation leads to a

pronounced imbalance between majority and minority classes in the dataset,

increasing the risk that conventional classification algorithms will be biased

toward the majority class and overlook defective instances in the minority class,

which are often of primary interest. Recent systematic reviews focusing on the

manufacturing domain indicate that numerous approaches have been proposed

to address class imbalance at the data level (resampling, synthetic data

generation, etc.) and at the algorithmic level (class weighting, cost-sensitive

learning, etc.) (de Giorgio et al., 2023).

In this book chapter, a ML–based classification framework is proposed to

predict whether the level of defects occurring on the production line will be

“high” or “low,” using a multivariate manufacturing dataset that reflects daily

production performance. The dataset employed in the study, the Predicting

Manufacturing Defects Dataset, includes indicators covering a wide range of

processes, such as production volume and cost, supplier quality, delivery

delays, maintenance durations, downtime ratio, inventory indicators, labor

productivity, occupational safety incidents, energy consumption, and additive

production, and thus offers a holistic view of manufacturing operations (El

Kharoua, 2024). The target variable, DefectStatus, represents in binary form

whether the production output for a given day is highly defective (1) or has a

low level of defects (0).

This study examines three different classification models: LR, RF, and

XGBoost. LR, as a probability-based and interpretable model that relies on the

assumption of linear separability, makes it possible to investigate the direction

and magnitude of the effects of production parameters on defect probability.

RF, an ensemble method obtained by training a large number of decision trees

on random subsamples of observations and subsets of features, is able to capture

complex interactions and nonlinear relationships among variables. XGBoost, in

turn, is an optimized representative of the gradient-boosted decision tree family

and has come to the forefront in industrial applications in recent years due to

both its predictive performance and its sensitivity to hyperparameter tuning

(Chen et al., 2024).

The main objective of this chapter is to present a comprehensive approach to

predicting defect risk in production lines by comparatively evaluating AI–based

decision tree models and the logistic regression method on the aforementioned

dataset. Within this framework, the study aims to (i) analyze the relationships

between production, procurement, maintenance, inventory, energy, and labor

indicators and defect status; (ii) examine the impact of the class imbalance

problem on model performance; (iii) compare different classification algorithms

16

not only in terms of the accuracy measure, but also using metrics such as F1-

score, recall, specificity, and ROC–AUC; and (iv) investigate variable

importance levels, thereby developing an early warning and quality prediction

framework that can support decision-makers in manufacturing processes.

In this regard, the study aims to make a twofold contribution from both

theoretical and practical perspectives. On the theoretical plane, it introduces a

classification framework that follows current approaches in the manufacturing

quality prediction literature and is sensitive to class imbalance and model

evaluation metrics. On the practical plane, it contributes to the development of

data-driven decision support systems by proposing a modeling approach that,

drawing on operational indicators commonly recorded in manufacturing

environments, anticipates defect risk and points to potential areas for

improvement.

2. LITERATURE REVIEW

The use of ML technologies in quality assurance and defect control in the

manufacturing sector has become increasingly critical as the volume and variety

of data grow. Existing systematic studies show that process parameters and

quality outcomes derived from production data are analyzed using ML models,

thereby achieving higher prediction accuracy and greater process flexibility

compared to traditional methods (Kausik et al., 2025). In particular, in studies

that make use of sensor data, IoT systems, and large-scale datasets, ML

methods emerge as effective tools for in-process quality control and early

warning systems (Ördek et al., 2024). However, data preparation workflows,

model interpretability, and integration costs are among the challenges

encountered in this field (Antosz et al., 2024).

Tree-based models and ensemble methods are widely preferred for quality

prediction in manufacturing processes. In this context, the RF algorithm can

effectively capture nonlinear relationships and interactions among variables by

training a large number of tree structures on randomly sampled subsets of

observations and features. High performance of RF has been reported in areas

such as additive production, automotive components, and electronics

manufacturing lines (Kausik et al., 2025). Another advantage of these methods

is that, through feature importance measures, they provide an opportunity to

interpret from an engineering standpoint which production parameters have a

greater impact on quality. On the other hand, if the parameter settings (e.g.,

number of trees, depth) are not properly tuned, limitations such as the risk of

overfitting and a tendency to favor the majority class in datasets with class

imbalance may arise.

17

LR is one of the fundamental methods that has been used for many years in

classification problems and is also preferred in the context of manufacturing

quality due to the interpretability of its results (Tercan and Meisen, 2022; Md et

al., 2022). This method makes it possible to directly assess, through the logistic

function, the effect of a given production variable on defect probability

(Borucka and Grzelak, 2019). In the literature, LR is typically employed as an

initial or baseline model and subsequently compared, in terms of performance,

with more complex models (Tercan and Meisen, 2022). However, the linear

separability assumption of LR can be a limitation in capturing nonlinear

interactions among variables; therefore, its performance may remain relatively

lower in multivariate and nonlinear manufacturing processes (Md et al., 2022).

XGBoost is a tree-based ensemble algorithm that has become particularly

prominent in industrial data analytics and quality prediction studies. In a study

conducted for failure prediction on a production line using XGBoost, high

predictive accuracy was achieved (Mehregan et al., 2025). The advantages of

this method include the possibility of hyperparameter optimization, its

compatibility with large datasets, and its adaptability to irregular class

distributions through settings such as class weights. However, to ensure strong

performance, its hyperparameters must be selected carefully and overfitting

must be avoided.

One frequently encountered issue in manufacturing quality data is that the

number of defective products is relatively low compared to total production,

which leads to class imbalance in the dataset. In the literature, two main

approaches are highlighted to address this problem: data-level resampling

(oversampling, undersampling, SMOTE) and algorithm-level strategies such as

assigning class weights or employing cost-sensitive learning (He and Garcia,

2009). Moreover, since using only accuracy as a performance measure can be

misleading in imbalanced settings, it is recommended to adopt more informative

metrics such as F1-score, precision–recall, and ROC–AUC (Ogrizović et al.,

2024). In this context, addressing class imbalance in the modeling phase of the

present study is in line with good practice recommendations in the literature.

In summary, the literature indicates that ML methods are widely employed

for quality prediction and early fault detection in manufacturing processes, and

that tree-based methods and XGBoost in particular have demonstrated strong

effectiveness. However, studies that use daily production metrics with

multivariate inputs and class-imbalanced datasets to comparatively evaluate LR,

RF, and XGBoost within a unified framework remain limited. Therefore,

assessing these models on the same dataset, deriving variable importance levels,

18

and explicitly accounting for class imbalance has the potential to provide an

original contribution.

3. DATASET DESCRIPTION

A correct understanding of the structure of the dataset is critically important

for the subsequent modeling process, performance evaluation, and variable

importance analysis. In addition, factors such as the relationship of the variables

to the underlying production processes, the class distribution, and the nature of

the imbalance play a decisive role in the implementation of ML models. For this

reason, the general structure and key characteristics of the dataset, in this

section, are first described, and then each variable is examined in detail.

3.1. Data Source and Type

The dataset used in this study is a comprehensive synthetic data set that

reflects daily operational performance, quality indicators, and supply chain

conditions in manufacturing processes. It was specifically constructed for the

purpose of developing an ML-based model for the classification of production

line defects (El Kharoua, 2024). Accordingly, it was designed by taking into

account the variable structures, inter-variable relationships, and defect

formation dynamics observed in real manufacturing environments, while being

simulated in such a way that it does not contain any sensitive information

belonging to a commercial organization or an actual production facility. This

property makes the dataset both safe in terms of ethical use and flexible for

academic research.

The dataset consists of a total of 3,240 observations and 17 variables. Each

row in the dataset represents the operational performance for a single

production day. Variables such as production volume, cost, energy

consumption, maintenance activities, labor productivity, supply chain

performance, and quality control measures are summarized and recorded on a

daily basis. Since the dataset does not contain any information on product

categorization or product variety, the analysis is conducted under the

assumption of a homogeneous production line manufacturing a single product

type. This approach allows the defect prediction performance of the model to be

examined solely on the basis of process-specific metrics.

The synthetic nature of the dataset provides several methodological

advantages for the study. First, it allows defect cases that are rare in real

manufacturing environments but critical from a modeling perspective to be

incorporated into the data in a more balanced manner. Second, it can be used in

open-access research without raising data confidentiality concerns and is

19

suitable for educational and training applications. However, the main limitation

of synthetic datasets is that the relationships among variables may not fully

reflect the complexity observed in real production environments. Therefore,

while this dataset is well suited for model development, method comparison,

and academic teaching purposes, caution is required when transferring the

model outputs directly to the operational strategies of an actual factory.

In conclusion, by offering a wide range of metrics related to manufacturing

processes and capturing day-to-day operational behavior, the dataset provides

an appropriate and methodologically coherent basis for this study, which

focuses on classifying production line defects using ML methods.

3.2. Variables

In the dataset used in this study, the variables are grouped under thematic

categories in order to better reflect the multifaceted nature of manufacturing

processes. First, the production metrics category covers daily production output

and cost components. In this context, the variable ProductionVolume represents

the number of units produced per day, while ProductionCost denotes the total

cost of the corresponding production activity. Together, these two indicators

make it possible to analyze how production intensity and cost pressure influence

quality.

Supply chain and logistics indicators also occupy an important place in the

dataset. SupplierQuality reflects the quality of inputs provided by suppliers

using a percentage-based score, whereas DeliveryDelay indicates the duration of

delays in supply processes. Considering the impact of supplier quality and

logistical disruptions on the reliability of production outputs, these variables are

critical for the contribution they make to the model.

The quality control category includes two key variables that relate directly to

the quality performance observed at the end of the production process.

DefectRate quantitatively represents the number of defects per thousand units,

while QualityScore expresses the overall quality level of production as a

percentage score. These variables both summarize the quality outcome of the

process and can be regarded as important independent variables for defect

prediction models.

Variables related to maintenance and downtime include MaintenanceHours

and DowntimePercentage. MaintenanceHours, which indicates the weekly

duration of maintenance activities, and DowntimePercentage, which reflects the

proportion of time the production line is not operational, provide important

operational indicators of equipment efficiency and continuity. Since increases in

20

these values are typically associated with declines in quality performance, they

make meaningful contributions to the model.

Among the variables related to inventory management are

InventoryTurnover and StockoutRate. InventoryTurnover, which represents

stock turnover, indicates the efficiency of the firm’s inventory management,

while StockoutRate reflects the risk of production interruptions through the rate

of stock depletion. These two indicators are important for examining how

disruptions in the flow of raw materials may indirectly affect quality

performance.

Variables related to labor productivity and safety are also included in the

dataset. WorkerProductivity expresses workers’ productivity levels in

percentage terms, whereas SafetyIncidents indicates the number of safety

incidents that occur within a given month. Considering that worker motivation,

safety, and productivity are closely associated with quality outcomes, the

inclusion of these indicators in the model is important.

Variables representing energy consumption and energy efficiency include

EnergyConsumption and EnergyEfficiency. EnergyConsumption, which

expresses daily energy use in kilowatt-hours, and EnergyEfficiency, which

indicates the level of efficiency in energy utilization, are incorporated into the

model based on the assumption that overall line efficiency and fluctuations in

machine performance may affect quality.

Finally, the variables related to one of the modern manufacturing

technologies, namely additive manufacturing processes, AdditiveProcessTime

and AdditiveMaterialCost, represent, respectively, the duration of the additive

manufacturing process and the unit cost of the additive material used. These

parameters are important for assessing how innovative production techniques

influence defect formation.

Beyond all these categories, the main target variable of the study,

DefectStatus, enables the classification of the production output as low-defect

(0) or high-defect (1). This variable constitutes the primary outcome of the

modeling process in relation to all other indicators in the dataset.

The dataset used in this study consists of a total of 3,240 observations and 17

variables. This size is sufficient both to provide an appropriate sample for

training machine learning models and to allow for an analytical examination of

the multidimensional structure of manufacturing processes.

All variables in the dataset are numerical, and there are no categorical

variables. A subset of the variables are of integer type, namely

ProductionVolume, DeliveryDelay, MaintenanceHours, SafetyIncidents, and the

target variable in the classification process, DefectStatus. All remaining

21

variables are continuous numerical (float) in nature and cover a wide range of

measurements related to the production process, such as production cost, quality

indicators, inventory performance, energy usage, and additive manufacturing

times. Specifically, ProductionCost, SupplierQuality, DefectRate, QualityScore,

DowntimePercentage, InventoryTurnover, StockoutRate, WorkerProductivity,

EnergyConsumption, EnergyEfficiency, AdditiveProcessTime, and

AdditiveMaterialCost fall into this group.

The fact that the entire dataset consists of quantitative variables allows it to

be analyzed directly by both LR and tree-based classification models, and it also

substantially simplifies the preprocessing stage, as no encoding procedures are

required. Researchers who wish to access detailed descriptive statistics for all

variables in the dataset can obtain this information via the Kaggle platform

(Kaggle Dataset: Predicting Manufacturing Defects Dataset).

3.3. Class Imbalance

In the dataset, the class distribution of the target variable DefectStatus is

observed to be highly imbalanced; the high-defect class accounts for

approximately 84% of all instances, whereas the low-defect class constitutes

only about 16%. Such a distribution is referred to in the literature as class

imbalance and represents a fundamental issue that directly affects the

performance of ML-based classification models. Since the number of defective

products is typically low in real manufacturing data, it is likely that the model

will develop a bias in favor of the majority class and fail to adequately learn the

minority class (de Giorgio et al., 2023).

Class imbalance plays a critical role particularly in applications such as

production quality control and defect prediction. Recent reviews of application

domains show that imbalanced learning is still a major obstacle in “real-world”

data and is explicitly addressed in studies on production line failure or defect

detection (Gao et al., 2025). This situation indicates that evaluating models

solely on the basis of the accuracy metric can be misleading; therefore, it is

recommended to use performance measures such as F1-score, precision–recall

curves, and ROC–AUC (Gao et al., 2025).

To address class imbalance, the literature highlights two main approaches:

data-level resampling techniques (oversampling, undersampling, SMOTE, etc.)

and algorithm-level strategies such as assigning class weights or adopting cost-

sensitive learning. In this regard, Chen et al. (2024) note that, in addition to

data-level and algorithm-level solutions, hybrid methods have also become

increasingly widespread. In the manufacturing context, Giorgio et al. (2023)

show that, in fault/defect detection problems with imbalanced data where the

22

error/defect class is rare, resampling procedures and class weight adjustments

are commonly employed.

In this study as well, appropriately addressing class imbalance prior to the

modeling stage will not only improve the performance of the model but also

enhance the reliability of the inferences drawn for quality control applications.

In this way, it will become possible to predict in advance the days with a high

defect risk on the production line and to establish a more robust foundation for

decision-support systems.

4. METHODOLOGY

This section presents the methodological framework of the ML approach

applied to classify production line defects. The methodology of the study covers

the data preprocessing steps carried out to make the dataset suitable for analysis,

the theoretical foundations of the LR, RF, and XGBoost models used in the

classification process, and finally the criteria selected to evaluate model

performance. Considering the multidimensional and imbalanced nature of

production data, planning the methodological procedure in a systematic and

coherent manner is of great importance both for the reliability of the results

obtained from the models and for the validity of the implications for industrial

applications. For this reason, the methodology section explains in detail both the

data processing procedures and the analytical logic of the selected algorithms.

4.1. Pre-Processing

The ability of ML models to produce reliable and generalizable results

depends on subjecting the dataset to appropriate preprocessing prior to analysis.

Since multidimensional data structures derived from manufacturing processes

may contain issues such as differences in scale, unequal distributions across

variables, and class imbalance, a systematic preprocessing procedure was

applied before modeling. This section discusses key steps such as checking for

missing data, scaling, addressing class imbalance, and splitting the dataset into

training and test sets.

4.1.1. Missing data analysis

The first step in the preprocessing procedure is to check the dataset for

missing or erroneous records. Missing data can reduce the learning capacity of

the model and may directly introduce bias, particularly in statistical methods

such as LR. Although the dataset used in this study contains no missing values

because it was generated synthetically, missingness is quite common in real

23

manufacturing data. For this reason, missing data analysis is a critical step for

preserving methodological integrity.

4.1.2. Feature scaling

Differences in the scales on which the variables in the dataset are measured

can adversely affect coefficient estimates and convergence behavior,

particularly in LR and other gradient-based methods. For this reason, variables

with wide ranges, such as production volume (100–1000), cost (5,000–20,000),

and energy consumption (1,000–5,000 kWh), may take much larger values than

percentage- or ratio-based metrics, potentially destabilizing weight updates in

the models. In this study, standard scaling (StandardScaler) was applied to

ensure stable behavior of LR and to allow for consistent comparison across

models. For the tree-based methods, no scaling was applied, as they are more

flexible and less sensitive to differences in feature scales.

4.1.3. Addressing class imbalance

Given the substantial class imbalance in the dataset (approximately 84%

high-defect vs. 16% low-defect), it is necessary to apply methods that increase

the model’s sensitivity to the minority class. Imbalanced data structures tend to

induce a bias toward the majority class in ML models and reduce the

classification performance for the minority class (Chen et al., 2024; de Giorgio

et al., 2023). Therefore, two complementary approaches were adopted in this

study:

(a) Data-level approach: By applying SMOTE (Synthetic Minority Over-

sampling Technique), synthetic samples were added to the minority class and

the class distribution was balanced. This method aims to enable the model to

learn the low-defect cases, which are rarely observed in manufacturing

processes, more effectively.

(b) Algorithm-level approach: In the LR, RF and XGBoost models, the

class_weight parameter was set to "balanced", thereby forcing the model to

assign greater weight to the misclassification cost of the minority class.

This two-stage strategy can enhance the model’s sensitivity in predicting

production line defects.

4.1.4. Splitting the dataset into training and test sets

The dataset was split into 80% training and 20% test in order to evaluate the

generalization capacity of the models. The training set represents the stage in

which the model parameters are learned, while the test set is used to objectively

assess model performance on previously unseen data. Taking class imbalance

24

into account, a stratified split technique was applied so that the class proportions

were preserved in both the training and test subsets. This approach eliminates

the risk that the minority class might be entirely absent from either the training

or the test set.

4.2. Applied Machine Learning Models

In this study, three different ML-based classification models were employed

for classifying production line defects: LR, RF, and XGBoost. This section

briefly explains the basic assumptions, working principles, and the specific role

of each model within the context of the present study.

4.2.1. Logistic regression

LR is a statistically grounded method that has long been used to solve binary

classification problems and offers a high degree of interpretability. The model

expresses the relationship between the independent variables and the target

variable in probabilistic terms through the logistic (sigmoid) function, and this

feature allows it to provide directly interpretable outputs for decision-makers in

risk-oriented processes such as production defect prediction (Hosmer et al.,

2013). In addition, the coefficient-based structure of LR makes it possible to

directly infer from the model the direction and magnitude of the effects of

variables such as production volume, quality scores, and supplier quality on

defect probability.

One of the main advantages of LR is that its model parameters are directly

interpretable and that the effect of each variable on the target can be assessed in

terms of log-odds. This property contributes to the frequent use of LR as a

baseline model in decision-oriented domains such as quality engineering and

production analytics. Indeed, the literature commonly reports LR as a reference

model both for evaluating classification performance and for benchmarking

against more complex models (Kovács et al., 2024).

In this study, the LR model was applied to classify defects occurring in the

production process (0 = low defect, 1 = high defect). The model was

implemented using a Pipeline structure that incorporates the data preprocessing

steps. The training of the model consists of the following steps:

(a) Data splitting: After separating the target variable DefectStatus, the

dataset was split into training and test sets in an 80–20 ratio, and a stratified

split procedure was employed to preserve the class distribution.

(b) Scaling: Since the LR model can be affected by the scale of the

features, all independent variables were standardized using StandardScaler.

25

(c) Handling class imbalance: Since the high-defect class is dominant in

the dataset, two strategies were applied. The first is a model-level adjustment

using class_weight = "balanced", and the second is a data-level procedure using

SMOTE. Both approaches were integrated into the Pipeline.

(d) Model specification: The model was defined with the following

parameters: class_weight="balanced", max_iter=1000, solver="liblinear",

random_state=42.

(e) Pipeline structure: The Pipeline was composed of three components:

StandardScaler, SMOTE, and LR. This configuration ensured a clean workflow

and prevented data leakage.

(f) Training the model: The Pipeline was fitted on the training data to

construct the model. Subsequently, predictions were generated on the test data;

however, this section reports only the model implementation procedure, while

the performance evaluation is presented in the following sections.

4.2.2. Random forest classifier

RF is an ensemble ML method based on decision trees. The core idea is to

build a large number of decision trees on different subsamples of the training

data and then aggregate their predicted classes using majority voting for the

classification task. In this way, the overfitting problem to which a single deep

tree is prone is substantially reduced, and the model’s generalization

performance is improved (Breiman, 2001). RF reduces correlation among trees

by using both random sampling of observations (bootstrap sampling) and

random subsets of features at each node; thus, instead of individual trees with

high variance, a more balanced and stable ensemble model is obtained

(Breiman, 2001).

One of the main reasons why RF models are widely used in manufacturing

and quality control is their success in capturing nonlinear relationships and

interactions among variables. Recent studies show that RF outperforms

traditional statistical methods in terms of predictive performance, owing to its

ability to process high-dimensional sensor data and to achieve high accuracy in

predicting quality outcomes in complex production processes (Kausik et al.,

2025; Antosz, 2024). In addition, despite its relatively “black-box” nature, RF

offers a practically useful level of transparency for decision-support systems by

providing feature importance scores that indicate which inputs contribute more

strongly to the model output (Scornet, 2021).

In this study, the RF classifier was applied to classify the target variable

DefectStatus (0 = low defect, 1 = high defect) using the large set of operational

variables measured on a daily basis in the production process. As in the LR

26

model, the target variable was first separated from the dataset, and all remaining

variables were defined as the feature set (X). To preserve the class distribution,

the dataset was then split into training and test subsets in an 80–20 ratio using a

stratified structure. In this way, the imbalanced class structure was represented

in a similar manner in both the training and test sets, and a fair basis for

comparison across models was established.

Since RF is a tree-based method, it is not sensitive to feature scales unlike

LR; therefore, no additional scaling step was applied for this model. However,

the class imbalance present in the dataset (with the high-defect class being

dominant) was taken into account, and a two-level strategy was adopted to

mitigate this issue. First, SMOTE was applied to the training data to

synthetically increase the number of minority-class observations, thereby

enabling RF to learn the underrepresented class more effectively. Second, the

classifier’s class_weight parameter was set to "balanced", ensuring that the loss

function assigns greater weight to the minority class. The combined use of these

two approaches is consistent with good practice recommendations in the

literature for imbalanced datasets (Khan et al., 2024).

The RF model was implemented in Python using the

RandomForestClassifier class from the scikit-learn library. To enhance model

stability, the n_estimators parameter was set to a relatively high value (300

trees), while the random_state parameter was fixed to ensure reproducibility of

the results. In addition, by setting n_jobs = -1, the training process was

executed in parallel, taking advantage of multi-core processor architectures. As

in the LR model, the specification and training of the RF model were defined

within a Pipeline, thereby ensuring that SMOTE was applied only to the training

data and preventing data leakage.

After the training procedure was completed, the RF model generated

predictions on the test set, and performance metrics such as accuracy, precision,

recall, F1-score, and ROC–AUC were computed based on these predictions.

However, this subsection presents only the theoretical framework and

implementation steps of the RF model; the resulting performance scores are

discussed in Section 5, Results and Discussion, where they are comparatively

evaluated together with the other models (LR and XGBoost) in order to

preserve the overall coherence of the study.

4.2.3. XGBoost classifier

XGBoost is an optimized, high-performance implementation of a tree-based

gradient boosting algorithm. Its core working principle is to build weak learners

sequentially in such a way that they minimize the residual error, focusing on the

27

parts of the data that previous models failed to explain. Thanks to

hyperparameters such as learning rate, tree depth, subsampling, and strong

regularization mechanisms, the model both keeps overfitting under control and

delivers high predictive performance on large and complex datasets (Chen and

Guestrin, 2016).

In recent years, XGBoost has come to be regarded as one of the leading

gradient boosting methods for critical applications such as quality classification,

fault detection, and anomaly detection in manufacturing processes. Various

studies report that XGBoost models optimized for anomaly detection on

production lines achieve high accuracy, precision, and F1-scores, and that they

outperform traditional methods as well as some other ensemble approaches

(Dalal et al., 2024; Nilsson and Kyrk, 2025). Similarly, in complex

manufacturing environments such as printed circuit board production,

XGBoost-based models have been shown to be effective in defect detection

using high-dimensional data generated by the production process (Prasad-Rao et

al., 2023). Owing to its capacity to handle large datasets, its embedded

regularization mechanisms, and its success in capturing nonlinear relationships,

XGBoost has become a frequently preferred algorithm for data-driven quality

control and decision-support systems within the scope of Industry 4.0 (Kausik

et al., 2025; Qu et al., 2024).

In this study, the XGBoost classifier was used to classify defects occurring

in manufacturing processes (0 = low defect, 1 = high defect). The

implementation steps were designed to remain consistent with the previous

models. First, the target variable was separated from the dataset, and all

independent variables were defined as the feature set. To allow for a fair

evaluation of the model, the dataset was split into 80% training and 20% test

using a stratified procedure.

Since XGBoost is a tree-based algorithm, it does not require additional

scaling (standardization). However, the pronounced class imbalance in the

dataset was taken into account, and SMOTE was applied during training to

increase the representation power of the minority class. To ensure that SMOTE

was applied only to the training data and to prevent data leakage, the model was

defined within a Pipeline, as in the RF setup.

In this study, the XGBoost classifier was configured with specific

hyperparameter settings to ensure a balanced learning process and to keep

overfitting under control in the classification task. The parameter

n_estimators=300 was chosen to obtain a more stable and well-trained

ensemble of trees, while max_depth=4 was used to limit tree depth and thereby

prevent overfitting. To ensure a more gradual learning process,

28

learning_rate=0.1 was adopted so that the contribution of each individual tree

to the model was reduced in a controlled manner. In addition, the

hyperparameter subsample=0.8, which randomly samples a portion of the

dataset, was employed to enhance the generalization ability of the model,

whereas colsample_bytree=0.8, which creates a feature subset for each tree,

introduced further diversity and supported model performance. This

combination of parameters provides an effective configuration for XGBoost,

balancing its predictive accuracy with its capacity to control overfitting.

4.3. Model Evaluation Metrics

In ML-based classification problems, accurately evaluating model

performance is critically important, especially in datasets that exhibit class

imbalance. For this reason, assessing a model on the basis of a single metric is

often inadequate. Below, the main classification metrics used in this study are

described.

4.3.1. Accuracy

Accuracy represents the proportion of correctly classified instances to the

total number of instances. However, this metric can be misleading when there is

a severe imbalance between classes. For example, in a dataset where the

positive class is very rare, a model that predicts all instances as “negative” may

still achieve a high accuracy score (He and Garcia, 2009).

4.3.2. Precision ve recall

Precision indicates how many of the instances that the model predicts as

positive are actually positive, whereas recall shows how many of the truly

positive instances are correctly identified by the model. In domains such as

production defects, where errors can lead to costly consequences, these two

metrics are particularly critical. This is because false positives (unnecessary

intervention costs) and false negatives (missed actual defects) directly affect

decision-making processes (Saito and Rehmsmeier, 2015).

4.3.3. F1-score

The F1-score is the harmonic mean of precision and recall, and it enables

these two metrics to be optimized jointly. In situations with class imbalance, the

F1-score is a much more informative evaluation measure than accuracy alone,

because it balances the impact of both false positives and false negatives

(Chicco and Jurman, 2020).

29

4.3.4. ROC-AUC

The ROC (Receiver Operating Characteristic) curve illustrates the model’s

ability to distinguish the positive class across different threshold values. The

AUC (Area Under the Curve) represents the area under this ROC curve, and as

it approaches 1, the model is considered to have better discriminative power

(Fawcett, 2006).

4.3.5. Confusion matrix

The confusion matrix provides a detailed breakdown of the model’s correct

and incorrect classifications in terms of four components (TP, FP, FN, TN).

This matrix is extremely important for understanding the impact of false

negatives (missing actual defects) and false positives (unnecessary intervention)

on manufacturing processes (Kelleher et al., 2015).

5. RESULTS AND DISCUSSION

In this section, the performance results of the three classification models

used in the study—LR, RF, and XGBoost—are examined in a comparative

manner. All models were evaluated using the same train–test splitting strategy,

and SMOTE was applied to address class imbalance. Model performance was

assessed not only in terms of accuracy, but also using more comprehensive

metrics such as precision, recall, F1-score, and ROC–AUC, thereby enabling a

more robust analysis of the ability of the different classification models to

distinguish between high- and low-defect conditions.

5.1. Performance Comparison

The test-set performances of the LR, RF, and XGBoost models are compared

in detail. The main evaluation metrics used for the three models are summarized

in Table 1, and classification performance is assessed not only in terms of

accuracy, but also using precision, recall, F1-score, and ROC–AUC. As can be

seen from the table, LR, due to its structure based on linear relationships, lags

behind the other models and shows more limited success, particularly in

distinguishing the high-defect class. By contrast, the RF model achieves the

highest accuracy (0.94) and the highest recall value, demonstrating a notably

strong performance in detecting the high-defect class. XGBoost, on the other

hand, attains the highest ROC–AUC value, making it the model that best

separates the classes. In this regard, although all the three models exhibit

different strengths, the tree-based methods appear to be more successful,

especially when dealing with manufacturing data characterized by complex and

nonlinear relationships.

30

Table 1. Model performance summary

Model Accuracy
Precision

(Class 1)

Recall

(Class 1)

F1-Score

(Class 1)

ROC-

AUC

Logistic

Regression
0.7546 0.93 0.76 0.84 0.79

Random

Forest
0.9414 0.95 0.98 0.96 0.83

XGBoost 0.9151 0.95 0.95 0.95 0.84

The confusion matrix results for the models are presented in Table 2. An

examination of the confusion matrices shows that LR produces a high number

of false negatives (FN = 130), indicating that the model frequently classifies

high-defect products as “low defect.” In a critical domain such as production

defect detection, a high false negative rate is a highly undesirable outcome. By

contrast, the RF model yields only nine false negatives and, in this respect, is

the method that captures the high-defect class best among the three models.

Although the number of false negatives produced by XGBoost (FN = 26) is

higher than that of RF, it still demonstrates a much better classification

performance than LR. The fact that all three models share the same number of

true negatives (TN = 74) and false positives (FP = 29) suggests that, after

SMOTE, class rebalancing and model complexity primarily affect the high-

defect class.

Table 2. Confusion matrix results

Model TN FP FN TP

Logistic

Regression
74 29 130 415

Random

Forest
74 29 9 536

XGBoost 74 29 26 519

Evaluating model performance in terms of ROC curves provides a more

detailed understanding of the discriminative power between classes. In the ROC

plots (Figure 1), the curves of RF and XGBoost lie above that of LR, indicating

that the tree-based methods offer a more consistent and stronger separation

capability across different threshold values. In particular, the ROC curve of

XGBoost attains higher true positive rates at both low and high false positive

rates, revealing that the model has strong generalization performance. Although

the ROC–AUC value of RF is slightly lower than that of XGBoost, it still

constitutes a robust alternative from an operational risk management

perspective due to its high success in capturing the positive (high-defect) class.

The ROC curve of LR, by contrast, remains lower, indicating that it cannot

31

deliver optimal performance for manufacturing data characterized by nonlinear

relationships.

Figure 1. Comparison of ROC curves for LR, RF, and XGBoost models

Overall, when Table 1, Table 2, and the ROC curves (Figure 1) are evaluated

jointly, it is evident that tree-based methods perform markedly better in the

production defect classification problem. RF largely prevents high defects from

being missed by minimizing false negatives, whereas XGBoost provides a

higher discriminative capacity and a more balanced overall performance.

Although LR has the advantage of interpretability, it lags behind the other

models in terms of predictive performance. These results indicate that ensemble

methods are more suitable for analyzing complex data structures in

manufacturing processes.

5.2. Feature Importance Ranking

When the comparative feature importance values obtained from the three

models (LR, RF, XGBoost) are examined, it is observed that certain variables

systematically stand out across all models in determining production defects.

According to the findings presented in Table 3, MaintenanceHours and

DefectRate are the two key determinants with the highest importance scores in

all three models. This result indicates that maintenance activities and existing

defect levels play a central role in predicting the emergence of new defects in

production.

32

Table 3. Comparative feature importance of LR, RF, and XGB models

Feature
LR

Coefficient

LR Abs.

Importance

RF

Importance

XGB

Importance

MaintenanceHours 1.238882 1.238882 0.257275 0.215104

DefectRate 1.037257 1.037257 0.199312 0.178374

QualityScore -0.652453 0.652453 0.132414 0.121911

ProductionVolume 0.456485 0.456485 0.105837 0.105118

SupplierQuality 0.139299 0.139299 0.024049 0.027003

StockoutRate 0.107314 0.107314 0.027081 0.030488

DeliveryDelay 0.094509 0.094509 0.023217 0.056954

EnergyConsumption 0.079072 0.079072 0.031444 0.027456

Table 3. Comparative feature importance of LR, RF, and XGB

models (Cont.)

Feature
LR

Coefficient

LR Abs.

Importance

RF

Importance

XGB

Importance

InventoryTurnover 0.056089 0.056089 0.030937 0.036420

ProductionCost 0.051716 0.051716 0.027198 0.027782

EnergyEfficiency -0.045549 0.045549 0.022840 0.029812

AdditiveMaterialCost 0.043202 0.043202 0.024409 0.026204

AdditiveProcessTime 0.035864 0.035864 0.024945 0.030594

WorkerProductivity -0.035269 0.035269 0.023239 0.026643

SafetyIncidents 0.012323 0.012323 0.016844 0.029211

DowntimePercentage 0.003322 0.003322 0.028958 0.030925

QualityScore and ProductionVolume are also consistently found to be

important across the models. By contrast, some variables exhibit different

importance levels from one model to another. For example, while

DowntimePercentage has a low coefficient in LR, it attains higher importance

in both RF and XGBoost. This indicates that linear models may be insufficient

for capturing certain nonlinear relationships. Similarly, the variable

DeliveryDelay stands out clearly in the XGBoost model, whereas it remains

more in the background in LR and RF.

Overall, the common findings across the three models indicate that

indicators related to maintenance, quality, and production volume are the

primary determinants of in-process quality risk, whereas differences between

the models show that interaction and nonlinear effects among variables are

captured more effectively, particularly by tree-based methods. Therefore, the

feature importance analysis not only helps to explain model behavior, but also

provides a practical roadmap for identifying which parts of the production

process should be targeted in order to reduce defect risk.

33

5.3. Comparison of Model Predictions on A New Observation

To assess the practical usefulness of the models, the predictive performance

of the three models was compared on an example new observation representing

a production scenario (Table 4). This new observation simulates a

manufacturing situation in which features such as production volume, supplier

quality, maintenance time, quality score, and energy consumption are set at

realistic levels.

Table 4. Feature values of the new observation used in the model

comparison

Feature Value Feature Value

ProductionVolume 750 InventoryTurnover 5.2

ProductionCost 12000 StockoutRate 3.1

Table 4. Feature values of the new observation used in the model

comparison (Cont.)

Feature Value Feature Value

SupplierQuality 92.5 WorkerProductivity 95

DeliveryDelay 1 SafetyIncidents 2

DefectRate 2.3 EnergyConsumption 2500

QualityScore 88 EnergyEfficiency 0.32

MaintenanceHours 10 AdditiveProcessTime 6.5

DowntimePercentage 1.5 AdditiveMaterialCost 230

The results indicate substantial differences among the models (Table 5). LR

predicts the defect class for this observation as 1 (high risk) and assigns a very

high probability to this outcome (≈ 0.99999). By contrast, RF classifies the

observation in class 0 (low risk) and estimates a more moderate defect

probability of 0.1667. The XGBoost model, in turn, yields the lowest risk

estimate, computing the defect probability at approximately 0.0043.

These results show that the models differ in the sensitivity of their decision

boundaries. The high sensitivity of LR stems from the fact that its linear

decision boundary more readily labels certain combinations of variables as

“risky.” RF and XGBoost, by contrast, assign the same observation to a lower-

risk category because they capture interactions and nonlinear relationships

among features more effectively. In particular, the extremely low defect

probability produced by XGBoost can be attributed to its tree-based structure, in

which most observations similar to this one tend to fall into the non-defective

class.

34

Table 5. Comparison of model predictions on a new observation

Model
Predicted

Class

Predicted Probability of High Defect

(P(Class=1))

Logistic

Regression

1 (High

Defect)
0.99999

Random Forest 0 (Low Defect) 0.16667

XGBoost 0 (Low Defect) 0.00427

5.4. Discussion

In this study, among the three ML models compared, XGBoost achieving the

highest performance is closely related to its structural advantages. XGBoost

stands out by constructing a strengthened ensemble model in which sequential

weak learners minimize residual errors, by effectively controlling overfitting

through its regularization (L1–L2) mechanisms, and by performing well on data

structures characterized by complex, nonlinear relationships. Since

manufacturing processes exhibit a high degree of variability driven by the

interaction of multiple inputs, it is to be expected that XGBoost can capture

such patterns. The findings obtained in this study confirm this tendency.

Although LR has the advantage of interpretability, its reliance on a linear

decision boundary can be limiting in highly multidimensional and complex

processes such as manufacturing. In this study, the model lagged behind in

terms of classification performance, particularly in situations where interactions

among variables were strong and nonlinear relationships were dominant.

Moreover, in the presence of an imbalanced data structure, the sensitivity of LR

tends to decrease. In this dataset, where the high-defect class is dominant, this

caused the model to make more conservative predictions. This is clearly

reflected in the prediction results on the new data.

When evaluated from the perspective of real manufacturing environments,

the results indicate that all three models are practically usable, but that the most

reliable outputs for decision-support systems are obtained particularly from

ensemble models. Models such as XGBoost and RF, with their high accuracy

and consistent performance, can reduce operators’ workload in defect detection

processes on the production line, contribute to maintenance planning, and

support supply chain optimization. Nevertheless, LR remains an important tool

due to its simple structure and interpretability advantage, enabling production

managers to quickly understand which factors increase defect probability.

From a quality improvement perspective, the importance scores obtained

from the three models show that variables such as MaintenanceHours,

DefectRate, and QualityScore play a central role in defect formation. This

indicates that firms should place greater emphasis on maintenance planning,

35

quality control procedures, and the relationship between production volume and

quality. Moreover, the fact that the new-data scenario is assigned to different

classes by the models suggests that companies should consider adopting a

multi-model approach, since relying on the decision of a single model may

introduce risk in critical production decisions.

6. CONCLUSION AND RECOMMENDATIONS

In this study, three different ML models (LR, RF, and XGBoost) were

comprehensively compared for predicting defect states in manufacturing

processes. The dataset used in the analysis consists of multidimensional

variables such as production volume, supply chain performance, quality

indicators, maintenance activities, energy consumption, and labor productivity,

thereby reflecting the characteristic complexity of modern manufacturing

environments. In addition, the class imbalance problem in the dataset was

addressed using methods such as SMOTE and class weights, enabling the

models to produce more balanced predictions.

The findings show that XGBoost is the most successful model in terms of

overall performance. This can be explained by its ability to capture nonlinear

relationships and its robustness against overfitting through regularization

mechanisms. The RF model also demonstrates a high level of success,

particularly by providing stable results in feature importance rankings. LR, on

the other hand, while advantageous in terms of interpretability, remains

comparatively weaker in performance because it cannot fully capture the

dynamics of complex manufacturing processes.

When the feature importance scores are examined, it is observed that

MaintenanceHours, DefectRate, QualityScore, and ProductionVolume play a

decisive role in defect prediction. This finding underscores the importance for

firms of strengthening their maintenance strategies, optimizing quality control

procedures, and adopting a more fine-grained approach to production planning.

In the prediction for the new observation, the differences observed among the

models indicate that a multi-model approach should be considered in

manufacturing systems, and that relying on a single model in critical decision-

making processes may be risky.

Based on the findings of this study, the following recommendations can be

made:

• Ensemble methods such as XGBoost or RF can be integrated into

operational systems for the early detection of production defects.

36

• Regular monitoring of maintenance and quality control processes is a

critical area for improvement, particularly in light of the high importance of the

MaintenanceHours and QualityScore variables.

• To enhance the consistency of model results, firms should standardize

their data collection processes, reduce the proportion of missing data, and

improve overall data quality.

• In situations that require straightforward interpretation, LR remains a

valuable tool, clearly showing decision-makers which variables increase defect

probability.

• Future studies can be supported by explainable AI techniques such as

SHAP values, enabling a clearer understanding of model decisions.

• The models’ generalization capability could be enhanced by extending

the dataset to include different product types, multiple production lines, or a

time-series structure.

In conclusion, this study has shown that ML-based classification models can

serve as a powerful decision-support tool in manufacturing processes. With

appropriate feature selection, suitable data preprocessing steps, and balanced

model evaluation, companies can transform their quality improvement

processes into a more systematic and predictable structure.

37

REFERENCES

Tercan, H., & Meisen, T. (2022). Machine learning and deep learning based

predictive quality in manufacturing: a systematic review. Journal of

Intelligent Manufacturing, 33(7), 1879-1905.

Deokar, S., Kumar, N., & Singh, R. P. (2025). A comprehensive review on

smart manufacturing using machine learning applicable to fused

deposition modeling. Results in Engineering, 104941.

Kausik, A. K., Rashid, A. B., Baki, R. F., & Maktum, M. M. J. (2025). Machine

learning algorithms for manufacturing quality assurance: A systematic

review of performance metrics and applications. Array, 100393.

https://doi.org/10.1016/j.array.2025.100393

de Giorgio, A., Cola, G., & Wang, L. (2023). Systematic review of class

imbalance problems in manufacturing. Journal of Manufacturing

Systems, 71, 620-644.

Rabie El Kharoua. (2024). Predicting Manufacturing Defects Dataset [Data set].

Kaggle. https://doi.org/10.34740/KAGGLE/DSV/8715500

Chen, C., Li, X., & Wang, K. (2024). Applying XGBoost for Fault Prediction in

Industrial Production Line. Journal of Intelligence and Knowledge

Engineering (ISSN: 2959-0620), 2(3), 155.

Ördek, B., Borgianni, Y., & Coatanea, E. (2024). Machine learning-supported

manufacturing: A review and directions for future research. Production &

Manufacturing Research, 12(1), 2326526.

https://doi.org/10.1080/21693277.2024.2326526

Antosz, K., Knapčíková, L., & Husár, J. (2024). Evaluation and Application of

Machine Learning Techniques for Quality Improvement in Metal Product

Manufacturing. Applied Sciences, 14(22), 10450.

https://doi.org/10.3390/app142210450

Md, A. Q., Jha, K., Haneef, S., Sivaraman, A. K., & Tee, K. F. (2022). A

review on data-driven quality prediction in the production process with

machine learning for industry 4.0. Processes, 10(10), 1966.

https://doi.org/10.3390/pr10101966

Borucka, A., & Grzelak, M. (2019). Application of logistic regression for

production machinery efficiency evaluation. Applied Sciences, 9(22),

4770. https://doi.org/10.3390/app9224770

Mehregan, M. R., Rezasoltani, A., & Khani, A. M. (2025). A Novel Hybrid

Machine Learning Model for Defect Prediction in Industrial

Manufacturing Processes. Contributions of Science and Technology for

Engineering, 2(4), 43-58. https://doi.org/10.22080/cste.2025.29099.1037

38

He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE

Transactions on knowledge and data engineering, 21(9), 1263-1284. DOI:

10.1109/TKDE.2008.239

Ogrizović, M., Drašković, D., & Bojić, D. (2024). Quality assurance strategies

for machine learning applications in big data analytics: an overview.

Journal of Big Data, 11(1), 156.

de Giorgio, A., Cola, G., and Wang, L. (2023). Systematic review of class

imbalance problems in manufacturing. Journal of Manufacturing

Systems, 71, 620-644. https://doi.org/10.1016/j.jmsy.2023.10.014

Gao, X., Xie, D., Zhang, Y., Wang, Z., Chen, C., He, C., ... & Zhang, W.

(2025). A comprehensive survey on imbalanced data learning. arXiv

preprint arXiv:2502.08960. https://doi.org/10.48550/arXiv.2502.08960

Chen, W., Yang, K., Yu, Z., Shi, Y., & Chen, C. P. (2024). A survey on

imbalanced learning: latest research, applications and future directions.

Artificial Intelligence Review, 57(6), 137.

https://doi.org/10.1007/s10462-024-10759-6

Hua, Y., Stead, T. S., George, A., & Ganti, L. (2025). Clinical risk prediction

with logistic regression: Best practices, validation techniques, and

applications in medical research. Academic Medicine & Surgery.

https://doi.org/10.62186/001c.131964

Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic

regression. John Wiley & Sons. DOI: 10.1002/9781118548387

Breiman, L.(2001). Random Forests. Machine Learning 45, 5–32.

https://doi.org/10.1023/A:1010933404324

Scornet, E. (2021). Trees, forests, and impurity-based variable importance in

regression. arXiv:2001.04295.

https://doi.org/10.48550/arXiv.2001.04295

Khan, A. A., Chaudhari, O., & Chandra, R. (2024). A review of ensemble

learning and data augmentation models for class imbalanced problems:

Combination, implementation and evaluation. Expert Systems with

Applications, 244, 122778. https://doi.org/10.1016/j.eswa.2023.122778

Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting

system. In Proceedings of the 22nd acm sigkdd international conference

on knowledge discovery and data mining (pp. 785-794).

https://doi.org/10.1145/2939672.2939785

Dalal, S., Rani, U., Lilhore, U. K., Dahiya, N., Batra, R., Nuristani, N., & Le, D.

N. (2024). Optimized XGBoost Model with Whale Optimization

Algorithm for Detecting Anomalies in Manufacturing. Journal of

39

Computational and Cognitive Engineering.

https://doi.org/10.47852/bonviewJCCE42023545

Nilsson, F., & Kyrk, D. (2025). Anomaly Detection In Manufacturing For

Quality Control.

Prasad-Rao, J., Heidary, R., & Williams, J. (2023). Detecting Manufacturing

Defects in PCBs via Data-Centric Machine Learning on Solder Paste

Inspection Features. arXiv preprint arXiv:2309.03113.

https://doi.org/10.48550/arXiv.2309.03113

Qu, D., Gu, C., Zhang, H., Liang, W., Zhang, Y., and Zhan, Y. (2024).

Research on Critical Quality Feature Recognition and Quality Prediction

Method of Machining Based on Information Entropy and XGBoost

Hyperparameter Optimization. Applied Sciences, 14(18), 8317.

https://doi.org/10.3390/app14188317

He, H., and Garcia, E. A. (2009). Learning from imbalanced data. IEEE

Transactions on knowledge and data engineering, 21(9), 1263-1284. DOI:

10.1109/TKDE.2008.239

Saito T, Rehmsmeier M (2015) The Precision-Recall Plot Is More Informative

than the ROC Plot When Evaluating Binary Classifiers on Imbalanced

Datasets. PLoS ONE 10(3): e0118432.

https://doi.org/10.1371/journal.pone.0118432

Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation

coefficient (MCC) over F1 score and accuracy in binary classification

evaluation. BMC genomics, 21(1), 6. https://doi.org/10.1186/s12864-

019-6413-7

Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters,

27(8), 861-874. https://doi.org/10.1016/j.patrec.2005.10.010

Kelleher, J. D., Mac Namee, B., & D'arcy, A. (2020). Fundamentals of machine

learning for predictive data analytics: algorithms, worked examples, and

case studies. MIT press.

40

Chapter 3

Web Application Firewall (WAF)

Fikri AĞGÜN1

Raif SİME2

ABSTRACT

A Web Application Firewall (WAF) is a security solution designed to protect

web applications against cyber threats. The increasing volume of cyber attacks

and the widespread adoption of web applications have made the use of WAFs

essential for ensuring data security. The evolution of WAFs encompasses a

transformation from their initial, simple functionalities into more intelligent

systems through the integration of artificial intelligence and machine learning.

WAFs operate by analyzing incoming requests to modern web applications

based on predefined rules, evaluating these requests and blocking suspicious

activities. They are deployed in various forms (cloud-based, hardware-based,

and software-based) across different domains and are particularly preferred in

environments with high data sensitivity, such as e-commerce platforms and

financial institutions. However, WAFs also have limitations; complex rule

management and high false positive rates may adversely affect user experience.

Moreover, their effectiveness is often confined to known threats, which can

result in limited protection against emerging attack vectors.

Keywords: Web application security, Reverse proxy, Cross-Site scripting

(XSS) attacks, SQL injection, Regular expressions (ReGex)

1 Assist. Prof. Dr., Bitlis Eren University, faggun@beu.edu.tr, ORCID: 0000-0001-9550-1462
2 Bitlis Eren University, rsime@beu.edu.tr, ORCID: 0009-0008-4292-2456

41

1. INTRODUCTION

The rapid evolution of the Internet has rendered web applications one of the

most critical components of organizations. Numerous processes, ranging from

banking and e-government services to educational systems and e-commerce, are

now conducted on web-based platforms. However, this evolution has

simultaneously introduced significant security threats. The inadequacy of

traditional security mechanisms particularly network-level firewalls and

IDS/IPS solutions in preventing attacks targeting web applications has led to the

emergence of the need for Web Application Firewalls (WAFs). Institutions and

organizations with network traffic implement strict security measures and

surround their systems with multiple preventive solutions. Nevertheless, due to

the conscious or unconscious use of various technical and facilitative services

within applications operating on web platforms, there is always a potential for

security vulnerabilities to arise.

Even a minor vulnerability in corporate systems may lead to exposure to

cyber attacks, resulting in reputational damage and significant business losses.

In this context, Web Application Firewall (WAF) solutions come into play and

assume a major role in protecting web applications.

2. WHAT IS A WEB APPLICATION FIREWALL?

A WAF is a specialized security mechanism designed to detect, block, and

filter attacks targeting web applications, and to stop malicious traffic before it

reaches the application. Unlike traditional firewalls, a WAF does not operate at

the network layer but directly at the application layer (Layer 7 of the OSI

model). Accordingly, it performs a detailed analysis of all incoming HTTP and

HTTPS requests to determine whether they contain malicious content. The

primary objective of a WAF is to establish a protective shield against attacks

targeting the underlying code base, database, and business logic of the web

application.

Web applications are inherently dynamic systems, particularly due to the

processing of user inputs. This characteristic leads to an expansion of the attack

surface with every newly developed feature, added parameter, and integrated

module.

The advanced structure of web applications, the lack of validation for user-

supplied data, and the fact that not all developers adhere to the same security

standards increase the likelihood of security vulnerabilities. These

vulnerabilities are frequently exploited by attackers and can often lead to severe

consequences such as data theft, content manipulation, unauthorized access, and

complete system compromise. WAFs have been developed to mitigate the

42

impact of such vulnerabilities in web applications and to block malicious

requests before they reach the application. Their core features include simple

filtering; regular expression-based filtering; URL encoding validation; Unicode

encoding validation; auditing; null byte attack prevention; upload memory

limitations; and server identity masking (Razzaq et al., 2013). The operating

principle of a WAF is to filter all traffic directed to the application and allow

only secure traffic to pass through. A WAF analyzes the headers, parameters,

URL structure, body, and cookies of HTTP requests. It is also capable of

detecting anomalies related to session management, authentication attempts, IP

addresses with an excessive number of failed login attempts, suspicious bot

activities, and behaviors resembling known attack signatures. Today, in order

to mitigate increasing cyber threats and enhance the level of protection, efforts

are being made to establish a new framework for existing traditional firewalls

by integrating artificial intelligence support. As can be observed from the

sample studies in the literature discussed below, WAF systems which operate at

the application layer and are significantly more effective than traditional,

hardware-based system-level countermeasures against cyber attacks are being

combined with contemporary artificial intelligence algorithms, emerging as

highly effective, fast, and high-performance security solutions.

Various methodologies and techniques, such as secure coding, configuration

analysis, and the deployment of web application firewalls, are employed for

application security. To prevent web application issues, web administrators

typically rely on web application firewalls. Web application firewalls operate at

the web application layer, perform in-depth inspection of HTTP packets and

each of their components, and search for web application attacks. They detect

malicious strings and configuration errors by using different techniques such as

whitelisting, blacklisting, and greylisting. (Razzaq et al., 2013).

A Web Application Firewall (WAF) performs deep packet inspection of the

network traffic occurring between the client and the server. By analyzing the

data transmitted between the client and the server, a WAF can detect potential

attacks even if the application itself lacks such detection capabilities. Utilizing

the default configuration of a web server may lead to security vulnerabilities

despite the presence of a firewall; this situation must be mitigated through

comprehensive security testing (Clincy & Shahriar, 2018). As a solution to this

problem, WAFs are extensively utilized. In the studies on WAFs available in

the literature, WAFs have been examined from multiple perspectives and their

benefits have been documented. In their work focusing on the use of WAFs for

multi-attack detection, the authors concentrate on an Adaptive Web Application

Firewall (WAF) that employs machine learning for real-time threat detection,

43

enhances security, and reduces cyber risks. They report that WAF

implementations are capable of protecting against a wide range of threats,

including SQL injection, DDoS attacks, directory traversal, and CSRF, and that

the system can reliably detect threats by distinguishing malicious patterns with

fewer false positives (Maheshwari et al., 2024). In their study focusing on an

advanced WAF that leverages machine learning for enhanced security, Dhote et

al. aimed to distinguish between different types of attacks at the application

layer by classifying requests, and conducted a noteworthy investigation on

attack detection using WAFs. (Dhote et al., 2024). In another study employing

deep learning-based artificial intelligence to enhance web application security,

the authors achieved an accuracy rate of 98.61% in attack detection with their

proposed CNN-LSTM model. They emphasized that the performance of the

DL-based WAF is more effective than that of traditional rule-based WAFs

(such as ModSecurity), and demonstrated that the critical and high-severity

vulnerabilities observed in conventional systems are effectively mitigated by the

DL-based WAF (Muttaqin & Sudiana, 2025). In a study proposing a Web

Application Firewall (WAF) that employs hybrid detection methods for XSS

attacks, the authors introduced an effective artificial intelligence approach for

the early detection of XSS attacks by leveraging machine learning and deep

learning techniques. Extensive experimental evaluations demonstrated that the

random forest method, when used with the proposed feature set, outperforms

state-of-the-art approaches and achieves a high performance score of 0.99.

(Younas et al., 2024).

3. WHY HAS A WAF BECOME NECESSARY?

Today, web applications have become an indispensable component for

institutions and organizations in conducting their operations; however,

alongside the convenience they provide, they also introduce numerous

vulnerabilities and issues. These systems have been exposed to malicious

activities that may lead to severe and often uncontrollable consequences such as

data theft, disruption of business processes and functions, and service outages.

Among the major initiatives undertaken to contain and prevent these threats, the

WAF stands out as one of the most significant countermeasures.

Web applications have become one of the most critical components of

modern organizations. Government services, educational platforms, e-

commerce websites, banking systems, enterprise management tools, API-based

microservice architectures, and cloud-based applications now play a central role

in the functioning of society and the economy. Within this expanding digital

ecosystem, security is not merely a technical requirement but a multi-layered

44

necessity that extends from national security and financial stability to business

continuity and personal data protection. Consequently, the rise in attacks

targeting web applications has evolved into a serious issue that significantly

affects institutions, individuals, and states.

At precisely this point, Web Application Firewall (WAF) technology has

emerged as one of the indispensable components of modern cyber security

architectures. The primary objective of a WAF is to stop attacks targeting web

applications before they reach the application, to detect anomalous behavior,

and to provide protection against threats occurring at the application layer.

However, there are much deeper reasons why a WAF is regarded not merely as

a necessity but as an obligation. These reasons are closely related to

technological advancements, the evolution of attack patterns, and the

transformation of organizational operating models.

Below, the reasons why a WAF is needed are examined and elaborated from

historical, technical, operational, and security perspectives in a comprehensive

manner.

3.1. The Explosion of Web Applications and the Increased Attack

Surface as a Driver for WAF Adoption

The acceleration of digital transformation since the early 2000s has led to an

extraordinary increase in the use of web applications. The Internet environment,

which previously consisted only of simple, informational websites, has over

time evolved into complex structures such as:

• User Account Management Systems

• Online Payment Modules

• E-Government Services

• E-Signature and Identity Authentication Services

• API and Microservice-based Architectures

• Remote Education Systems

• Enterprise ERP, CRM and HR Systems

Protecting such an extensive surface manually is practically impossible.

Regardless of how carefully developers work, numerous risks naturally emerge,

such as: Coding errors, Insufficient input validation, Iinadequate input filtering,

Authentication weaknesses, Security issues in third-party libraries.

For this reason, WAF technology, which filters incoming traffic to the

application, blocks suspicious requests, and provides an additional protection

layer for the application has become mandatory.

45

3.2. The Inadequacy of Traditional Firewalls Against Application-

Layer Attacks

Traditional firewalls and IDS/IPS solutions operate at the network layer.

These systems block attacks by inspecting: IP addresses, port numbers, protocol

types, packet direction.

However, the majority of modern cyber attacks occur at the application

layer. These attacks typically resemble standard web traffic, originate from

ports 80 and 443, and carry malicious payloads embedded within seemingly

normal HTTP requests (as in the case of SQL Injection, XSS (Cross-Site

Scripting), RFI/LFI, and CSRF attacks).

For example, attacks such as SQL Injection, XSS (Cross-Site Scripting),

RFI/LFI, CSRF, Path Traversal, Command Injection, Bad Bot Attacks, API

Abuse, Business Logic Attacks are perceived as legitimate traffic by a

traditional firewall, because they appear as ordinary HTTP requests.

A traditional firewall, when inspecting such requests, may effectively

conclude: “This is port 443, protocol HTTPS. It does not appear dangerous,”

and therefore forward the request to the internal network. However, the

malicious content embedded in the parameters or payload of the request may

completely compromise the application. For this reason, a mechanism capable

of understanding application-layer attacks has become necessary, and this

mechanism is the WAF.

3.3. The Rise of OWASP Top 10 Attacks and Security Vulnerabilities

The OWASP Top 10, which is updated every few years, lists the most

critical web application vulnerabilities worldwide. Nearly all entries in this list

stem from the way web applications process user input. Most of these

vulnerabilities arise from issues such as injection attacks, authentication

weaknesses, authorization flaws, improper input validation, and security

misconfigurations.

A WAF provides direct protection particularly against items in the OWASP

Top 10 such as Injection, Broken Authentication, Sensitive Data Exposure,

XML External Entities, Broken Access Control, Security Misconfiguration,

and XSS. Since the absence of adequate controls against the OWASP Top 10 is

considered a major risk in corporate security audits, the WAF has become a

critical component for meeting these requirements.

3.4. The Rise of SQL Injection, XSS, and Other Critical Vulnerabilities

Over the past 20 years, some of the most widely used attack types worldwide

have included SQL Injection, XSS, File Inclusion (LFI/RFI), Command

46

Injection, and Broken Authentication. Because these attacks can be executed

even with relatively simple techniques, they are frequently observed especially

in small, medium-sized, and poorly coded systems. An attacker may inject an

SQL command into the parameters of a web application to take control of the

database, inject JavaScript code to hijack user accounts, or manipulate the file

upload mechanism to execute commands on the server. The common

characteristic of these attacks is that all of them occur at the application layer. A

WAF detects and blocks such attacks using signature-based analysis, behavioral

analysis, and input validation techniques.

3.5. The Rise of Zero-Day Vulnerabilities and Aggressive Attack

Techniques

In the contemporary cybersecurity landscape, threat actors are capable of

exploiting undiscovered (zero-day) vulnerabilities with increasing rapidity. In

the event of a zero-day vulnerability, relying solely on vendor patches is

insufficient to mitigate such attacks. Upon the discovery of a vulnerability, a

remediation cycle is required wherein the software vendor must fix the flaw,

users must acquire the update, and system administrators must test and deploy

the patch. While this process may span days or even weeks, attackers are often

able to exploit the vulnerability within minutes. Consequently, a WAF protects

the application by filtering malicious traffic until the official patch is deployed,

effectively buffering the system against zero-day attacks.

3.6. The Rise of Distributed Microservices and API-based Architectures

The paradigm shift from traditional monolithic applications to microservices

architectures has significantly compounded the complexity of security

management. Modern systems are no longer constituted by a single application;

rather, they function as an aggregate of dozens of API endpoints, hundreds of

microservices, diverse protocols, and heterogeneous authentication

mechanisms. As this architectural complexity increases, security risks escalate

accordingly. Consequently, the Web Application Firewall (WAF) has become

an indispensable primary solution for API security. Within this complex

architectural framework, a WAF: Analyzes API traffic, Blocks malicious bots,

Detects authentication violations, Enforces rate limiting, Prevents data

manipulation.

3.7. Automated Attacks, Bot Traffic and Scraping Threats

While cyberattacks were historically executed manually, the contemporary

threat landscape is dominated by automated tools such as SQLmap, DirBuster,

47

Nikto, and Burp Suite automations, alongside Python scripts and AI-assisted

attack vectors. These tools provide adversaries with the capability to perform

high-velocity scanning, automated exploit attempts, and API exploitation.

Furthermore, malicious bots are capable of engaging in activities such as price

scraping, brute force login attempts, comment spamming, API token theft, and

content manipulation.

By analyzing this traffic, a WAF: Identifies bot behavior, Issues CAPTCHA

challenges, Enforces rate limiting, Performs IP reputation checks, Blocks

anomalous requests. Consequently, it safeguards the web application against

automated attacks.

3.8. The Necessity of Protection Against DDoS and Application Layer

Flood Attacks

Modern iterations of DDoS attacks no longer target solely the network layer

but increasingly focus on the application layer (Layer 7). For instance, attacks

such as:

• Flooding an API endpoint with thousands of requests per second,

• Overloading login forms via brute-force attempts,

• Submitting resource-intensive queries to search fields,

• Disrupting filtering mechanisms

can exhaust system resources and precipitate application failure. It is not

feasible to mitigate application layer DDoS attacks using standard network

firewalls alone. Consequently, a WAF intervenes to protect the application by

employing mechanisms such as rate limiting, behavioral analysis, IP reputation

checks, bot scoring, and automated blocking.

3.9. Enterprise Requirements and Regulatory Compliance

In order to ensure logging and the security of real-time transactions at the

application level across various sectors, the deployment of Web Application

Firewalls (WAF) has become a standard and indispensable requirement. This

necessity arises from regulatory mandates and legal obligations that enforce

specific protection levels for web applications, including: PCI-DSS (mandatory

for payment systems), ISO 27001 (security requirements), GDPR/KVKK

(prevention of data breaches), Banking regulations, Public sector security

standards, Healthcare data protection laws.

Given that a single data breach can result in substantial financial penalties,

reputational damage, operational downtime, and litigation processes,

organizations are compelled to adopt WAF solutions proactively.

48

3.10. The Inevitability of Human Error and the Persistence of Security

Vulnerabilities

Regardless of the rigor of the development process, no software can be

rendered entirely secure. Factors such as the inevitability of human error,

increased error rates in code developed under time constraints, the continuous

emergence of new vulnerabilities in third-party libraries, and the lack of

familiarity among new developers with legacy security decisions make it

impossible to exhaustively test for all vulnerabilities in complex systems. By

mitigating the impact of these unavoidable errors, a WAF enhances the overall

security resilience of the system.

4. THE EVOLUTION OF WAF

The evolutionary trajectory of WAF technology originated as a technical

countermeasure to the escalating cyber threats associated with the proliferation

of the Internet. To fully comprehend the contemporary status of WAFs, it is

essential to analyze both the evolution of web applications and the shifting

landscape of attack vectors. This progression represents not merely a technical

advancement, but the result of a comprehensive transformation driven by

enterprise requirements, security standards, next-generation software

architectures, and DevSecOps methodologies.

The following section examines the timeline of WAF development, ranging

from its inception to its current sophisticated architecture, through a

chronological framework.

4.1. The Early Era of Web Applications and Fundamental Security

Needs (1990–2000)

In the mid-1990s, the World Wide Web consisted primarily of static HTML

pages. As client-server interaction was minimal, the attack surface remained

relatively narrow. During this period, fundamental enterprise security solutions

were limited to traditional network firewalls and Intrusion Detection/Prevention

Systems (IDS/IPS). However, with the advent of web technologies such as CGI,

PHP, ASP, and Java Servlets, websites evolved into dynamic and interactive

platforms. Users gained the capability to submit data, complete forms, and

interact directly with backend databases.

This shift precipitated the onset of application-level exploits, leading to the

emergence of attack vectors such as SQL Injection, Command Injection, and

File Inclusion, alongside a rise in database manipulation attempts.

Traditional network firewalls, operating primarily at the TCP/IP layer, were

incapable of detecting such attacks. Similarly, while IDS/IPS systems analyzed

49

network traffic, they lacked the depth of inspection required to comprehend the

specific business logic of web applications. Consequently, a novel security layer

was required to mitigate threats targeting the application layer. This necessity

laid the groundwork for the inception of the WAF.

4.2. The Emergence of First-Generation WAFs (2000–2005)

The establishment of the Open Web Application Security Project (OWASP)

in the early 2000s catalyzed a significant shift in the security community's focus

toward web application security. The publication of the OWASP Top 10 list

established global recognition regarding the criticality of application security.

The fundamental characteristics of the first-generation WAFs developed during

this era were as follows:

• Static Signature and Rule-Based Architecture

Early WAF solutions analyzed attacks using static signature sets, analogous

to IDS systems. For instance, patterns such as “ ‘ OR 1=1--” were identified as

SQL Injection attempts and subsequently blocked.

• HTTP Packet-Level Filtering

These WAFs inspected HTTP requests and blocked those deemed

anomalous. However, they lacked the capability to comprehend the application

context.

• Reverse Proxy Architecture

Many WAF solutions operated as reverse proxies, analyzing incoming traffic

to the web server within an intermediary layer.

• Limited Flexibility

Rule-based systems frequently generated high rates of false positives,

thereby increasing the operational overload associated with WAF deployment.

During this period, WAF technology began to advance commercially, and

the first open-source solutions, such as ModSecurity, were introduced.

4.3. The Expansion of Web and the Maturation Phase of WAF

Technology (2005–2012)

Post-2005, the landscape of web applications expanded significantly with the

widespread adoption of AJAX, SOAP, REST APIs, desktop-like web

applications, and mobile web technologies. Concurrently, attack vectors

diversified to include Cross-Site Scripting (XSS), CSRF, RFI/LFI, XML

Injection, Session Hijacking, and Cookie Manipulation.

Since the majority of these attacks targeted application behavior, WAF

solutions were compelled to evolve. During this period, WAFs acquired the

following capabilities:

50

• Behavioral Analysis and Anomaly Detection

Recognizing the inadequacy of static signatures, WAF models were

developed to learn the baseline traffic of an application and detect deviations.

• Advanced Rule Engines

Flexible rule engines based on Regular Expressions (RegEx) and extensible

rule sets in tools such as ModSecurity emerged.

• OWASP ModSecurity Core Rule Set (CRS)

The introduction of the CRS marked a significant milestone in the

standardization of WAF rule sets.

• Application Layer Protection

In addition to HTTP/HTTPS inspection, advanced controls were

implemented for data formats such as JSON, XML, and SOAP. This era

facilitated the widespread adoption of WAFs within enterprise infrastructures.

4.4. Rise of Cloud Technologies and the Reshaping of WAF (2012–2018)

The proliferation of cloud-based applications, microservices architectures,

and the exponential increase in traffic volume necessitated the transformation of

WAFs into scalable architectures. During this period, Content Delivery

Network (CDN)-based protection services and Software-as-a-Service (SaaS)

WAF solutions gained particular prominence. The pivotal transformation points

of this era can be outlined as follows:

• Cloud WAF Solutions

Major technology corporations such as Cloudflare, AWS, Azure, and Google

began offering WAF services via globally distributed infrastructures.

• DDoS Integration

WAFs gained the capability to detect and mitigate Distributed Denial of

Service (DDoS) attacks in addition to ensuring application security.

• WAF as a Service

The service model requiring no local installation and offering real-time

updates became widespread.

• API Security

Specialized controls for REST and SOAP APIs were integrated into the

functional repertoire of WAFs.

This era marks the period in which WAF technology became more user-

centric, significantly reducing the operational overload associated with

deployment and maintenance.

51

4.5. Artificial Intelligence, Machine Learning, and the Modern WAF

Era (2018–Present)

The foundation of the current state of WAF technology is constituted by

decision-making mechanisms based on Artificial Intelligence (AI) and Machine

Learning (ML).

Key Features of Modern WAFs:

• Machine Learning-Based Anomaly Detection

By learning the behavioral patterns of the application, anomalous requests

are automatically identified. This methodology exhibits significantly higher

efficacy compared to static signature-based approaches.

• Bot Management and Anti-Automation

Contemporary WAFs possess the capability to autonomously distinguish and

mitigate malicious bots, scrapers, and credential stuffing attempts.

• Zero-Day Attack Detection

Early warning mechanisms facilitate the detection of attacks for which

signatures have not yet been generated.

• Large-Scale Distributed Architectures

Utilizing CDN-based global networks, requests are filtered at the network

edge (nearest point of presence).

• API Gateway Integration

API security has evolved into a fundamental component of WAF

architecture.

• DevSecOps Integration

Modern WAF solutions are integrated into CI/CD pipelines, ensuring

security enforcement as early as the code development phase. Consequently,

WAF technology has transcended its role as a mere firewall, evolving into a

comprehensive application security platform.

4.6. Future Projections and the Evolution of WAF Technology

The evolutionary trajectory of WAF technology is not yet complete. In the

forthcoming years, it is anticipated that Artificial Intelligence will evolve

toward a rule-less operational model through Fully Automated Security

Policies; WAF capabilities will converge with Service Mesh technologies (e.g.,

Istio, Linkerd) via the full integration of API and microservices security; the

focus will extend beyond mere attack detection to include user behavior

profiling through User Behavior Analytics (UBA); requests will be filtered at

the network edge prior to reaching the data center via the implementation of

52

Edge-Computing based WAFs; and WAFs will establish themselves as a

fundamental authentication layer within the system through Zero-Trust

Integration.

5. HOW WAF OPERATES

What is the fundamental concept? What functions does a WAF, where

is it positioned?

The primary role of a WAF is to inspect inbound HTTP/HTTPS traffic at the

application layer (OSI Layer 7) and intercept malicious requests before they

reach the web application. This mechanism is distinct from traditional network

security approaches based on IP addresses and ports. A WAF analyzes the

request body, Uniform Resource Identifier (URI), HTTP headers, cookies,

JSON/XML payloads, and even session logic.

The deployment models of a WAF can be categorized as follows:

• Reverse Proxy (Inline): The most prevalent model, wherein client

requests are first routed to the WAF for analysis and, if deemed benign, are

subsequently forwarded to the origin server.

• Transparent Bridge: Deployed within the network infrastructure to

passively monitor traffic without modification or to perform active inline

blocking.

• Host-Based (Agent): Operates as a module directly on the application

server, residing on the same host machine as the application itself.

• Cloud/CDN-Based WAF: Traffic is filtered through the provider's

distributed network infrastructure, facilitating mitigation at the network edge.

• API Gateway / Service Mesh Integration: Provides gateway-level

integration within microservices or API-first architectures.

The selection of deployment topology is critical regarding security efficacy,

latency, and scalability. While reverse proxy and cloud-based WAFs offer

distinct advantages in scalability and DDoS mitigation, host-based solutions

provide deeper visibility into the application context.

The WAF Request Inspection Pipeline

The request processing logic of a Web Application Firewall typically

adheres to the following sequential stages:

1. TLS Decryption (Termination): If the WAF operates with inline TLS

termination, the encrypted request is first decrypted. (Note: Deep packet

inspection is not feasible if TLS termination does not occur at the WAF level.)

2. HTTP Parsing and Normalization: This phase involves URL

decoding, character normalization, Unicode normalization, and content-type

53

determination (e.g., JSON, XML, form-data). This step is of critical importance

for neutralizing evasion techniques.

3. Header, URI, and Body Inspection: A granular analysis is performed

on HTTP headers, methods, Uniform Resource Identifiers (URIs), query strings,

and the request body.

4. Rule Application and Modeling: This stage involves the execution of

signature-based rules (pattern matching, Regular Expressions), the evaluation of

behavioral and statistical models, and the application of positive/negative

security logic (allowlisting/blocklisting).

5. Rate Limiting and Connection Control: Traffic volume is assessed

against predefined thresholds; temporary bans or throttling may be enforced

based on these limits.

6. Bot Challenge / CAPTCHA: Based on the calculated bot score, the

requester may be redirected to a CAPTCHA or a similar computational

challenge.

7. Action Execution (Allow/Deny/Redirect/Sanitize): Based on the

outcome of the rule evaluation, specific actions such as blocking with an alert or

payload sanitization are executed.

8. Logging, Telemetry, and Forwarding: Comprehensive logs are

generated and forwarded to Security Information and Event Management

(SIEM) systems for incident response and forensic analysis.

Inspection Methodologies:

WAFs employ diverse techniques to execute inspection processes. These

methodologies can be categorized as follows:

• Signature-Based Detection: This method utilizes string matching and

regular expressions (RegEx) to identify known attack patterns, such as SQL or

JavaScript snippets. While highly efficient in detecting established threats with

precision, it often proves inadequate against novel or polymorphic attack

variants. For example, a RegEx pattern such as (\bselect\b.*\bfrom\b) identifies

SQL Injection attempts.

• Positive Security Model (Allowlisting): This approach defines a strict

set of permissible request formats (allowlist) and rejects all others. It is a robust

technique, particularly suitable for static and well-defined applications.

However, its primary disadvantages include the administrative complexity of

management within dynamic environments and a high potential for false

positives.

• Negative Security Model (Blocklisting): This model focuses on

identifying and blocking known malicious patterns. It is the most widely

adopted approach for filtering out recognized threats.

54

• Behavioral and Anomaly Detection: This technique establishes a

baseline traffic profile (e.g., request frequency, parameter structures), triggering

alerts upon the detection of deviations. Machine Learning algorithms are often

employed to distinguish between benign and anomalous traffic. For instance,

500 login attempts against an endpoint from a single IP address within a short

timeframe would be identified as a brute-force attack.

• Stateful Application: Logic Inspection The WAF validates session

identifiers, CSRF tokens, and the sequential integrity of specific business

workflows. It detects logic anomalies, such as a user attempting to submit a

payment request while bypassing the requisite checkout sequence.

• Payload Normalization and Decoding: This process neutralizes

evasion techniques such as path traversal (%2E%2E), Unicode obfuscation,

double-encoding, and chunked transfer manipulation. Signature matching and

malicious content detection are executed subsequent to the normalization

process.

• Context-Aware Parsing: The WAF parses payloads according to their

specific content type (e.g., JSON, XML, multipart/form-data) to apply relevant

security policies. Format-specific vectors, such as XML External Entity (XXE)

attacks, are identified at this layer.

WAF Rule Categories:

Web Application Firewalls utilize a diverse range of rule sets to enforce

security policies. These encompass simple string and Regular Expression

(RegEx) rules for basic pattern matching of known signatures, as well as

complex logical rules involving boolean logic or multi-condition criteria.

Furthermore, the system employs rate-limiting rules to restrict request

frequency, geo-location rules for restrictions based on geographic origin, and IP

reputation rules to filter traffic according to the trustworthiness history of IP

addresses. Additionally, WAFs support time-based (temporal) rules for policies

active during specific timeframes and custom rules, such as specialized rule sets

developed for frameworks like ModSecurity.

WAF Action Policies

Upon the triggering of a security rule, a Web Application Firewall (WAF) is

capable of executing a diverse range of enforcement actions. These include

Block (Deny), which serves to immediately reject the request; Redirect /

Challenge, employed to enforce verification mechanisms such as CAPTCHA

or HTTP 302 redirects; Alert / Log Only, a passive mode particularly

beneficial during the operational tuning phase for generating telemetry without

service interruption; Sanitize / Scrub, which neutralizes malicious payloads

55

while permitting the sanitized request to proceed to the origin; Quarantine,

utilized to isolate the request or reroute it to a secondary processing queue; and

Rate-Limit / Throttle, designed to restrict traffic velocity based on defined

thresholds.

Performance and Scalability

Since the Web Application Firewall (WAF) is positioned at the application

perimeter, latency and throughput are of critical importance. To ensure optimal

performance, the following considerations must be addressed:

• TLS Termination: Due to the high CPU overhead associated with

decryption, hardware acceleration or termination at the network edge should be

prioritized.

• Rule Complexity: An excessive number of complex Regular

Expressions (RegEx) can significantly increase CPU consumption;

therefore, rule optimization is essential.

• Caching / Fast Path: Caching mechanisms should be implemented to

provide rapid access to static content and validated (sanitized) traffic.

• Horizontal Scaling: Horizontal scalability should be achieved through

Cloud/Content Delivery Network (CDN)-based WAFs or the utilization of load

balancers.

• Connection Persistence and Pooling: Efficient connection

management contributes to performance enhancement.

During the planning phase, the processing cost per request must be

evaluated, and Service Level Agreements (SLA) must be taken into account.

Bot Management, CAPTCHA, and Rate Limiting

Modern Web Application Firewalls (WAFs) transcend simple signature-

based detection by incorporating bot behavioral analysis through the utilization

of Fingerprinting, Behavioral Scoring, Challenge/Response, and Rate

Limiting techniques. Specifically, Fingerprinting is employed to discern

between legitimate browsers and automated agents. Behavioral Scoring

calculates a probabilistic bot score by analyzing telemetry data, including

mouse movements and cookie support capabilities. The Challenge/Response

mechanism validates the client by imposing computational or interactive tasks,

such as CAPTCHAs, JavaScript Challenges, or Proof-of-Work algorithms.

Furthermore, Rate Limiting enforces traffic constraints based on specific

endpoints, IP addresses, or authentication tokens.

56

Attack Evasion Techniques and WAF Countermeasures

Adversaries employ various methodologies to circumvent WAF inspection

mechanisms, including:

• Encoding / Double-Encoding: Manipulating character sets to disguise

malicious strings.

• Chunked Transfer or Fragmentation: Splitting requests to bypass

pattern matching.

• Obfuscated Payloads: Using techniques such as comment injection

and whitespace obfuscation to hide payloads.

• Polymorphic Payloads: Altering the appearance of the payload while

retaining malicious functionality.

• Out-of-Band / External Channels: Exploiting vectors like XML

External Entity (XXE) or Server-Side Request Forgery (SSRF).

• Malicious Business-Logic Flows: Executing attacks that appear

syntactically valid but violate business logic.

In response to these evasion attempts, WAFs implement the following

countermeasures:

• Normalization & Decoding: Applying rigorous input sanitization

steps.

• Multiple Parsing Passes: Recursively analyzing nested inputs.

• Context-Aware Parsing: Conducting content-specific analysis for

formats like JSON and XML.

• Behavioral Detection: Identifying anomalies based on traffic patterns.

Nevertheless, detecting sophisticated evasion tactics (specifically "low-and-

slow" attacks) remains a significant challenge. Consequently, a WAF should not

constitute the sole layer of defense within the security architecture.

Having examined the functional mechanics and capabilities of Web

Application Firewalls, it is pertinent to illustrate their operational workflow

through a sequential use-case scenario involving a standard deployment cycle:

1. A new API endpoint is deployed.

2. The WAF monitors this endpoint in "learning" or "log-only" mode for a

designated period (7 days).

3. The WAF generates automated policy recommendations, such as JSON

schema validation and rate limiting thresholds.

4. The security operations team reviews the proposed rules and tentatively

applies them in the production environment under "log-only" mode.

5. False positives are eliminated, and the rule set is fine-tuned.

6. Upon validation, the rules are transitioned to "block" (active

enforcement) mode.

57

7. The system is integrated with a SIEM solution, and automated ticketing

workflows are configured.

This methodology ensures robust security enforcement while maintaining an

uncompromised user experience.

6. WAF TYPES AND DEPLOYMENT MODELS

Web Application Firewall technologies have evolved significantly over time,

diversifying into various distinct types to address differing operational

requirements and usage scenarios. The primary drivers behind the emergence of

these diverse WAF classifications include the heterogeneity of application

hosting infrastructures, varying security assurance levels, scalability

expectations, and the diversity of enterprise governance policies. Consequently,

WAF solutions are categorized into multiple distinct classes based on their

deployment models, architectural frameworks, traffic processing

methodologies, and operational modalities.

WAF Classifications:

• Based on Deployment Model

o Hardware-Based WAF (Appliance)

o Software-Based WAF

o Virtual Appliance WAF

o Cloud-Based WAF

• Based on Operational Principle

o Reverse Proxy WAF

o Transparent (Bridge Mode) WAF

o Embedded (In-App) WAF

• Based on Security Approach

o Signature-Based WAF

o Behavioral (Heuristic) WAF

o Machine Learning-Based WAF

• Based on Architecture

o Centralized WAF

o Distributed WAF

• Based on Service Model

o SaaS WAF (WAF-as-a-Service)

o Managed WAF

• Based on Specific Use Cases

o API Security Firewall (API-WAF)

58

o WAF with Integrated Bot Management

o CDN-Integrated WAF

In alignment with contemporary technological advancements and evolving

requirements, WAF technologies are structured and deployed to address a

diverse array of application domains and varying levels of security necessities.

Consequently, the functional spectrum and application scope of WAF solutions

have expanded significantly.

The application domains of WAF technology can be delineated as follows:

1. Web Application Protection: The most fundamental and prevalent use

case for a WAF is ensuring the security of web applications. WAFs protect

applications against threats such as SQL Injection, Cross-Site Scripting (XSS),

Remote Command Execution, File Inclusion attacks, Directory Traversal, CSRF

attacks, and XML/JSON manipulation attacks. Given that web applications are

central to contemporary business processes, the mitigation of these attacks is of

critical importance. As a secondary function, WAFs ensure the Protection of

Sensitive Data. In systems processing critical data (such as those in banking,

healthcare, education, and the public sector) WAF protection prevents data

leakage, manipulation, and unauthorized access.

2. Protection of APIs and Microservices: The majority of modern

software development practices rely on API-based architectures. Mobile

applications, IoT devices, microservices, and integration systems operate via

APIs. Through API Traffic Inspection, WAFs detect threats such as API brute-

force attacks, rate limit violations, JWT token manipulation, API key abuse, and

GraphQL query exploitation. Furthermore, as distributed systems entail unique

security requirements for each service, WAFs are integrated with API

Gateways to consolidate all microservices under a centralized and consistent

security policy.

3. E-Commerce and Financial Sector: E-commerce sites and financial

transaction platforms are among the most frequent targets for attackers due to

the monetary value, personally identifiable information (PII), and payment data

they transmit. In this domain, WAFs perform duties related to Fraud

Prevention, Bot Detection, and protection against malicious automation

attempts. Specifically, they provide defense against attacks such as Carding

(payment card guessing), Fake Account Creation, Credential Stuffing, and

CAPTCHA Bypass attempts. Additionally, many financial institutions are

mandated to deploy WAF solutions to ensure compliance with PCI-DSS

regulations for the protection of payment systems.

4. Public Sector and Academic Institutions: Digital platforms operated

by public institutions process citizen data, while universities host student,

59

personnel, and academic records. In this context, WAFs are deployed to ensure

the Protection of Critical E-Government Services, including Electronic

Document Management Systems (EBYS/EDMS), Integration Platforms, Email

Portals, Personnel and Student Information Systems, and Public-Facing Web

Services. Furthermore, as public sector entities are frequently subjected to

active cyber hostilities, Threat Intelligence Integration is achieved via WAF

deployment. By leveraging real-time threat intelligence, WAFs provide rapid

defense capabilities against emerging attack vectors.

5. Healthcare Sector: In healthcare systems, personal data represents

some of the most sensitive information categories. Consequently, healthcare

organizations in many jurisdictions are obligated to deploy WAF solutions. The

Protection of Electronic Health Records (EHR) including patient files,

laboratory results, appointment systems, and centralized physician appointment

systems is facilitated by WAFs. Moreover, Compliance Requirements such as

KVKK (PDPL) and HIPAA mandate that healthcare organizations protect data

access; WAFs constitute a critical component of this compliance framework.

6. Cloud Environments and CDN Services: The proliferation of cloud-

based systems has expanded the deployment scope of WAFs. On cloud

platforms such as AWS, Azure, and GCP, WAFs are utilized to protect Web

Servers, API Gateways, Kubernetes Ingress Controllers, and Serverless

backend functions. Additionally, WAF services provided by Content Delivery

Networks (CDNs) ensure that attacks are blocked at the network edge before

reaching the origin server, facilitating integration with DDoS mitigation and

enabling low-latency global operations.

7. Mobile Application Backend Services: Mobile applications establish

direct connectivity to backend services, which predominantly rely on API-based

architectures. WAFs perform Mobile Backend API Protection, safeguarding

applications against threats such as Token Validation failures, mobile bot

attacks, rate limit violations, and unauthorized data extraction attempts.

8. IoT and Industrial Systems: As the number of IoT devices increases,

attacks targeting the web-based control panels managed by these devices also

escalate. WAFs are deployed to protect IoT management interfaces in domains

such as Smart City Infrastructures, Sensor Control Systems, Industrial SCADA

Interfaces, and Home Automation Systems.

9. Protection of Internal Enterprise Systems: WAF deployment is not

limited to public-facing services but also extends to intranet environments.

Internal Web Applications, including Enterprise Resource Planning (ERP)

systems, Customer Relationship Management (CRM) software, Corporate

Portals, and HR Automation systems, can be protected by WAFs. Furthermore,

60

WAFs can be positioned to mitigate risks associated with insider threats

(network attacks) caused intentionally or inadvertently by personnel.

10. Regulatory and Compliance Requirements: In numerous sectors, the

deployment of WAFs has become mandated by law or industry standards.

Compliance frameworks such as PCI-DSS (Payment Card Industry), ISO

27001 (Information Security Management), GDPR/KVKK (Personal Data

Protection), and HIPAA (Healthcare) either recommend or mandate the

protection of web applications via WAFs.

11. Mitigation of DDoS and Botnet Attacks: Certain WAF solutions

provide integrated protection against Layer 7 DDoS attacks, including HTTP

Flood, Slowloris, and Cache Bypass attacks, as well as botnet driven volumetric

traffic. Additionally, they offer advanced rate limiting and bot filtering

capabilities to halt automated attacks.

7. LIMITATIONS OF WAF

Although Web Application Firewall (WAF) solutions have become

fundamental components of modern network and application security, like any

technology, they possess certain limitations and vulnerabilities. These

limitations may arise from both architectural design and usage methodologies.

While the protection offered by a WAF can be quite effective with correct

configuration and up-to-date rules, it is inherently unable to provide a complete

security guarantee. The fundamental limitations of WAFs are discussed below.

1. Inability to Detect All Attacks (False Negative Problem)

WAF solutions detect attacks using signature-based, behavior-based, or

statistical models. However:

• They may not always detect new, yet unidentified attack techniques

("zero-day attacks").

• Payloads that are cleverly concealed, encoding methods, or multi-

layered attacks may evade the WAF's analysis.

• Attacks targeting the application's business logic often appear as normal

traffic, making them difficult for the WAF to detect.

For these reasons, WAFs cannot provide 100% attack detection.

2. Generation of False Positives (False Positive Problem):

One common issue with WAFs is the generation of false positives. Particularly

under strict security rules:

• Normal user requests may be perceived as attacks.

• API requests, dynamic parameters, or custom input formats may be

blocked.

61

• Software development teams frequently need to spend additional time

correcting these erroneous blocks.

False positives degrade user experience and increase the management

burden.

3. Challenges in Analyzing Encrypted Traffic:

Modern web applications predominantly use HTTPS. To analyze this traffic,

a WAF must:

• Perform SSL/TLS termination or operate in reverse proxy mode.

This setup:

• Can lead to performance losses.

• Requires an additional certificate management process.

• Makes it challenging to decrypt traffic in certain environments (e.g.,

applications using mutual TLS on end-user devices).

When encrypted traffic is not fully analyzed, some attacks may go

unnoticed.

4. Impact on Performance:

A WAF must analyze every request, model behaviors, and enforce rules.

This process:

• May cause latency.

• Can result in performance degradation under load.

• Increases the need for scaling in applications with heavy traffic.

Even cloud-based WAFs can lead to service delays by implementing rate

limits during high traffic conditions.

5. Inadequacy Against Business Logic Attacks:

WAFs primarily focus on attacks at the technical layer. However: Threats

such as fake return requests, Logic manipulation, Privilege escalation attempts,

Multi-step attacks are often not detected by WAFs as they may resemble normal

user behavior. These attacks require specialized "business logic security" to be

effectively safeguarded against.

6. Difficulty in Staying Up-to-Date:

Attack techniques are continuously evolving. For a WAF to be effective:

• Rules must be regularly updated.

• Machine learning models need to be retrained.

• New threat intelligence must be integrated.

However, many organizations do not perform these updates regularly,

causing the WAF to become ineffective over time.

62

7. Dependency on Development and Operations Teams:

For WAF rules to function correctly, it is essential to recognize all endpoints

of the application, model normal behavior, and accurately define allowed

parameters. A misconfigured WAF can:

• Render the entire application inaccessible,

• Accidentally block critical endpoints,

• Completely overlook security vulnerabilities.

Therefore, managing a WAF requires specialized expertise.

8. Integration Issues with CDN and Distributed Architecture:

Since a WAF operates under the principles of a reverse proxy or edge

firewall, it may encounter integration challenges with CDNs. In microservices

architectures, separate configurations may be necessary for each service, and

conflicts can arise with API gateway structures. Particularly in container-based

environments (like Kubernetes), WAF management can become complex.

9. Ineffectiveness Against Internal Threats:

WAFs primarily provide protection against external threats. However,

attacks originating from the internal network, such as abuse by authorized users

or database hijacking, are generally not blocked by the WAF.

10. Limitations Against Advanced Evasion Techniques:

Attackers have developed specialized methods to bypass WAFs, including

multiple encoding (double/triple encoding), payload fragmentation, HTTP

parameter polymorphism, low-rate attacks, and stealth attack techniques. Such

methods can make it challenging for the WAF to detect the attack.

11. Inadequacy Against Zero-Day Vulnerabilities:

Due to the operational nature of WAFs, their protection level is low against

attacks that are unprecedented, not yet defined by signatures, and exhibit

unknown behaviors. WAFs cannot provide complete protection against zero-

day attacks.

8. WAF INSTALLATION AND EXAMPLE RULE SET

To provide a reference for a WAF installation, the steps for setting up a

WAF using Nginx web server and ModSecurity rule sets within an enterprise

network are outlined below. The installation environment chosen is Ubuntu

24.04 LTS, and the ModSecurity installation (Nginx + OWASP CRS) has been

carried out on this platform. The following steps detail the installation of

ModSecurity + OWASP Core Rule Set (CRS) on an Ubuntu 24.04 LTS server

in the most updated and stable manner.

1. System Update Procedure: First, the Ubuntu server to be used as the

platform must be updated to the latest version.

63

Bash

sudo apt update && sudo apt upgrade -y

2. Installing Required Packages: Necessary packages, such as nginx and

modsecurity, must be installed.

Bash

sudo apt install -y nginx libnginx-mod-security (In Ubuntu 24.04,

ModSecurity is now available in the official repositories under the package

libnginx-mod-security).

3. Verification of ModSecurity Nginx Module Installation:

Bash

nginx -t | grep modsecurity veya dpkg -L libnginx-mod-security

The installations of the packages are verified using these commands.

4. Creating ModSecurity Main Configuration File:

Bash

sudo cp /usr/share/modsecurity-crs/modsecurity.conf-recommended

/etc/modsecurity/modsecurity.conf

5. Editing Basic Settings:

Bash

sudo nano /etc/modsecurity/modsecurity.conf

Change these rows:

conf

instead of “DetectionOnly” do “On” yapın (blocking is active)

SecRuleEngine On

SecRequestBodyAccess On

SecResponseBodyAccess On

SecAuditEngine RelevantOnly # OR “On” (If more logging is desired)

SecAuditLog /var/log/modsecurity/audit.log

SecDataDir /var/cache/modsecurity

SecTmpDir /tmp

SecDefaultAction "phase:1,log,deny,status:403"

SecDefaultAction "phase:2,log,deny,status:403"

6. Installation of OWASP Core Rule Set (CRS):

Bash

sudo apt install -y modsecurity-crs

Here, the CRS is automatically installed in the /usr/share/modsecurity-crs/

directory.

7. Including the CRS Main File: A configuration file is created for this

purpose.

Bash

64

sudo nano /etc/modsecurity/crs.conf

The following content should be added to the configuration file:.

conf

Include /usr/share/modsecurity-crs/crs-setup.conf

Include /usr/share/modsecurity-crs/rules/*.conf

8. Adding ModSecurity to Nginx Configuration:

Bash

sudo nano /etc/nginx/nginx.conf

http { The following line should be added at the top of the block.

nginx

ModSecurity settings

modsecurity on;

modsecurity_rules_file /etc/modsecurity/crs.conf;

9. Extra Check forn Site Configuration (Optional):

For a example site (/etc/nginx/sites-available/default):

nginx

server {

 listen 80;

 server_name domain.com www.domain.com;

ModSecurity is already enabled globally; if it is desired to enable it again

here:

modsecurity on; is performed.

 location / {

 # ... other settings

 }

}

10. Setting Up Folders and Permissions:

Bash

sudo mkdir -p /var/log/modsecurity

sudo chown www-data:www-data /var/log/modsecurity

sudo mkdir -p /var/cache/modsecurity

sudo chown www-data:www-data /var/cache/modsecurity

11. Testing and Starting:

Bash

sudo nginx -t

if there is no errors:

Bash

sudo systemctl reload nginx

65

12. Testing if the System is Working:

The URL should be tested in the browser with the format “http://your-server-

ip-address/?id=1+OR+1=1”, and if the WAF is functioning, access to the site

should be blocked (a 403 response should be returned). The same test can be

performed using the curl command:

Bash

curl -i http://127.0.0.1/?test=../etc/passwd should be applied as follows. In

this case, if the system is functioning, a "403 Forbidden" message should be

received, and a ModSecurity log should be created.

13. Checking the Logs: The logs can be checked using the following

command.

Bash

sudo tail -f /var/log/modsecurity/audit.log

14. Adjusting the Paranoia Level to Reduce False Positives (Optional):

Bash

sudo nano /etc/modsecurity/crs/crs-setup.conf

This should be adjusted (the recommended starting level is 2):

conf

SecAction \

 "id:900000,\

 phase:1,\

 nolog,\

 pass,\

 t:none,\

 setvar:tx.paranoia_level=2"

15. Starting in Log Mode (DetectionOnly) (Optional):

To test initially without blocking:

Bash

sudo nano /etc/modsecurity/modsecurity.conf

conf

SecRuleEngine DetectionOnly

Later, when the system is stable, "SecRuleEngine On" should be configured.

16. Update and Maintenance:

Bash

updates of CRS and ModSecurity

sudo apt update && sudo apt upgrade

66

http://127.0.0.1/?test=../etc/passwd

The WAF installation will be completed after these steps. Now, an additional

protection layer is actively present in front of the system. In this section, if we

also show an example of a ModSecurity rule used:

Through this rule, only the specified file types in the list are allowed.

9. CONCLUSION

A WAF alone does not provide comprehensive protection against all

potential threats in a network. Therefore, it cannot be sufficient on its own

without additional security layers such as IDS/IPS, DDoS protection, RASP

(Runtime Application Self-Protection), Secure Software Development Life

Cycle (SSDLC), and code security scans. Considering these disadvantages, it is

more appropriate to position a WAF not as a "single solution" security

mechanism in front of an enterprise system, but as a component of a Defense in

Depth strategy.

In conclusion, WAF solutions have become an indispensable security layer

for modern web applications. The attacks that applications face today are

increasingly complex, and solely relying on network-level security mechanisms

is no longer adequate. For protecting applications developed on both enterprise

and individual scales, WAFs are now considered essential components of

network security and are actively utilized by many organizations, institutions,

and authorities. They are continuously updated to meet current demands and

enhanced with features supported by machine learning and artificial

intelligence.

67

REFERENCES

Clincy, V., & Shahriar, H. (2018). Web Application Firewall: Network Security

Models and Configuration. Proceedings - International Computer

Software and Applications Conference, 1, 835–836.

doi:10.1109/COMPSAC.2018.00144

Dhote, S., Magdum, A., Singh, S., & Raigar, D. (2024). ML based Web

Application Firewall for Signature and Anomaly Detection Using Feature

Extraction. 2024 15th International Conference on Computing

Communication and Networking Technologies, ICCCNT 2024, 1–6.

doi:10.1109/ICCCNT61001.2024.10725511

Maheshwari, M., Nayak, A., Sethy, A., & Sujatha, G. (2024). Adaptive Web

Application Firewall for Multi-Threat Detection. Proceedings of 5th

International Conference on IoT Based Control Networks and Intelligent

Systems, ICICNIS 2024, 232–238.

doi:10.1109/ICICNIS64247.2024.10823239

Muttaqin, R. Z., & Sudiana, D. (2025). Design of Realtime Web Application

Firewall on Deep Learning-Based to Improve Web Application Security.

Jurnal Penelitian Pendidikan IPA, 10(12), 11121–11129.

doi:10.29303/jppipa.v10i12.8346

Razzaq, A., Hur, A., Shahbaz, S., Masood, M., & Ahmad, H. F. (2013). Critical

analysis on web application firewall solutions. 2013 IEEE Eleventh

International Symposium on Autonomous Decentralized Systems

(ISADS), 1–6. doi:10.1109/isads.2013.6513431

Younas, F., Raza, A., Thalji, N., Abualigah, L., Zitar, R. A., & Jia, H. (2024).

An efficient artificial intelligence approach for early detection of cross-

site scripting attacks. Decision Analytics Journal, 11(January), 100466.

doi:10.1016/j.dajour.2024.100466

68

Chapter 4

Explainable AI Methods:

The Example of SHAP and LIME

Bahaddin ERDEM1

ABSTRACT

Recently, artificial intelligence (AI) tools have become increasingly

important in data analysis, and their applications are becoming increasingly

widespread. While high performance has been achieved in analyses conducted

using machine learning and deep learning models, their "black box" nature

raises concerns about transparency, accountability, fairness, and trust. The field

of Explainable AI (XAI) has emerged as a solution to the black box problem in

AI-based analysis. XAI produces more transparent and accountable results for

model decisions and predictions. This has fostered trust in AI-based data

analysis, encouraging user adoption of these tools. XAI offers many methods

for explaining and interpreting. This study examines only Shapley Additive

Explanations (SHAP) and Local Interpretable Model-Independent Explanations

(LIME), methods widely used in the literature, and supports them with

experimental applications. SHAP is an XAI method based on strong game

theory that attempts to increase interpretability by calculating the values of

every feature that could affect the target variable or independent variable. LIME

is one of the best-known methods for solving black-box problems. LIME

approximates complex models and transfers the calculated examples to another

locally interpretable model. This supports the probability of which class a

feature belongs to in classification models. In the last part of the study, online

exam data was visualized by using libraries in Python environment; both SHAP

and LIME analysis were performed with XGBoost algorithm in binary

classification analysis, and the positive and negative aspects of the features on

the model and the degree to which they affect were analyzed.

Keywords: AI, XAI, SHAP, LIME, Black box

1 Lecturer Dr.; Bitlis Eren University, Adilcevaz Vocational School, Department of Computer Programming,

bahaddin2363@gmail.com, ORCID: 0000-0003-3693-0966

69

1. INTRODUCTION

The adventure of AI, began in the 1950s, and it has gained momentum and

become widely used, especially in recent years, for three main reasons. Firstly,

the accessibility of vast amounts of data generated by e-commerce platforms,

social networks and businesses; secondly, the advancement of Machine

Learning (ML) algorithms enabling them to deliver more reliable results; and

thirdly, the availability of cloud technologies and high-performance computers

at more affordable costs have accelerated this process. Today, AI continues to

transform many areas, from individual life to social structure and commercial

areas (Mondal, 2020:389). AI is essentially a computer system that emulates

human cognition by processing data from various sources and systems, making

decisions and learning from the resulting patterns. AI is also defined as the

capacity of computers to recognize patterns in existing data and statistical

models and take appropriate action (Hassani et al., 2020:145). Many AI tools,

especially machine learning and deep learning-based models, have been

developed to examine large-scale data sets, reveal hidden patterns in these data,

and produce various solutions (Brozek, 2024:427, Hassija et. all., 2024:45). The

critical role of AI in today's technological advancements is clearly evident in its

widespread use. By analyzing large data sets and uncovering patterns, AI is

boosting creativity and productivity in numerous sectors, including finance,

healthcare, education, and entertainment. This demonstrates that AI plays a

crucial role in shaping the future through the collaboration between human

creativity and technological advancement. However, AI models also present

challenges, as they obscure decision-making and prediction processes, raising

concerns about transparency, trust, accountability, and explainability. Although

AI offers high accuracy and efficiency, it is often considered a “black box” and

is therefore subject to criticism, especially in complex structures such as deep

learning and large language models (LLM) (Hsieh, 2024:7).

XAI, as a field of research, is focused on developing methods and models

that will enable people to gain confidence and understanding of the workings of

AI systems and how these systems relate to logic (Hassija et. all., 2024:51-52).

The main goal of XAI is to develop models that can provide transparent, clear

and understandable explanations for decisions taken or predictions produced.

These models directly integrate interpretability into the learning process,

strengthening engagement in accountability, trust, and transparency, and

enabling people to validate AI outputs, better understand the results, and make

sound decisions (Contreras ve Bocklitz, 2024:604). A significant drawback of

most machine learning models is the lack of transparency in decision-making

and prediction processes (Adadi and Berrada, 2018:52138). This behavior of the

70

models is often described as a "black box." Even experienced professionals face

difficulties interpreting these complex models. When a model is difficult to

understand or ambiguous, it becomes difficult to gain acceptance and build user

trust. This leads people to distrust the model's decisions or predictions. XAI

aims to provide tools and methods to help users and researchers interpret and

understand the results of AI models.

XAI is a powerful tool that allows users to make sense of complex model

outputs and visualize their results. Visualizing outputs and results facilitates

developers' deep understanding of model decisions and increases

understandability and confidence in predictive accuracy. Thus, XAI supports

model adoption by providing effective outputs before, during, and after deep

learning and machine learning predictions (Cifci, 2025:36293). The responsible

use of AI is crucial for understanding how decision-making processes work and

for the public's ability to gain trust in AI. The growing interest in explainable AI

aims to foster trust by increasing the understandability and transparency of AI

decision-making (Kalasampath et al., 2025:41112). By explaining the complex

operating logic of AI algorithms, XAI provides insights into how predictions

and interpretations are generated, thereby increasing end-user confidence in

model decision processes and closing the understanding gap between models

(Contreras ve Bocklitz, 2024:604 ve Infant et. al., 2025:1).

2. CONCEPTUAL FRAMEWORK

2.1. Basic concepts of XAI

Explainability: Central to the concept of explainability is the extent to which

a machine learning model can be understood at its core. Explainability goes

beyond interpretability by explaining "why" the model's decisions were made.

Four fundamental principles stand out for XAI mechanisms:

1. Explanation: The system provides relevant evidence or justification for

outputs and/or processes.

2. Meaningfulness: XAI system provides explanations that the intended

users can understand.

3. Explanation accuracy: XAI system provides explanations that

accurately represent the process of producing the output.

4. Knowledge limits: XAI systems only work under the conditions for

which they were designed and when there is sufficient confidence in their

output (Philips, 2021:2).

Transparency: Transparency is a fundamental element of all scientific

research. Without transparency, the integrity and validity of research findings

cannot be independently tested and verified. This highlights the importance of

71

transparency for the reliable use of evidence in decision-making processes

(Sampson, et. al., 2019:1355).

Interpretability: By definition, it refers to the extent to which an individual

can understand the reasons behind a decision. This process often involves

translating complex model predictions into human-comprehensible insights. In

short, explainability is the effort to make an explanation more easily understood

(Erasmus, Brunet ve Fisher, 2020:849).

Justice: Justice refers to the ethical characteristics of an AI system that are

unbiased, sensitive to diversity, and non-discriminatory. Descriptions of AI

systems provide human-understandable interpretations of the system's internal

workings and the decisions it makes (Zhou, Chen, & Holzinger, 2020). Justice

in AI aims to develop methods to detect, reduce, and control biases in AI-

supported decision-making processes (Schwartz, et., al., 2022:i77).

White Box: White box models are known as interpretable models in machine

learning and offer transparency in decision-making processes. By providing

inherent explainability, they allow us to understand the impact of input features

on model output, thus providing valuable insights into underlying relationships

and patterns (Nasarian vd., 2024:3). The concepts of understandable models

and XAI are used to describe all machine learning models that produce results

that experts in the application domain can easily interpret (Loyola-Gonzalez,

2019:154101). These models offer a balance between explainability, accuracy

and confidence. The availability of larger data sets and the proliferation of

computer-aided decision-making have increased the demand for interpretable

models. The interpretability offered by white-box models allows all

mechanisms, from users to regulators and developers, to evaluate the logic of

the model, identify potential biases, and ensure fairness and accountability

(Mumuni ve Mumuni, 2025:1). "White box" models are characterized by the

easy-to-understand algorithms used, allowing a clear interpretation of how input

features are transformed into output or target variables (Wiewiórowski, 2021:3).

Examples of such models include linear regression, Bayesian Networks, Fuzzy

Cognitive Maps, logistic regression, decision trees and rule-based systems.

72

Figure 1. Interaction of different areas that make up the XAI and

White-Box model (Loyola-Gonzalez, 2019:154102)

Figure 1 shows an explainable model resulting from interactions between

machine learning, human-computer interfaces, explanations by human experts,

visual analytics, iterative machine learning, and interactions between machine

learning experts and human experts in the application domain.

Black Box: Black box methods operate on the assumption that there is no

knowledge of the internal workings of the model. Therefore, for each input,

only the final outputs produced by the model can be observed. In this approach,

to explain a black box model, it is necessary to develop ways to query the

outputs in a way that reveals the model's underlying behavior. However, these

methods are generally slower than white-box approaches because knowledge is

only gained by submitting additional queries to the model. In recent years,

explainability methods have become increasingly important for providing

insights into black-box machine learning methods such as deep neural networks.

However, interpretability alone is insufficient to address all the problems of

black-box models. Deep or shallow neural networks are among the most

common examples of black-box models in machine learning (Holzinger et. all.,

2020:260).

Gray Box: Gray-box models aim to strike a balance between both

explainability and accuracy. Consequently, any data-driven learning algorithm,

including white- and black-box models, can be considered a gray-box model

(Ghasemi et. All., 2024:5). Gray box methods combine the interpretability

advantages of White box methods with the high performance of black box

methods. Research in this area focuses on improving AI methods to achieve

73

explanation goals without significantly compromising performance. The biggest

advantage of gray-box approaches is their ability to combine understandability

with high performance, especially in sensitive areas like medicine. However,

only a limited number of application examples currently exist, and

explainability in these methods is limited to certain elements. As with all

methods of explanation, it is important to decide whether to provide an

explanation specific to individual cases or a general one, and different

explanation strategies should be applied accordingly. Therefore, additional

research and development is needed to ensure that grey-box methods can be

used effectively and specifically across a very large application domain. Only

then will the full benefits of these methods be realized (Gallee et. All.,

2023:800). An annotated comparison of the gray box, black box and white box

models in the literature is given in Figure 2.

Figure 2. Comparison of gray box, black box and white box

models (Ali et. All., 2023:3)

As shown in Figure 2, the concepts of gray box, black box and white box

represent different levels of internal components of models. White box models,

by design, offer higher interpretability; therefore, their output is easier to

74

understand, but their accuracy is generally lower. Gray box models provide a

balance between interpretability and accuracy. Black box models, on the other

hand, offer high accuracy but are limited in interpretability. The following list

summarizes the advantages of providing a solution to black box systems (Ali et.

All., 2023:3):

• To protect individuals from the negative effects of automated decision-

making processes due to automatic decisions.

• To enable individuals to make more effective and conscious choices.

• To detect and prevent vulnerabilities resulting from security problems.

• Developing algorithms that are compatible with human values.

• To increase business and user trust by establishing user standards in the

development of artificial intelligence-based products.

• To implement Right to Explanation policies.

2.1. The Black Box Problem in AI

Although inputs and outputs are known in AI models, it is often difficult to

determine exactly how inputs are transformed into outputs (Pavlidis, 2024). The

automation of routine decisions, coupled with the complex information

architectures that enable this automation, raises concerns about system

reliability. These concerns are particularly pronounced in the deep learning

(DL)-based AI class, which utilizes algorithmic systems comprised of deep

neural networks and are difficult for humans to understand. These types of

problems are often called “black box problems” in AI (Bearman ve Ajjawi,

2023:1163). Observers can trace the inputs and outputs of these complex,

nonlinear processes, but they cannot directly see the internal workings of the

system. The mechanisms by which AI reaches its conclusions are often obscure

or invisible. Without understanding this mechanism, the question of how

trustworthy these systems can be remains unanswered. The increasing

delegation of decision-making authority to AI to protect critical human values

such as security, health, and safety makes the issue of trust even more crucial.

In response to this problem, models that “open the black box” that make non-

linear and complex decision processes understandable to human observers are

being developed and technical solutions are being sought. This class of models,

called XAI, offers promising solutions to the black box problem, but in their

current form they make these processes only partially understandable to many

observers. (Von Eschenbach, 2021:1608).

75

2.2. XAI methods

LIME: Locally interpretable model-independent explanations (LIME) are

one of the most used interpretability techniques for black-box models and

black-box problems. Following a powerful yet simple approach, LIME can

produce meaningful interpretations and results even when the classifier makes

any prediction. The target model is then run on this new data to generate

predictions, which are weighted according to their closeness to the input

sample. In the final stage, a simple and interpretable model such as a decision

tree is trained on the dataset to ensure interpretability of the results. (Linardatos,

Papastefanopoulos ve Kotsiantis, 2020:11). While machine learning models are

considered black-box functions, model independent explanation methods only

provide access to the model's output. These methods, which are extremely

flexible and applicable to various applications, do not require any knowledge

about the internal structure of the model. (Holzinger et. all., 2020:15). LIME

has many successful applications in various fields, demonstrating its popularity

as a model-independent method. However, its explanations are limited because

they are implicitly based on surrogate models; the quality of the explanation

depends on the accuracy of the surrogate fit. Surrogate fits typically require

extensive sampling, increasing computational cost, and the sampling process

can introduce uncertainties, leading to different explanations for the same input

(Holzinger et. all., 2020:16). LIME is another XAI method that aims to explain

the local operating logic of a model on a given instance. In this direction, it

approximates any complex model and transforms it into a locally interpretable

model for a given instance (Ribeiro, Singh, Guestrin. 2017 as cited in Salih et.

All., 2025:2). LIME is a model-independent local annotation method that

reveals the impact of each feature on the outcome of a single instance. In

classification models, it displays the probability that an instance belongs to a

particular class and presents the contribution of each feature to that class in

visualized graphs. However, because LIME transforms any complex model into

a linear local model, it reports coefficients representing the weights of the

features in the model. This can lead to the loss of important information and

incomplete explanation in models containing nonlinearity, because the

nonlinear relationships cannot be reflected in the surrogate model. Additionally,

LIME is a model-dependent method; that is, the explanations produced by

LIME may vary when different models are used on the same task and dataset

(Ribeiro, Singh, Guestrin. 2017, as cited in Salih et. All., 2025:2).

SHAP: Shapley Additive Explanations (SHAP) is a powerful explanation

method inspired by game theory that aims to increase interpretability by

calculating the importance values of each feature in separate predictions

76

(Holzinger et al., 2020:16). This approach can be applied to any machine

learning model, regardless of the model. In SHAP, the "actors" in machine

learning models are considered features, and the "payoff" is considered the

model output. The method calculates an importance score representing the

contribution of each feature to the model output. This score is determined by

evaluating all possible combinations of features; that is, all scenarios where

both all features and subsets of features are used in the model are considered.

Because computational complexity increases with the number of features, the

Kernel SHAP approach was developed as a solution. SHAP offers a powerful

method for explaining any model by treating each feature as a player and the

model result as a payoff. SHAP provides global and local annotations, meaning

it is capable of explaining the role of features for all instances and for a specific

instance (Lundberg ve Lee., 2017 as cited in Salih et. All., 2025:2, Band et. All.,

2023:4). One of the most significant drawbacks of Shapley values is their high

computational complexity. Especially for deep neural networks and modern

models with high-dimensional inputs, Shapley values are quite difficult to

calculate precisely (Band et al., 2023:4; Holzinger et al., 2020:16; Salih et al.,

2025:3). There are several critical points users should be aware of when

applying the SHAP method. First, SHAP is a model-dependent method; that is,

the explanation results obtained depend on the machine learning model used.

This can lead to variability in explainability scores when different models are

used on the same data and task. In this context, when different machine learning

models are applied to the same task on the same dataset, the most important

features identified by SHAP may differ between models. There are several

important considerations for end users using SHAP. First, SHAP is a model-

dependent method, meaning its explanation results depend on the machine

learning model used in the classification or regression task. This may cause

explainability scores to vary when different models are applied to the same data

and task (Salih et. all., 2025:3).

While SHAP evaluates different feature combinations to calculate feature

attributions, LIME is based on a local surrogate model. Furthermore, SHAP is

capable of providing both global and local level explanations, while LIME is

limited to local explanations only. While SHAP can detect nonlinear

relationships depending on the model used, LIME may be limited in capturing

such complex relationships because it creates a locally linear model. In terms of

visualization, SHAP produces a variety of graphs that present both local and

global annotations, while LIME provides a separate visualization for each

instance. Finally, LIME is significantly faster than SHAP, especially for tree-

based models (Lundberg ve Lee., 2017, as cited in Salih et. all., 2025:2).

77

3. EXPERIMENTAL STUDIES

The dataset used in this study is online exam data created by Erdem and

Karabatak (2025:9). The dataset consists of multiple-choice questions and

student responses within a course. It also contains data from 40 attributes and

162 students.

As part of the sample application, a cheating detection study was conducted

using data from an online exam. In this study, a binary classification analysis

was performed using the XGBoost algorithm in Python to distinguish between

"cheated" and "not cheated" classes. The success rates achieved are quite high,

with remarkable accuracy (0.969), precision (0.958), and F1 score (0.929).

However, despite this high success, detailed information about the features that

affect the model's decision-making process is not directly accessible.

Explanatory AI methods provide interpretable results by revealing the positive

and negative effects of independent variables on the model. In this context,

SHAP and LIME analyses were applied in the study, aiming to gain a deeper

understanding of the model outputs.

Graph 1. XGBoost descriptive SHAP summary analysis result

SHAP analysis values for the XGBoost model are given in Graph 1.

• Horizontal axis (SHAP value): Shows the effect of features on model

prediction.

78

• Positive values: Contribute to shifting the prediction toward the

"cheated" class.

• Negative values: Contribute to shifting the prediction toward the "did

not cheat."

• Colors: Indicate the magnitude of feature values (blue = low value, red

= high value).

The direction and extent to which the features in the data set affect the

“cheated” and “did not cheat” classes are given below:

✓ exam_type

• It is one of the most important variables.

• Most of the red dots are on the positive side; some exam types seem to

direct students to the "cheated" classification.

• The concentration of blue dots on the negative side indicates that other

exam types are more likely to support the "did not cheat" classification.

✓ supervision

• It is a second-order variable.

• When the level of supervision is low (blue), the SHAP value is positive;

that is, if supervision is low, the probability of the student being assigned to the

"cheated" class increases.

• When the level of supervision is high (red), the SHAP value is negative;

that is, if supervision is tight, the probability of the student being assigned to the

"did not cheat" class increases.

✓ Variables such as A6, A13, A14, A11

• It is of moderate significance to the model.

• It has both positive and negative effects, indicating that different values

of the features can increase or decrease the likelihood of cheating.

• In particular, in variables A6 and A13, the red dots are on the positive

side; higher values support the "cheated" classification.

✓ Variables such as A2, A15, A7, A8

• They have a similar effect, but slightly lower in importance.

• They contribute differently to both the cheated and non-cheated classes.

✓ departmen

• It is a variable with a lower impact level.

• The fact that red dots are generally on the positive side of the SHAPE

suggests that in some sections, students are more likely to be classified as

"cheating."

• Blue values, on the other hand, support the "not cheating" classification.

79

As a result, the strongest predictors in the model are "exam_type" and

"supervision." Under certain exam types and low supervision conditions, a

strong contribution is made to the "cheated" class. However, when considering

high supervision and exam types, a strong contribution is made to the "did not

cheat" class.

Figure 3 shows the LIME analysis values for the XGBoost model.

Figure 3. LIME analysis result for XGBoost model

According to Figure 3;

✓ Prediction probabilities (box on the left):

• For this example, the model chose the "Low" class (did not cheat) with

100% probability.

• For the "High" class (did cheat), the probability is 0.00, meaning the

model's decision is very clear.

✓ Middle part (contribution of features to the decision):

• Blue bars support the "did not cheat" classification.

• Orange bars support the "cheated" classification.

• The length of the bars indicates the contributing power of the feature on

the decision.

✓ Table on the right (Feature – Value):

• It shows the values that the relevant student/sample received for these

variables.

The direction and extent to which the features in the data set affect the

“cheated” and “did not cheat” classes are given below:

✓ exam_type (0.92)

• It is the variable with the strongest effect.

80

• On the blue side, this exam type provides strong support for the student

being in the "did not cheat" class.

✓ supervision (1.07)

• On the orange side, the probation conditions move this student slightly

toward the "cheated" class. But the effect is not as strong as "exam_type," so the

decision remains unchanged.

✓ Variables such as A14 (0.81), A3 (1.09), A11 (0.66), A12 (1.12), A6

(0.71)

• All are on the blue side; these variables contribute to the student being

in the "did not cheat" class.

• A3 and A12 are particularly strongly on the blue side.

✓ Variables such as A13 (0.96), A15 (0.89), A2 (0.93)

• On the orange side, although the current values of these variables direct

the student to the “cheated” class, their contribution is relatively weaker.

4. RESULTS AND DISCUSSION

The emergence of AI tools has achieved great success in predicting system

stability in important areas such as healthcare, finance, and education. This

study examines XAI methods as solutions to the black-box problems of deep

learning and machine learning models. XAI contributes to the field by

comparing studies in the literature within the framework of transparency, trust,

fairness, interpretability, and understandability criteria. SHAP and LIME

techniques, which are widely used in the literature, are compared with all their

features and the differences between them are stated. In addition, it has been

observed that the features that can be effective in the model's decision, with the

example applications, offer solutions to understandability by showing in what

direction and to what extent they affect the model.

81

REFERENCES

Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: a survey on

explainable AI (XAI). IEEE access, 6, 52138-52160.

Ali, S., Abuhmed, T., El-Sappagh, S., Muhammad, K., Alonso-Moral, J. M.,

Confalonieri, R., ... & Herrera, F. (2023). Explainable AI (XAI): What

we know and what is left to attain Trustworthy AI. Information

fusion, 99, 101805

Band, S. S., Yarahmadi, A., Hsu, C. C., Biyari, M., Sookhak, M., Ameri, R., ...

& Liang, H. W. (2023). Application of explainable AI in medical health:

A systematic review of interpretability methods. Informatics in Medicine

Unlocked, 40, 101286.

Bearman, M., ve Ajjawi, R. (2023). Learning to work with the black box:

Pedagogy for a world with AI. British Journal of Educational

Technology, 54(5), 1160-1173.

Brożek, B., Furman, M., Jakubiec, M., ve Kucharzyk, B. (2024). The black box

problem revisited. Real and imaginary challenges for automated legal

decision making. AI and Law, 32(2), 427-440.

Contreras, J., ve Bocklitz, T. (2025). Explainable AI for spectroscopy data: a

review. Pflügers Archiv-European Journal of Physiology, 477(4), 603-

615.

Erdem, B., & Karabatak, M. (2025). Cheating detection in online exams using

deep learning and machine learning. Applied Sciences, 15(1), 400.

Gallee, L., Kniesel, H., Ropinski, T., & Goetz, M. (2023, September). AI in

radiology–beyond the black box. In RöFo-Fortschritte auf dem Gebiet

der Röntgenstrahlen und der bildgebenden Verfahren (Vol. 195, No. 09,

pp. 797-803). Georg Thieme Verlag KG.

Ghasemi, A., Hashtarkhani, S., Schwartz, D. L., & Shaban‐Nejad, A. (2024).

Explainable AI in breast cancer detection and risk prediction: A

systematic scoping review. Cancer Innovation, 3(5), e136.

Hassani, H., Silva, E. S., Unger, S., TajMazinani, M., ve Mac Feely, S. (2020).

AI (AI) or intelligence augmentation (IA): what is the future?. Ai, 1(2), 8.

Hassija, V., Chamola, V., Mahapatra, A., Singal, A., Goel, D., Huang, K., ... ve

Hussain, A. (2024). Interpreting black-box models: a review on

explainable AI. Cognitive Computation, 16(1), 45-74.

Holzinger, A., Goebel, R., Fong, R., Moon, T., Müller, K. R., & Samek, W.

(2020, July). xxAI-beyond explainable AI. In International Workshop on

Extending Explainable AI Beyond Deep Models and Classifiers (pp. 3-

10). Cham: Springer International Publishing.

82

Hsieh, W., Bi, Z., Jiang, C., Liu, J., Peng, B., Zhang, S., ... ve Liang, C. X.

(2024). A comprehensive guide to explainable ai: From classical models

to llms. arXiv preprint arXiv:2412.00800.

Infant, S. S., Vickram, S., Saravanan, A., Muthu, C. M., ve Yuarajan, D. (2025).

Explainable AI for sustainable urban water systems engineering. Results

in Engineering, 25, 104349

Kalasampath, K., Spoorthi, K. N., Sajeev, S., Kuppa, S. S., Ajay, K., ve

Angulakshmi, M. (2025). A Literature review on applications of

explainable AI (XAI). IEEE Access.

Linardatos, P., Papastefanopoulos, V., & Kotsiantis, S. (2020). Explainable ai:

A review of machine learning interpretability methods. Entropy, 23(1),

18.

Loyola-Gonzalez, O. (2019). Black-box vs. white-box: Understanding their

advantages and weaknesses from a practical point of view. IEEE

access, 7, 154096-154113.

Mondal, B. (2020). AI: State of the Art. In: Balas, V., Kumar, R., Srivastava, R.

(eds) Recent Trends and Advances in AI and Internet of Things.

Intelligent Systems Reference Library, vol 172. 389-425. Springer,

Cham. https://doi.org/10.1007/978-3-030-32644-9_32.

Mumuni, F., & Mumuni, A. (2025). Explainable AI (XAI): from inherent

explainability to large language models. arXiv preprint

arXiv:2501.09967.

Nasarian, E., Alizadehsani, R., Acharya, U. R., & Tsui, K. L. (2024). Designing

interpretable ML system to enhance trust in healthcare: A systematic

review to proposed responsible clinician-AI-collaboration

framework. Information Fusion, 108, 102412.

Phillips, P. J., Phillips, P. J., Hahn, C. A., Fontana, P. C., Yates, A. N., Greene,

K., ... ve Przybocki, M. A. (2021). Four principles of explainable AI.

Salih, A. M., Raisi‐Estabragh, Z., Galazzo, I. B., Radeva, P., Petersen, S. E.,

Lekadir, K., & Menegaz, G. (2025). A perspective on explainable AI

methods: SHAP and LIME. Advanced Intelligent Systems, 7(1), 2400304.

Sampson, C. J., Arnold, R., Bryan, S., Clarke, P., Ekins, S., Hatswell, A., ... &

Wrightson, T. (2019). Transparency in decision modelling: what, why,

who and how?. Pharmacoeconomics, 37(11), 1355-1369.

Schwartz, R., Schwartz, R., Vassilev, A., Greene, K., Perine, L., Burt, A., ve

Hall, P. (2022). Towards a standard for identifying and managing bias in

AI (Vol. 3, p. 00). Gaithersburg, MD: US Department of Commerce,

National Institute of Standards and Technology.

83

https://doi.org/10.1007/978-3-030-32644-9_32

Von Eschenbach, W. J. (2021). Transparency and the black box problem: Why

we do not trust AI. Philosophy & technology, 34(4), 1607-1622.

Wiewiórowski, W. European Data Protection Supervisor. URL: https://edps.

europa. eu/about-edps/members-mission/supervisors/wojciechwiewi%

C3% B3rowski_en (last accessed: 18.09. 2025).

84

Chapter 5

Applied TinyML for Embedded Intelligence:

A Real-Time HAR Implementation on

Arduino Nano 33 BLE Sense

İrfan ÖKTEN1

ABSTRACT

This book chapter presents an in-depth examination of Tiny Machine Learning

(TinyML) and its transformative role in enabling embedded intelligence on

resource-constrained microcontroller-based systems. TinyML brings artificial

intelligence from cloud-centered infrastructures to ultra-low-power edge devices,

offering real-time inference, enhanced privacy, reduced bandwidth requirements,

and significant energy savings. The chapter begins by outlining the conceptual

foundations of TinyML, including the characteristics of embedded systems, the

principles of edge AI, and the unique workflow required to deploy machine

learning models on devices with kilobytes of RAM and milliwatt-level power

budgets. Essential model optimization strategies—such as quantization, pruning,

and knowledge distillation—are analyzed to highlight their importance for

achieving feasible and efficient inference on restricted hardware. The chapter

further explores the software ecosystem supporting TinyML, with detailed

discussion of frameworks such as TensorFlow Lite Micro, Edge Impulse, and

MicroTVM, emphasizing their roles in data acquisition, model development, and

on-device deployment. The experimental component features a real-time Human

Activity Recognition (HAR) implementation on the Arduino Nano 33 BLE

Sense, employing a lightweight 1D CNN model trained on accelerometer data.

Through INT8 post-training quantization, the model achieves a 75% reduction in

memory size, a 2.4× improvement in inference speed, and a 59% reduction in

energy consumption, while maintaining accuracy with only minimal degradation.

These results validate the practical viability of TinyML for real-world embedded

applications where efficiency and responsiveness are paramount. Finally, the

chapter identifies and discusses major research challenges—including hardware

heterogeneity, compiler limitations, security vulnerabilities, resource-aware

1 Assist. Prof. ; Bitlis Eren University Faculty of Engineering and Architecture, Department of Computer

Engineering, iokten@beu.edu.tr, ORCID: 0000-0001-9898-7859

85

optimization, and the need for on-device and continual learning. Emerging trends

such as neuromorphic computing, processing-in-memory (PIM), energy-

harvesting autonomous AI systems, and integration within 6G-enabled IoT

infrastructures are explored as key opportunities shaping the future direction of

the field. Overall, the chapter provides a comprehensive framework for

understanding both the current landscape and future evolution of TinyML-driven

embedded intelligence.

Keywords: TinyML, Embedded intelligence, Model compression, Real-Time

human activity recognition

86

1. INTRODUCTION

In recent years, the trajectory of artificial intelligence (AI) has increasingly

shifted from centralized, cloud-based infrastructures toward decentralized, on-

device intelligence. Traditional machine learning (ML) applications have

primarily relied on large-scale computing resources, heavy memory and storage

capacities, and consistent connectivity to remote servers. However, today's

technological landscape demands more ubiquitous, energy-efficient, and

latency-sensitive AI solutions. In response, the field of TinyML (Tiny Machine

Learning) has emerged as a compelling paradigm: it focuses on executing ML

models directly on severely resource-constrained microcontrollers (MCUs) and

embedded systems. As articulated by Soro and Banbury, TinyML offers ultra-

low power consumption, real-time processing at the data source, and reduced

dependency on cloud connectivity (Soro, 2021; Banbury et al., 2020).

Embedded within this paradigm shift is the broader concept of “embedded

intelligence” — systems that not only collect data passively, but also make

autonomous decisions locally. As Yelchuri and R. note, TinyML is redefining

this notion: devices evolve from simple sensors or data-loggers into active

intelligent agents, capable of perception, inference and adaptation at the edge

(Yelchuri & R., 2022). This transition brings about several strategic advantages:

lower network latency (since less data must be transmitted), enhanced data

privacy (since raw data remains on the device), and favorable environmental

implications (thanks to lower energy consumption and less reliance on data-

centres).

The significance of TinyML becomes particularly salient in domains such as

the Industrial Internet of Things (IIoT), wearable health-monitoring, smart city

deployments and pervasive sensing networks. In such contexts, devices operate

under strict constraints in power budget, memory size, computational

throughput and communication bandwidth. The TinyML paradigm addresses

these constraints head-on by leveraging model compression, hardware-aware

optimisations and co-design of algorithms with embedded platforms. Recent

surveys highlight the maturity of the tool-chains and frameworks supporting

TinyML (Kreß et al. 2024; Loh & Guo 2025; Wilson & Singh 2025).

Despite its rapid growth and considerable promise, TinyML remains a field

rife with research challenges and unresolved questions. On the one hand, the

requirement to deploy ML inference (and eventually training) on devices with a

few kilobytes of RAM, minimal flash storage and limited power means that

novel optimisation methods (quantisation, pruning, efficient model

architectures, neural-architecture search) must be developed and tailored to the

embedded domain. On the other hand, system-level issues such as heterogeneity

87

of hardware platforms, tool-chain fragmentation, lifecycle management,

security and privacy at the edge continue to hinder wide adoption. Recent work

emphasises the need for holistic co-design approaches, benchmarking

frameworks and lifecycle automation to drive TinyML beyond prototyping

(Maldonado et al. 2025; Reddi et al. 2022).

In this book chapter, we present a rigorous and comprehensive examination

of TinyML within the context of embedded intelligence. We begin by outlining

the fundamental concepts, typical system architecture and model-optimization

techniques that make TinyML feasible on resource-limited devices. We then

survey the ecosystem of supporting tools and frameworks, and map out the

major application domains in which TinyML has already demonstrated impact.

Following that, we delve into the key challenges—both technical and

systemic—that currently impede broader deployment, and highlight ongoing

research directions and future opportunities that can propel TinyML to its full

potential. Our aim is to equip readers with both the theoretical foundation and

practical insight needed to appreciate, design and evaluate TinyML systems

within embedded contexts.

They introduce deep neural network models that classify movements such as

walking, running, and squatting using IMU data collected with the Arduino

Nano 33 BLE Sense. The authors compare architectures such as MLP, CNN-

LSTM, and CNN-GRU, reporting the best accuracy. They then demonstrate the

practicality of on-device inference, memory, and power savings by compressing

the models and running them on the same board (Kumari et al. 2024).

Lipski investigates hand gesture recognition using photodiode data on the

Arduino Nano 33 BLE (directly related to the Nano 33 BLE Sense); different

RNN-based and CNN-LSTM architectures are tested; and real-time

classification challenges on an embedded device are discussed. This paper

details practical experiences and limitations, particularly regarding MCU

constraints (TensorFlow Lite for Microcontrollers support, model sizes, and

latency estimation) (Lipski, 2022).

They focus on designing lightweight yet efficient models like DeepConv-

LSTM and deploying them to edge devices using TinyML toolchains; the

authors report that the best model delivers both high accuracy and low latency.

The paper details the deployment of the best model via Edge Impulse on an

Arduino Nano 33 BLE Sense Rev2, with positive post-quantization

size/power/latency measurements (Zhou et al. 2025).

88

2. FUNDAMENTALS OF TINYML AND EMBEDDED

INTELLIGENCE

In this section, the concepts and architectural details underlying TinyML will

be discussed from an academic perspective.

2.1. Overview of Embedded Systems and Edge AI

Embedded systems are computing units designed around microprocessors or

microcontrollers (MCUs), typically task-oriented, with real-time constraints. In

the context of TinyML, these systems are typically considered extreme edge

devices. Unlike traditional cloud-based artificial intelligence (AI) models, the

MCUs targeted by TinyML typically have constraints ranging from 256 KB to 1

MB of Flash memory, 8 KB to 512 KB of SRAM, and power consumption on

the mW level (Banbury et al., 2020). These constraints mandate hardware-

software co-design in system design. Edge AI emerged in response to the

latency, bandwidth costs, and data privacy concerns brought about by cloud

computing. Edge AI: While inference requires high processing power on server-

level or more powerful embedded systems (Single Board Computers (SBCs),

TinyML focuses on the most energy- and memory-constrained devices at the

lower end of the spectrum. This distinction forms the core philosophy of

TinyML: maximum inference efficiency with minimum energy consumption.

Embedded intelligence describes the evolution of these devices from passive

data collectors to local and autonomous decision makers. This transformation is

especially critical in applications such as real-time anomaly detection,

continuous monitoring, and local speech recognition (Yelchuri & R., 2022).

2.2. TinyML Architecture and Workflow

The TinyML workflow, unlike the traditional ML pipeline, includes an

additional optimization phase focused on deployment in a resource-constrained

environment. This pipeline represents the intersection of scientific and

engineering disciplines.

Model Training and Optimization:

Model training is typically performed on cloud servers or powerful

workstations. However, compactness is a priority in the model architecture

selection for TinyML. For example, instead of standard convolutional networks

(CNNs), architectures like MobileNet or EfficientNet, which use depthwise

separable convolutions (DEP), which significantly reduce the number of

parameters and operations, are preferred (Lin et al., 2023).

89

The optimization phase is the heart of TinyML:

• Quantization: This reduces model size by a factor of four and increases

inference speed by downsizing floating-point (FP32) weights and activations to

a low bit depth (typically INT8). However, maintaining model accuracy after

quantization requires techniques such as Quantization-Aware Training (QAT).

QAT simulates quantization effects during training, making the model more

resilient.

• Pruning: Pruning addresses over-parameterization in ML models.

Structured Pruning cleans up the network architecture by removing entire filters

or neurons, while Unstructured Pruning resets individual weights. For

embedded devices, structured pruning is more advantageous because it saves

inference time.

Deployment:

The optimized model is converted to a target hardware-specific

programming language (typically C/C++) and embedded into the target MCU

along with embedded inference engines. TensorFlow Lite Micro (TFLM) is a

critical inference engine that optimizes core functions and memory allocation

strategies for the MCU's limited architecture. Additionally, the use of hardware-

specific libraries such as CMSIS-NN, a library optimized for ARM Cortex-M

series processors, maximizes inference speed and energy efficiency (Tosun &

Erdem 2024).

Figure 1. General workflow of TinyML development

90

Figure 1 illustrates the overall workflow of the TinyML development

process, encompassing the stages from data collection to deployment on

embedded microcontrollers. The process begins with the acquisition and

preprocessing of sensor data, which serves as the foundation for model training

performed on high-performance computing systems. Once a baseline model is

obtained, optimization techniques such as quantization and pruning are applied

to reduce memory footprint and computational complexity, enabling efficient

execution on resource-constrained hardware. The optimized model is then

converted and deployed onto embedded devices, where real-time inference

takes place locally. This pipeline exemplifies the integration of machine

learning with embedded intelligence, ensuring low latency, enhanced privacy,

and energy-efficient autonomous operation at the network edge.

2.3. Core Techniques for Model Compression

TinyML's fundamental viability hinges on its ability to radically reduce the

memory and computational cost of machine learning models with acceptable

accuracy loss. This section details the scientific background of the underlying

compression techniques.

2.3.1. Quantization

Quantization is the process of reducing the precision of model parameters

and calculations. Scientifically, this is the mapping of a floating-point number

(32 bits) to an integer representation (8 bits or less).

𝑄 = 𝑟𝑜𝑢𝑛𝑑(
𝑅

𝑆
+ 𝑍) (1)

Here, R is the original floating-point value, S is the scale factor, Z is the zero

point, and Q is the quantized integer value. Quantization not only reduces

memory usage (the size is reduced by a factor of 4), but also increases inference

speed because integer arithmetic requires fewer cycles and energy than floating-

point operations.

Quantization Types:

• Post-Training Quantization (PTQ): This is applied after model training

is complete. It is fast but carries a high risk of accuracy loss. This risk is

mitigated by using a calibration dataset.

• Quantization-Aware Training (QAT): Quantization simulation is

included in the training cycle. This typically provides the highest performance

by allowing the model to learn more robustly against quantization-induced

information loss, but training time is longer.

91

2.3.2. Pruning

Pruning reduces the number of parameters and FLOPs (Floating Point

Operations) by increasing the sparsity of the model.

Structured Pruning vs. Unstructured Pruning:

• Unstructured Pruning: Sets the least important individual weights in the

network to zero. This offers the highest compression ratio, but requires

specialized hardware or compressed formats (sparse matrix format) and does

not provide speedups on standard MCUs.

• Structured Pruning: Removes all neurons, filters, or layers. This

changes the model's architecture but provides significant speedups on

CPUs/MCUs during inference because the matrix multiplication dimensions in

the network are directly reduced.

Pruning is typically implemented using Iterative Pruning methods: the model

is pruned, the remaining weights are retrained (fine-tuned), and this cycle is

repeated until the target sparsity ratio is reached.

2.3.3. Knowledge Distillation

This technique involves training the Student model by using the probability

distributions (soft labels or "soft targets") generated by a large model (Teacher)

as an additional loss function for a small model (Student). The Student learns

not only the hard labels but also the relationships between the class probabilities

of the Teacher model (Wang & Yoon 2022).

𝐿𝐷𝑖𝑠𝑡𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 = 𝛼𝐿𝑆𝑜𝑓𝑡 + (1 − 𝛼)𝐿𝐻𝑎𝑟𝑑 (2)

Here, LSoft is a Loss function that allows the Student model to mimic the

smooth outputs of the Teacher model. LHard is the standard cross-entropy loss.

The constant α determines the relative importance of these two losses. This

allows the small Student model to operate with minimal computational

overhead while absorbing a large portion of the Teacher model's information

power.

3. TOOLS, FRAMEWORKS, AND TYPICAL APPLICATIONS

3.1. Major Frameworks for TinyML

The TinyML development environment focuses on finding the balance

between ease of use, rapid prototyping, and hardware support.

• TensorFlow Lite Micro (TFLM): Developed by Google, TFLM can run

with around 16 KB of Flash and a few KB of RAM. Written in C++, TFLM

supports efficient integer computations primarily through low-level C kernels.

TFLM's architecture uses a dedicated memory manager that ensures kernels are

92

loaded onto the device only when needed. This minimalist approach makes

TFLM indispensable for MCUs.

• Edge Impulse: As a highly integrated platform, Edge Impulse offers

developers an end-to-end solution for data acquisition, model training,

optimization, and deployment. In particular, supporting various sensor types

(accelerometer, microphone, camera) and facilitating data flow through tools

like Data Forwarder significantly accelerates the prototyping process.

• Apache TVM and MicroTVM: TVM, an open-source machine learning

compiler framework, stands out for its ability to generate optimized code for

various hardware. By extending this capability to MCUs, MicroTVM allows

developers to deeply optimize model inference code for specialized hardware

architectures. This is a critical research topic for maximizing the synergy

between hardware architecture and software optimization.

3.2. Typical Application Areas

TinyML applications are characterized by the need to reduce the cycle time

and energy costs between sensing and inference.

• Industrial Predictive Maintenance: Local analysis of data from vibration

and acoustic sensors enables early detection of machine malfunctions. By

running anomaly detection models on the device, TinyML sends alerts over the

network only when anomalies are detected. This can reduce bandwidth and

energy consumption by up to 1000 times.

• Healthcare and Wearable Devices: Continuous vital sign monitoring

(heart rate, oxygen saturation) or activity recognition (fall detection) models

provide instant alerts while preserving privacy (Kahya & Aslan, 2024). TinyML

allows these devices to operate in an always-on but ultra-low-power mode.

• Zero-Power AI: Research is accelerating to run TinyML models on

battery-free devices powered by energy harvesting (solar, vibration, RF). This is

particularly revolutionary for remote and isolated environmental monitoring

applications.

3.3. Impact on Embedded Intelligence

TinyML has permanently changed the architecture and philosophy of

embedded systems. The fundamental paradigm of embedded intelligence now

revolves not only around efficiency but also cognitive autonomy.

• Breaking Data Silos: TinyML eliminates the need to collect data in a

centralized storage unit. This supports the transition to local data processing and

93

distributed intelligence architectures. This approach not only enhances privacy

but also increases system resilience against global network failures.

• Environmental Sustainability: While the energy footprint of cloud

computing centers is constantly increasing, TinyML's ultra-low power

consumption helps the Internet of Things (IoT) achieve its green computing

goals. Delivering AI capabilities at the milliwatt level is a key factor for an

energy-sustainable digital future (Abadade et al., 2023).

4. EXPERIMENTAL IMPLEMENTATION AND RESULTS

To further substantiate the applicability of TinyML methodologies in real-

world embedded intelligence tasks, an extended experimental implementation

was conducted focusing on real-time Human Activity Recognition (HAR). The

primary aim was to investigate how model compression strategies—particularly

post-training quantization—affect on-device latency, memory utilization, and

energy efficiency under stringent hardware constraints.

4.1. Experimental Setup

The experimental platform consisted of the Arduino Nano 33 BLE Sense, a

representative low-power microcontroller board frequently used in TinyML

research. The device features a 64-MHz ARM Cortex-M4F processor with 256

KB SRAM and 1 MB Flash, making it suitable for evaluating memory-sensitive

inference tasks. The board’s built-in 3-axis accelerometer (sampling at 50 Hz)

served as the sole sensor input.

A custom HAR dataset was collected with three activity classes—walking,

running, and standing—each recorded for 10 minutes. The raw accelerometer

readings were pre-processed using a 100-sample sliding window with 50%

overlap, producing fixed-size feature segments suitable for lightweight time-

series modeling.

Model development was carried out in TensorFlow using a compact 1-D

CNN architecture composed of:

• Conv1D layer: 16 filters, kernel size = 3

• Conv1D layer: 32 filters, kernel size = 3

• Dense layer: 32 units

• Softmax output: 3 classes

Training achieved 94.7% accuracy on the validation set. To enable

microcontroller deployment, the model underwent INT8 post-training

quantization with TensorFlow Lite, resulting in a significant memory footprint

reduction. Deployment was performed via TensorFlow Lite Micro (TFLM)

using the Arduino IDE.

94

For power profiling, a Nordic Power Profiler Kit (PPK2) was connected

inline with the Arduino board to capture instantaneous current draw during

inference, enabling precise computation of energy per inference.

4.2. Performance Evaluation

Table 1. Performance evaluation of the system

Metric Float32 Model INT8 Quantized

Model

Improvement

Model Size 236 KB 59 KB −75 %

Inference Time (ms)

@64 MHz

14.2 5.8 ≈ 2.4× faster

Peak RAM Usage (KB) 98 42 −57 %

Classification Accuracy 94.7 % 93.8 % −0.9 % loss

Energy Consumption

(mJ/inference)

0.62 0.25 −59 %

The results demonstrate that INT8 quantization yields substantial

improvements in every resource-sensitive metric. The compressed model fits

comfortably within the MCU’s memory limits while accelerating inference by a

factor of 2.4×. The marginal 0.9% accuracy reduction illustrates the robustness

of quantization for time-series classification tasks. The effects of INT8

quantization on model size, latency, memory usage, and energy consumption

are presented in detail in Table 1.

Energy measurements from the PPK2 show a 59% reduction in per-inference

energy cost, confirming the advantages of running compressed neural networks

locally on embedded devices.

4.3. Discussion

The experiment validates the theoretical claims of TinyML: through

quantization and hardware-aware optimization, ML inference can be performed

efficiently on microcontrollers. The observed trade-off between model

compactness and accuracy remains manageable, particularly for classification

tasks tolerant of small accuracy loss. Furthermore, edge-based inference

eliminates the need for continuous wireless transmission, providing an

estimated 70–80 % reduction in total system energy consumption during

operation.

95

Future enhancements could include exploring structured pruning and

quantization-aware training (QAT) to further optimize accuracy-efficiency

balance. Integrating energy-harvesting circuits may also extend operational

lifetime toward battery-free TinyML scenarios.

5. CHALLENGES AND RESEARCH ISSUES

While the TinyML paradigm brings embedded intelligence to constrained

devices, it also brings with it significant scientific and engineering challenges.

These challenges constitute the focus of academic research in the field.

5.1. The Resource Bottleneck: Optimization and Accuracy Trade-offs

The key limitations of TinyML are both memory (SRAM/Flash) and

compute capacity (MIPS/DMIPS). While traditional ML models require

gigabytes of memory, TinyML devices can have less than 1/1000th that amount

of memory (Banbury et al., 2020).

• Model Accuracy-Efficiency Tradeoff: While model compression

techniques (quantization, pruning) are critical, they often result in a decrease in

the overall model accuracy. A primary goal of academic research is to develop

methods that minimize or compensate for this decrease. Hardware-aware

quantization algorithms are needed to prevent accuracy loss, particularly in

cases of excessive quantization (e.g., 4-bit or binary quantization).

• Dynamic Resource Management: TinyML devices are typically battery-

powered and subject to environmental conditions (temperature, humidity). In

these dynamic environments, the development of adaptive inference

mechanisms that can instantly manage power consumption and computational

resources, even adjusting the model compression level based on task intensity,

is an important research topic (Kallimani et al., 2023).

5.2. Hardware Heterogeneity and Specialized Accelerators

The world of embedded systems includes a wide variety of microcontroller

families (ARM Cortex-M0 to Cortex-M7), digital signal processors (DSPs), and

custom-designed AI accelerators. This heterogeneity creates challenges for

portability and optimization.

• Compiler Challenges: Re-optimizing and compiling an ML model to

run most efficiently on different hardware architectures is complex. Compiler

frameworks like MicroTVM aim to address this issue by converting the ML

model to a hardware-specific intermediate representation and then optimizing it

for hardware kernels. However, developing efficient compilers and runtime

96

environments for next-generation neuromorphic chips remains an open area of

research.

• Hardware-Software Co-Design: To further advance the capabilities of

TinyML, specialized, low-power hardware accelerators (e.g., Edge TPU)

designed with the constraints of ML models in mind are crucial. Research is

focused on developing new architectures that provide the best balance between

power consumption and computational efficiency, particularly event-driven

architectures like Spiking Neural Networks (SNNs).

5.3. Security and Privacy Implications at the Edge

Although processing data locally increases privacy, TinyML devices face

new security and privacy threats.

• Model Intellectual Property and Attacks: The optimized ML model

stored in the MCU is an intellectual property (IP) asset. If the device is

physically compromised, there is a risk of model parameters being stolen

through model extraction attacks. Secure boot, hardware encryption, and

obfuscation techniques are being investigated to mitigate this risk.

• Data Poisoning and Reliability: TinyML devices can receive data from

low-cost sensors. Malicious actors can manipulate sensor data (data poisoning)

or use adversarial attacks during the inference phase to cause the model to

produce inaccurate results. Hardening techniques need to be developed to

ensure TinyML devices are resilient to such attacks while minimizing

computational overhead.

5.4. Learning Paradigm Shifts: From Inference to On-Device Learning

TinyML's current focus is on a model trained in the cloud performing

inference on-device, but future systems should have limited on-device learning

capabilities.

• On-Device Learning and Continual Learning: The device requires small

amounts of local retraining (fine-tuning) to adapt to changing environmental

data (data drift) over time. Given memory and power constraints, high-

efficiency, memory-friendly optimization algorithms for updating model

weights (e.g., minimized versions of Stochastic Gradient Descent) are a critical

research topic.

• Federated Learning (FL): Multiple devices train the model with their

own local data and send only the updated weight differences (gradients) to a

central server, enabling global model improvement while preserving privacy.

While TinyML is an ideal endpoint for FL, ensuring FL algorithms operate

97

efficiently in the context of ultra-low power and unreliable network connections

presents significant engineering challenges.

6. FUTURE TRENDS AND OPPORTUNITIES

The future of TinyML offers both exciting trends that push the boundaries of

technology and new market opportunities.

6.1. Next-Generation Hardware and Architectures

The biggest factor that will shape the future of TinyML will be the leaps in

hardware.

• Neuromorphic and Event-Driven Computing: Neuromorphic chips (e.g.,

Intel Loihi) bring AI closer to the principles of biological brains: computation

and memory are unified, with processing power triggered by events (spikes).

These architectures promise picojoule (pJ) energy consumption, making it

possible to achieve Zero-Power AI. The integration of Event-Based Vision (EV)

and TinyML with these architectures is a significant focus of academic

research.

• Data-Aware Computing (PIM): PIM technologies, which move the

computation unit into memory, eliminate the energy cost of data transfer. PIM

for TinyML will significantly alleviate memory constraints, enabling larger,

more complex models to be run on constrained devices. Data-Aware Computing

(In-Memory Computing/Processing-in-Memory) technologies eliminate the

energy cost of data transfer. PIM for TinyML will significantly alleviate

memory constraints, enabling larger, more complex models to run on

constrained devices.

6.2. Integration with Edge-Cloud Continuum and 6G IoT

TinyML is no longer an isolated technology, but part of a larger edge-cloud

continuum architecture.

• 6G IoT and Cognitive Networks: Future 6G networks aim to integrate

local and hyper-fast computing capabilities. TinyML devices will serve as

cognitive sensors in these networks, providing local AI inference to manage and

optimize network resources (Scribd, 2023). TinyML will play a critical role in

meeting the low latency and high reliability requirements of 6G.

• Hierarchical Inference: Some data is processed on the most constrained

TinyML device (layer L0), more complex data is processed on the local gateway

(layer L1), and the most complex analysis is processed in the cloud (layer L2).

This hierarchical model maximizes both energy efficiency and depth of

analysis.

98

6.3. Novel Application Domains and Societal Impact

• Biomedical and Personalized Healthcare: TinyML-powered implantable

devices and smart biosensors will enable continuous and autonomous

monitoring of chronic diseases. Real-time diagnostic and alert capabilities have

the potential to revolutionize patient care (Scribd, 2023).

• Sustainable Development and Environmental Monitoring: TinyML

offers the opportunity to directly contribute to the United Nations Sustainable

Development Goals (SDGs) by providing cost-effective and energy-efficient

solutions for areas such as monitoring natural habitats, localized detection of

climate change impacts, and increasing agricultural productivity (Abadade et

al., 2023).

7. CONCLUSION

TinyML for Embedded Intelligence is a rapidly evolving, interdisciplinary

field that represents the marriage between machine learning and embedded

systems. Initially launched with the mission of enabling AI with limited

resources, TinyML now forms the foundation of cognitive systems that offer

real-time autonomy, superior privacy, and environmental sustainability.

Continuous advances in model compression techniques (quantization and

pruning) and optimized software frameworks like TFLM have made TinyML

widely applicable to applications ranging from Industrial IoT to healthcare.

However, issues such as hardware heterogeneity, adaptive resource

management, cybersecurity threats, and on-device learning capabilities remain

pressing challenges for academic research. The future holds the promise of

further expanding TinyML's capabilities through integration with neuromorphic

hardware, PIM technologies, and 6G infrastructure. Ultimately, TinyML defines

the future of distributed and planet-friendly intelligence, enabling the digital

world to intelligently interpenetrate the physical world.

99

REFERENCES

Abadade, Y., Temouden, A., Bamoumen, H., Benamar, N., Chtouki, Y., &

Hafid, A. S. (2023). A Comprehensive Survey on TinyML. IEEE Access:

Practical Innovations, Open Solutions, 11, 96892–96922.

https://doi.org/10.1109/access.2023.3294111

Adlakha, A., & Kabbar, M. (2024). The Challenges of TinyML

Implementation: A Literature Review. CITRENZ2023 Proceedings, 1-7.

Unitec ePress.

Banbury, C., et al. (2020). MLPerf tiny benchmark. Proceedings of Machine

Learning and Systems, 1–16.

Bulutistan, Retrieved November 7, 2025, from https://bulutistan.com/blog/ai-

model-compression-nedir-yapay-zeka-modellerini-optimize-etme-

teknikleri/

Kahya, E., & Aslan, Y. (2024). Derin Öğrenme Destekli Gerçek Zamanlı Zeytin

Tespiti Uygulaması. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri

Enstitüsü Dergisi, 7(4), 1438-1454.

https://doi.org/10.47495/okufbed.1392386.

Kallimani, R., Yelchuri, A., & Soro, F. (2023). Performance Evaluation of

TinyML Algorithms on Resource-Constrained Devices.

Kreß, P., et al. (2024). A review on resource-constrained embedded vision

systems-based Tiny Machine Learning for robotic applications.

Algorithms, 17(11), 476. https://doi.org/10.3390/a17110476.

Kumari, N., Yadagani, A., Behera, B., Semwal, V. B., & Mohanty, S. (2024).

Human motion activity recognition and pattern analysis using

compressed deep neural networks. Computer Methods in Biomechanics

and Biomedical Engineering: Imaging & Visualization, 12(1), Article

2331052. https://doi.org/10.1080/21681163.2024.2331052.

Lin, J., Zhu, L., Chen, W.-M., Wang, W.-C., & Han, S. (2023). Tiny machine

learning: Progress and futures [feature]. IEEE Circuits and Systems

Magazine, 23(3), 8–34. https://doi.org/10.1109/mcas.2023.3302182.

Lipski, M. (2022). Hand Gesture Recognition on Arduino Using Recurrent

Neural Networks and Ambient Light (Bachelor’s thesis, Delft University

of Technology). Delft University of Technology Repository.

https://repository.tudelft.nl/

Loh, T., & Guo, Y. (2025). Tiny Machine Learning and on-device inference: a

survey of applications, challenges, and future directions. Sensors (Basel),

25(10), 3191. https://doi.org/10.3390/s25103191.

100

https://doi.org/10.47495/okufbed.1392386
https://doi.org/10.3390/a17110476
https://doi.org/10.1080/21681163.2024.2331052
https://doi.org/10.1109/mcas.2023.3302182
https://repository.tudelft.nl/
https://doi.org/10.3390/s25103191

Maldonado Soliz, I. F., et al. (2025). Advancing TinyML in IoT: A holistic

system-level perspective for resource-constrained AI. Edge Computing

Review, 12(2), 120-145.

Reddi, V. J., Plancher, B., Kennedy, S., & Tingley, D. (2022). Widening access

to applied machine learning with TinyML. Communications of the ACM,

65(1), 40-49.

Tosun, M., & Erdem, H. (2024). TinyML tabanlı görsel işitsel anahtar kelime

tespiti. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri

Dergisi, 13(4), 1207-1215. https://doi.org/10.28948/ngumuh.1482481

Scribd. (2023) Future directions in TinyML - Emerging Trends and innovations.

(n.d.). Retrieved November 7, 2025, from

https://www.scribd.com/document/879567310/Future-Directions-in-

TinyML-Emerging-Trends-and-Innovations-docx.

Soro, S. (2021). TinyML for Ubiquitous Edge AI.

https://arxiv.org/pdf/2102.01255

Wang, L., & Yoon, K.-J. (2022). Knowledge distillation and student-teacher

learning for visual intelligence: A review and new outlooks. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 44(6), 3048–

3068. https://doi.org/10.1109/tpami.2021.3055564.

Wilson, J., & Singh, D. (2025). Quantized Neural Networks for

Microcontrollers: A comprehensive review of methods, platforms, and

applications. arXiv preprint arXiv:2508.15008.

Yelchuri, A., & R., N. (2022). Energy Management in TinyML Frameworks.

Yelchuri, S., & R., M. (2022). Embedded intelligence through TinyML:

paradigm shift at the edge. Journal of Edge Computing, 5(3), 45-58.

Zhou, H., Zhang, X., Feng, Y., Zhang, T., & Xiong, L. (2025). Efficient human

activity recognition on edge devices using DeepConv LSTM

architectures. Scientific Reports, 15, Article 13830.

https://doi.org/10.1038/s41598-025-98571-2

101

https://www.scribd.com/document/879567310/Future-Directions-in-TinyML-Emerging-Trends-and-Innovations-docx
https://www.scribd.com/document/879567310/Future-Directions-in-TinyML-Emerging-Trends-and-Innovations-docx
https://doi.org/10.1109/tpami.2021.3055564

Chapter 6

Outlier Analysis in Machine Learning:

Basic Approaches, Challenges, and Applicatıons

Merve AKKUŞ1

ABSTRACT

Outlier detection plays a critical role in ensuring the reliability, stability, and

generalizability of machine learning models. Real-world datasets often contain

deviations arising from noise, measurement errors, rare events, or malicious

activities, which distort model learning and lead to inaccurate decisions. This

chapter provides a comprehensive examination of outlier analysis by discussing

fundamental concepts, outlier types, challenges, and state-of-the-art detection

methods. Statistical, proximity/density-based, clustering-driven, and machine

learning-based approaches are compared both theoretically and conceptually.

Furthermore, modern deep learning techniques, hybrid structures, and

explainable artificial intelligence (XAI) frameworks are highlighted as powerful

solutions for complex and high-dimensional data. Practical Python examples

and visual representations are included to support understanding of algorithmic

behavior. The chapter emphasizes that outlier detection is not only a

preprocessing task but also a strategic component that significantly affects data-

driven decision systems across various fields such as finance, healthcare,

cybersecurity, and industrial monitoring.

Keywords: Outlier detection, anomaly detection, machine learning, density-

based models, deep learning, data mining, explainable artificial intelligence

1 Research Assistant Dr., Batman University, Faculty of Engineering and Architecture, Department of

Computer Engineering, merve.gitmez@batman.edu.tr, ORCID: 0000-0002-6648-0946

102

mining and machine learning processes. Outliers are defined as observations

that show significant deviations from the general pattern of the dataset and

negatively impact the model's accuracy, predictive power, and generalizability

performance. Therefore, the accurate identification of outliers is critical in

numerous fields, such as credit risk management, network security, medical

diagnosis systems, production line monitoring, energy management, and sensor-

based industrial applications.The performance of machine learning models is

directly related to the quality of the data used. Since real-world data is often not

collected under ideal conditions, deviations in the data distribution may occur

due to sensor noise, measurement errors, missing records, or unexpected events.

These deviations manifest as observations that do not conform to the overall

pattern of the dataset and exhibit statistically unusual behavior.

Such observations mislead the model parameters during the learning process,

leading to distorted decision boundaries and reduced overall performance. This

situation is visually presented in Figure 1. The figure shows that the presence of

several outliers (red triangles) in the linear regression model significantly

distorts the regression line (blue line), which represents the overall trend of the

model. Outliers reduce the accuracy of the model's predictions and weaken its

generalizability by distorting the underlying pattern of the data.

Figure 1. Effect of outliers on model performance

Normal data points are shown as blue circles, while outliers are shown as red

triangles. Outliers cause the slope to become distorted by altering the model's

least squares direction. This clearly demonstrates why outlier detection is

critical for model reliability. The accurate identification of outliers is a critical

103

1. INTRODUCTION

This section comprehensively examines the role of outlier detection in data

component of the machine learning process that is not limited to the

preprocessing stage; it directly impacts prediction accuracy, model stability, and

generalizability. Numerous studies in the literature show that ignoring outliers

reduces model reliability and significantly increases error rates. Therefore,

outlier detection is not merely a data cleaning process but a strategic step that

ensures the integrity and reliability of data analytics.

This book chapter thoroughly examines the concept of outliers, their types,

detection challenges, and machine learning-based methods. The differences

between statistical, proximity and density-based, clustering-based, and learning-

based approaches are compared; the advantages offered by modern methods are

supported by Python-based visuals. Thus, the aim is to provide the reader with a

comprehensive perspective covering both the theoretical foundations and

practical application examples of outlier analysis.

2. THE CONCEPT OF OUTLIERS AND THEIR ROLE IN DATA

MINING

Outlier detection is the process of identifying objects that deviate

significantly from expected patterns in data mining processes and exhibit

characteristics that are markedly different from other observations. These

observations may arise for various reasons, such as measurement errors, sensor

malfunctions, fraud attempts, biological anomalies, or systematic failures.

According to Chandola et al.'s definition, outlier detection is a fundamental

area of analysis that aims to understand system behavior, anticipate potential

risks, and improve decision-making processes by revealing unexpected patterns

in the data (chandola et al., 2009).

From a data mining perspective, the importance of outliers is not limited to

the data cleaning process. In most cases, these values carry critical information

about the overall dynamics of the system or unusual events (Goldstein et al.,

2016).

For example:

• In a banking system, a rare high-value transaction may indicate potential

fraud.

• A sudden temperature increase on a production line may indicate a sensor

malfunction.

• Biological deviations observed in medical data may provide important

clues for early diagnosis.

Therefore, outliers should not always be considered “noise.”

Instead, in many scenarios, they should be interpreted as anomalies that

provide valuable information about the system's operation.

104

2.1 Definition and Importance of Outliers

An outlier is an observation in a dataset that deviates significantly from the

expected statistical distribution or normal pattern. Such observations can distort

parameter estimates in the statistical modeling process, increase variance, and

reduce the model's generalization performance. Failure to properly manage

outliers causes machine learning models to overfit, reduces classification

accuracy, and leads to incorrect decision boundaries. Therefore, identifying,

removing, or weighting outliers is a critical step in the data preprocessing

process.

In modern data analytics, detecting outliers is not only a statistical necessity

but also an essential process for obtaining meaningful data representation. As

the volume and complexity of data streams increase in big data, IoT, and cyber-

physical systems, outlier analysis has gained strategic importance in terms of

system security and operational stability. Figure 2 is presented to conceptually

illustrate the impact of outliers on model performance. This visual summarizes

the difference between normal data distribution and outliers, as well as their

effects on the model, in a comprehensive manner.

Figure 2. The Concept and importance of outliers (conceptual

representation)

The normal data distribution is represented by gray points clustered within

the gray ellipse, while outliers are represented by red triangles outside the

distribution. Outliers cause a decrease in the model's prediction accuracy

(accuracy loss), weak generalization (poor generalization), and prediction bias

105

(bias shift). This visual emphasizes that outlier detection is not only a data

cleaning process but also a strategic step in terms of model reliability and the

accuracy of decision systems.

2.2 Application Areas of Outliers

Outlier detection is an interdisciplinary field of analysis and is applied in

many different sectors (Ahmed et al., 2016). The most common usage examples

are summarized in Table 1 below.

Table 1. Common application areas and examples of outlier detection

Application

Area

Purpose Example of Outlier

Finance Detect fraudulent transactions,

credit risk, or money laundering

Unusually high money transfer

Cybersecurity Identify unauthorized access or

attacks

Abnormally high network

traffic packet density

Healthcare Detect physiological

abnormalities

Sudden increase or decrease in

heart rate

Manufacturing Identify defective products or

process faults

Sudden deviation in

temperature sensor readings

Energy Systems Detect leakage or faults Unexpected surge in energy

consumption

Text and Social

Media

Analytics

Monitor topic or sentiment

changes

Sudden semantic shift in text

content

This wide range of applications demonstrates that outlier detection is an

interdisciplinary method. Although the types of data used in different fields

vary, the common goal is to systematically identify rare and unusual behaviors

that fall outside normal patterns. Today, this process goes beyond classical

statistical methods and is carried out in a more flexible and accurate manner

through machine learning and deep learning-based approaches.

3. TYPES OF OUTLIERS AND ANALYSIS

Outlier analysis is the process of identifying, measuring, and classifying

observations that fall outside the general distribution in a data set. This analysis

aims to quantitatively reveal the extent to which an observation deviates from

the “normal” pattern. The level of outlier status is usually expressed as an

outlier score or probability value. This score numerically shows how differently

the observation behaves when compared to other examples in the data set

(Goldstein et al., 2012).

106

Traditionally, outlier analysis is performed under the assumption that the

data follows a normal distribution. However, in the real world, most data sets

deviate from ideal distributions; in such cases, classical statistical approaches

may be insufficient. Especially in high-dimensional and noisy data, outliers

need to be defined in different contexts. Therefore, the literature generally

addresses outliers in three main categories: global, contextual, and Collective

(Kohli et al., 2025).

3.1 Types of Deviant Values: Global, Contextual, Collective

In the literature, deviant values are generally examined under three main

categories: global, contextual, and collective deviance.

Figure 3. Visualization of global, contextual, and collective outlier examples

In Figure 3, normal data is distributed in blue and green clusters, while

points shown in different colors represent outlier behavior patterns. Purple

points represent contextual outliers that deviate from the norm in a specific

context (e.g., time, location, or condition), light green points represent

collective outliers that occur together, and the red “×” signifies a global outlier

that clearly deviates from the overall distribution. This visual illustrates the

positions of different types of outliers within the data structure and how each

requires different identification strategies in the modeling process.

a) Global outliers: Observations that behave distinctly differently from the

general distribution of the data set. Example: A measurement of 45 °C in a city

where average temperatures range between 20–30 °C represents a global outlier.

107

Global outliers are typically detected using statistical measures such as Z-score,

boxplot (IQR), or Mahalanobis distance (Dashdondov et al., 2021).

b) Contextual outliers: Observations that are considered abnormal in a

specific context—such as time, location, or environmental conditions. For

example, a temperature of 35 °C is normal in summer but indicates a contextual

outlier in winter. Such outliers are typically identified using time series models

(ARIMA, LSTM) or location-based analyses (Çalıkuş, 2025).

c) Collective outliers: These are groups of observations that appear normal

individually but form an abnormal pattern when taken together. For example, a

short-term surge in network traffic could be part of a cyberattack pattern. Such

outliers are typically detected using clustering or density estimation methods

(Fisch et al., 2022).

3.2 Anomaly Score and Quantitative Assessment

To analytically evaluate outliers, each observation is assigned an outlier

score. This score indicates how different the observation behaves compared to

other examples in the dataset (Röchner et al., 2024).

In general, the outlier score can be defined as in Equation 1:

𝑆(𝑥𝑖) = 𝑓(dist(𝑥𝑖 , 𝒩𝑘(𝑥𝑖))) (1)

Where:

• 𝑆(𝑥𝑖): 𝑥𝑖 Outlier score of observation,

• dist:Function measuring distance or density difference,

• 𝒩𝑘(𝑥𝑖): Set of k-nearest neighbors 𝑥𝑖

• 𝑓(⋅): Transformation function of the score.

As the score value increases, the abnormality level of the observation

increases. In practice, these scores are often normalized using metrics such as

LOF (Local Outlier Factor) or z-score. This numerical approach not only

identifies outliers but also prioritizes them. For example, in credit risk analysis,

transactions with the highest outlier scores are examined first (Röchner et al.,

2024).

4. CHALLENGES IN OUTLIER DETECTION

Outlier detection is one of the most complex preprocessing steps in machine

learning and data mining processes. The main reason for this is that “normal”

and “abnormal” behaviors are often not separated by clear boundaries. There is

a broad gray area between normality and abnormality in data distributions,

which makes the performance of detection methods highly dependent on the

108

data structure. The main challenges frequently encountered in outlier detection

and the solution approaches to these problems are summarized in the

subheadings (Kohli et al.,2025).

4.1 Data Normality and Noise Problem

In real-world data, “normal” behavior patterns vary depending on system

conditions and time factors. Therefore, the fact that a specific threshold value is

not always valid increases the risk of misclassification. Furthermore, noise

causes a decline in data quality and hides true outliers. Noisy observations can

lead to false positives, especially in statistical methods.

Possible solutions:

• Noise filtering techniques,

• Robust statistical methods (ROF, RANSAC),

• Dynamic threshold determination approaches supported by expert

knowledge (Olteanu et al., 2023).

4.2 High Dimensionality and Scalability

Modern datasets often contain hundreds or even thousands of features. An

increase in the number of dimensions fundamentally changes the geometric

structure of the data. In high-dimensional spaces, Euclidean distances between

examples become very close, and the concepts of “close” or “far” lose their

meaning. This phenomenon is referred to in the literature as the curse of

dimensionality (Kohli et al., 2025).

A direct consequence of this situation is the weakening of the discriminative

power of distance- or density-based methods (e.g., k-NN, LOF, DBSCAN).

This is because in high-dimensional spaces:

• Data points are almost equidistant from each other,

• Density measurements become inconsistent,

• The clustering structure is disrupted,

• Outliers can no longer be distinguished from normal samples.

Therefore, high dimensionality not only increases computational load but

also reduces algorithmic stability and generalization ability.

4.3 Label Deficiency and Imbalance

Outliers are rare by nature; therefore, most datasets do not contain labeled

outlier examples. This limits the generalization capacity of supervised learning

methods.

109

Furthermore, a significant difference in the ratio of normal to outlier

examples causes class imbalance. This can cause the model to overfit the

“normal” class (Kohli et al., 2025).

Possible solutions:

• Unsupervised or semi-supervised algorithms (One-Class SVM, Isolation

Forest, LOF),

• Data augmentation (SMOTE) or weighted loss functions,

• Model updating with active learning and expert feedback.

4.4 Model Explainability

Deep learning-based outlier detection models (e.g., Autoencoder, GAN)

provide high accuracy, but their decision processes are often “black box” in

nature. This leads to reliability issues, especially in critical areas such as

healthcare, finance, and security (Birihanu et al., 2024).

Explainable Artificial Intelligence (XAI) approaches are being developed to

address this shortcoming.

Methods such as SHAP, LIME, and Counterfactual Explanation make

decision processes transparent by explaining why the model flagged a particular

observation as an outlier.

4.5 Computational Cost

Working with millions of observations and high-dimensional features in big

data environments causes traditional algorithms to fall short in terms of both

memory and processing load.

Possible solutions:

• Approximate Nearest Neighbor algorithms,

• GPU or multi-core processing support,

• Online or incremental learning approaches.

5. OUTLIER DETECTION METHODS

Outlier detection is built on different assumptions depending on the structure

of the data, its distribution characteristics, the number of dimensions, and the

application context. In the literature, these methods are generally classified

within the framework of statistical assumptions, distance or density measures,

clustering structure, or learning-based models. This diversity stems from the

unique nature of each data type. For example, statistical approaches are more

suitable for low-dimensional data sets with defined distributions, while machine

learning-based methods are more flexible and yield successful results for

complex and high-dimensional data. Density or distance-based methods are

110

particularly effective in capturing local anomalies, while clustering-based

approaches reveal contextual anomalies by evaluating structural relationships in

the data space. In recent years, with the increase in data volume and complexity,

it has become clear that no single method can be effective for all data types

(Badhan et al., 2023).

For this reason, researchers have developed hybrid or mixed approaches that

combine the strengths of different algorithms (e.g., DBSCAN + Autoencoder,

Isolation Forest + PCA). This enables both statistical robustness and learning

capabilities through deep representations. In this context, approaches to outlier

detection are considered not only as data cleaning tools but also as analytical

models that increase the reliability of data interpretation and decision support

systems.

5.1 Extreme Value Analysis

In extreme value analysis, observations located in the extreme regions of the

data developments shown are considered outliers. Such observations are the

points that emerge in the underlying sequential part, as shown in Figure 4

(Olmo., 2009).

Figure 4. Conceptual representation of single and multivariate outlier

detection.

(a) In the single variable case, outliers are defined as observations located at

the extreme points of the statistical distribution. The normal distribution curve

is shown in gray, and the red dots in the extreme regions represent outliers

outside the expected range.

(b) In the multivariate case, outliers emerge as deviations from the common

pattern of multiple features. The gray ellipse shows the normal data boundary,

while the red triangles show multivariate outlier observations outside this

boundary.

This visual emphasizes the importance of considering the number of

variables and their relationships when detecting outliers.

111

a) Univariate outlier analysis: In a univariate case, it is assumed that the

data follows a specific distribution (most often a Gaussian distribution). As in

Equation 2, the upper and lower tail regions represent observations at a distance

of ±3σ from the mean:

𝑥𝑖 > 𝜇 + 3𝜎 or 𝑥𝑖 < 𝜇 − 3𝜎 (2)

Points outside these thresholds are marked as outliers.

b) Multivariate outlier analysis: In multidimensional data sets, the distance

of observations from the mean vector μ and covariance matrix Σ is measured

using the Mahalanobis distance, Equation 3:

𝐷𝑀(𝑥𝑖) = √(𝑥𝑖 − 𝜇)𝑇Σ−1(𝑥𝑖 − 𝜇) (3)

Distances above a certain threshold value (τ) are considered outliers.

It is statistically robust and effective with low-dimensional data. However, it

is highly dependent on the assumption of normal distribution.

5.2 Statistical Methods

Statistical methods assume that the data follows a specific distribution

pattern, as shown in Figure 5, and consider observations that do not fit this

pattern as outliers (Theriault, 2024).

Figure 5. Statistical methods for aoutlier detection: Parametric and non-

parametric approachs

(a) Parametric methods assume that the data follows a specific distribution

model; the Boxplot (IQR) method identifies outliers using quartile values.

(b) Non-parametric histogram-based methods mark low-frequency regions as

potential outlier areas without making any distribution assumptions.

This comparison demonstrates the importance of selecting a statistical

method appropriate for the data structure.

a) Parametric methods: Parametric methods detect outliers by estimating

distribution-based parameters such as quartiles. A common example is the

112

Boxplot method, which uses the first, second, and third quartiles 𝑄1, 𝑄2, 𝑄3 of

the data (Equation 4). The dispersion of the central data is measured by the

interquartile range, defined as IQR = 𝑄3 − 𝑄1(Equation 5). Based on this

range, outlier thresholds are determined as 𝑄1 − 1.5 × IQR for the lower limit

and 𝑄3 + 1.5 × IQRfor the upper limit (Equation 6). Observations outside

these limits are classified as outliers.

Data quartiles:

𝑄1, 𝑄2, 𝑄3 (4)

Interquartile range (IQR):

𝐼𝑄𝑅 = 𝑄3 − 𝑄1 (5)

Outlier limits:

𝐿𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 = 𝑄1 − 1.5 × 𝐼𝑄𝑅,Upper Limit = 𝑄3 + 1.5 × 𝐼𝑄𝑅 (6)

Points outside these limits are considered outliers.

b) Nonparametric methods: Nonparametric approaches are preferred when

the data distribution is unknown. For example, in the histogram-based outlier

detection method, data are divided into intervals (bins); low-frequency intervals

are potential outlier regions. Nonparametric methods do not require a

distribution assumption. However, threshold selection and histogram width also

significantly affect the results.

5.3 Proximity and Density-Based Methods

In this approach, the anomaly of an observation is assessed according to its

distance from its neighbors or its density difference. The assumption is that

normal observations are in dense regions and anomalies are in sparse regions, as

shown in Figure 6 (Mavroudopoulos, 2023).

Figure 6. Conceptual representation of proximity and density-based outlier

detection methods.

113

(a) The k-NN method determines the level of outlierness based on the

average distance of observations to their neighbors; points far from their

neighbors are considered outliers.

(b) The LOF method evaluates observations in low-density regions as

outliers based on local density differences.

(c) The COF method defines observations in weakly connected regions as

outliers by considering point connection lengths.

These methods are effective tools for detecting local anomalies, especially in

complex and multidimensional data sets.

a) k-Nearest neighbor (k-nn) outlier detection: The average distance of an

observation to its k nearest neighbors is calculated. Points with high distance

values are labeled as outliers.

b) Local outlier factor (LOF): The LOF method compares the local density

of a point with its neighbors. The outlier score is defined as in Equation 7.

𝐿𝑂𝐹(𝑥𝑖) =
1

∣𝑁𝑘(𝑥𝑖)∣
∑𝑥𝑗∈𝑁𝑘(𝑥𝑖)

lrd(𝑥𝑗)

lrd(𝑥𝑖)
 (7)

Here, lrd (local reachability density) indicates the reachability density of a

point.

Points with LOF>1.5 are generally considered outliers.

c) COF (Connectivity-based outlier factor): It works similarly to LOF but

evaluates local density based on connection lengths. Observations in regions

where density shows a sudden drop are considered outliers. COF successfully

captures anomalies in the local structure. However, it is sensitive to k-parameter

selection and has high computational costs in large datasets.

5.4 Cluster-Based Methods

Cluster-based methods are based on the assumption that normal observations

form clusters, as shown in Figure 7, and outliers are isolated from these clusters

(Souiden et al., 2022).

114

Figure 7. Conceptual representation of clustering-based outlier detection

methods.

(a) The K-Means method determines the level of outlierness based on the

distance of observations to the nearest cluster center; points far from the center

are considered outliers.

(b) The DBSCAN method identifies clusters using a density threshold and

minimum neighbor count; observations in low-density regions are considered

noise (outliers).

(c) The GMM method assumes that the data is composed of a mixture of

multiple Gaussian distributions and classifies low-probability observations as

outliers.

These methods define outliers based on their statistical and spatial

characteristics, taking into account the structure of the data sets.

a) K-means-based outlier detection: The K-Means algorithm divides the

data into k clusters. The distance of each observation from the nearest cluster

center is calculated (Equation 8). If the distance exceeds a certain threshold, the

observation is marked as an outlier.

𝑂𝐷(𝑥𝑖) =∥ 𝑥𝑖 − 𝜇𝑐 ∥ (8)

b) DBSCAN (Density-based spatial clustering of applications with

noise): DBSCAN operates with the parameters density threshold ε and

minimum number of neighbors MinPts. Observations in dense regions are

clustered, while those remaining in low-density regions are considered noise

and classified as outliers. The number of clusters in DBSCAN does not need to

be known beforehand; it defines noise naturally. However, parameter selection

is sensitive to data scale.

c) Gaussian mixture model (GMM): It assumes that the data is generated

by a mixture of multiple Gaussian distributions. A probability value is

calculated for each observation; low-probability examples are classified as

115

outliers. GMM is effective on non-spherical clusters. However, it carries the

risk of overfitting due to the excessive number of parameters.

5.5 Machine Learning-Based Methods

Machine learning approaches offer high accuracy and generalization

capacity in outlier detection, as shown in Figure 8. The aim of these methods is

to learn normal data and identify deviations from this pattern as outliers.

Especially in high-dimensional and nonlinear datasets, much more flexible and

stable results are obtained compared to classical statistical approaches (Souiden

et al., 2022).

Figure 8. Machine learning-based outlier detection models

a) One-class SVM: One-Class SVM learns only the “normal” class and

labels samples lying outside the decision boundary as outliers. The decision

function is defined, as given in Equation 9:

𝑓(𝑥) = 𝑤𝑇𝜙(𝑥) − 𝜌 (9)

where ϕ(x) represents the kernel transformation, w is the weight vector, and

ρ is the decision threshold. Observations where f(x) < 0 are considered outliers.

This method is effective on low-dimensional, well-defined datasets and is

sensitive to the choice of kernel function and ν parameter.

b) Isolation forest: Isolation Forest creates a tree structure by randomly

splitting data points. Observations isolated with few splits are considered

outliers. The outlier score is based on the average path length; shorter paths

indicate higher outlier status.

116

This method stands out for its scalability in high-dimensional data and large

sample sizes, but it is not sufficient on its own for contextual anomalies.

c) Autoencoder and variants: Autoencoder structures transform the input

into a latent representation and reconstruct it. Examples with high

reconstruction error are flagged as outliers. Derivatives such as Denoising AE,

Sparse AE, and LSTM-AE improve noise resilience and performance in time

series. A Variational Autoencoder (VAE), a probabilistic extension, detects

anomalies based on both reconstruction error and deviations in the latent space

by estimating the probability of each observation. These approaches deliver

effective results, particularly in complex industrial sensor data and biomedical

signals.

d) GAN (Generative adversarial network)-based methods): In GAN-

based models, a generator (G) and a discriminator (D) network undergo a

mutual learning process. The generator learns to mimic the normal data

distribution, while the discriminator learns to distinguish between real and fake

examples. The anomaly score is typically calculated based on the difference

between the original and reproduced data or the distance in the discriminator's

feature space. Architectures such as AnoGAN, GANomaly, and Skip-

GANomaly are particularly successful in image and defect detection. However,

since the training process of GANs can be unstable, Autoencoder-GAN hybrids

or pre-trained feature extractors are preferred in most applications.

e) Deep SVDD and modern approaches:Deep SVDD (Support Vector

Data Description) is a deep version of the classic One-Class SVM. Network

outputs are centered around a hypersphere; examples far from the center are

considered outliers. This method learns deep feature representations

unsupervised and scales better than kernel-based models. In recent years, these

approaches have been supported by explainable artificial intelligence (XAI)

methods. Tools such as SHAP, LIME, and Counterfactual Explanation increase

the interpretability of models by visualizing why an observation is labeled as an

outlier.

f) Current trends: New research has focused on combining techniques from

different paradigms.

• Hybrid models (e.g., DBSCAN + Autoencoder, Isolation Forest + PCA)

combine statistical robustness with deep representations.

• Self-supervised and contrastive learning methods enhance normal data

representations without requiring labels.

• Graph-based and time-series-focused approaches enable the detection of

anomalies in sensor networks and dynamic systems through topological or

temporal inconsistencies.

117

6. COMPARATIVE EVALUATION AND PYTHON APPLICATION

EXAMPLES

This section explains the basic working principles, application forms, and

interpretation methods of some algorithms commonly used in outlier detection.

The aim is to show the reader how different types of approaches can be applied

in practice and to compare the similarities and differences between the methods

at a conceptual level.

6.1 Application Environment and Synthetic Data Approach

While real data sets (e.g., MIT-BIH, KDDCup99, Credit Card Fraud,

NASA-Bearing, etc.) are frequently used to test these methods, synthetic

(artificial) data generation has been preferred in this book chapter to

demonstrate the behavior of the algorithms in a straightforward manner.

A small sample dataset created from random distributions in the Python

environment (e.g., normal distribution + a small number of outliers) is sufficient

to understand how different algorithms respond.

Such data provides an instructive framework for representing real-world

noise, bias, and statistical outliers.

6.2. Basic Algorithm Application Examples

The following examples are short code snippets that can be run directly in

the Python environment and are intended solely for methodological

demonstration. The purpose of the code is not to compare model performance

but to teach the basic usage of the methods.

(a) Local outlier factor (LOF): LOF labels samples that remain low in

density as outliers by comparing the local density of each observation with its

neighbors.

(b) Isolation forest: Isolation Forest randomly splits observations and

quickly flags isolated ones as outliers. It stands out for its scalability in large

data sets.

118

(c) Autoencoder: Autoencoders learn to reconstruct normal samples.

Samples with high reconstruction error are considered outliers.

6.3. Conceptual Comparison

Table 2. Conceptual comparison of outlier detection methods

Method Advantage Limitation

LOF Captures local density

differences

Sensitive to the k-

parameter

Isolation

Forest

Fast and scalable for

large datasets

Limited in detecting

contextual anomalies

Autoencoder Effective for high-

dimensional and complex

data

Threshold selection is

difficult; long training time

The comparison in Table 2 serves as a guide for selecting methods for

different data types. For example:

• LOF is more suitable for local data sets where density differences are

important.

• Autoencoder is more suitable for multidimensional sensor or financial

data.

• Isolation Forest is more suitable for large data streams.

Figure 9. Visual comparison of outlier detection methods

119

This figure 9 illustrates the conceptual behavior of three different outlier

detection methods on a synthetic (artificially generated) two-dimensional

datase. In each panel, light gray circles represent normal observations, while red

triangles represent observations identified as outliers by the algorithms. The

visuals clearly demonstrate how the methods define the concept of outliers in

different ways.

(a) Local outlier factor (LOF): The LOF method labels examples found in

low-density regions as outliers by comparing the local density of each

observation with its neighbors. Therefore, examples located at the edges of

clusters or in boundary regions where density decreases are shown with red

triangles. This method performs effectively, especially on datasets where local

density differences are important.

(b) Isolation forest: The Isolation Forest model evaluates samples that can

be isolated quickly as outliers by separating observations through random splits.

The model enables global-scale outlier detection because it can easily separate

observations in sparse regions or those far from the general distribution. In the

figure, isolated observations in these sparse areas are indicated by red triangles.

(c) Autoencoder (AE): The autoencoder-based model learns to reproduce

the data and detects anomalies based on reconstruction error. Examples that

cannot be reproduced, i.e., those that deviate significantly from the learned

pattern, are considered outliers. In the figure, these deviations are shown as red

triangles located in areas far from the center of the data distribution.

7. CONCLUSIONS AND FUTURE DIRECTIONS

This section summarizes the general evaluation of machine learning-based

outlier detection methods and potential future research directions. Outlier

detection is considered not only as a data cleaning process but also as a critical

component in terms of model reliability, robustness, and generalizability. The

statistical, density-based, clustering-focused, and learning-based approaches

discussed in this study demonstrate that the concept of outliers can be

approached from different perspectives.

Learning-based models (particularly Autoencoder, Isolation Forest, and

GAN derivatives) offer higher accuracy and generalization capacity compared

to classical methods in high-dimensional, noisy, and complex datasets.

However, the success of these methods is directly dependent on factors such as

hyperparameter selection, threshold determination, data imbalance, and model

interpretability.

120

Therefore, it is crucial for future studies not only to achieve high

performance but also to be able to interpret why the model considers a

particular observation to be an outlier.

In recent years, explainable artificial intelligence (XAI), self-supervised

learning, and contrastive learning approaches have been increasingly used in

outlier detection. These approaches enable the model to learn anomalies from

its own internal representations by reducing the need for labels. Furthermore,

hybrid models (e.g., Autoencoder + Isolation Forest or DBSCAN + VAE

combinations) offer more balanced solutions by combining statistical robustness

with deep representations.

In the future, the integration of outlier detection algorithms into real-time

systems, edge devices, and energy-efficient architectures will come to the fore.

There is a growing need for low-latency and explainable outlier detection

algorithms, particularly in IoT, biomedical sensor networks, production lines,

and autonomous systems. However, ethical, security, and data privacy

dimensions are also expected to shape new research topics.

In conclusion, outlier analysis has become not only a subfield of data science

but also a fundamental research area that determines the reliability, ethical

responsibility, and robustness of artificial intelligence systems. Therefore,

future studies are expected to develop an interdisciplinary perspective that

addresses both algorithmic efficiency and explainability.

121

REFERENCES

Ahmed M., A. N. Mahmood, and J. Hu, “A Survey of Network Anomaly

Detection Techniques,” Journal of Network and Computer

Applications, vol. 60, pp. 19–31, 2016.

Badhan. A and A. Ganpati, “Overview of outlier detection methods and

evaluation metrics: A review,” in Proc. 6th Int. Conf. Big Data

Analytics and Knowledge Discovery (DaWaK), Sep. 2023, pp. 54-63.

Birihanu E., A. Ayano and et al., “Explainable correlation-based anomaly

detection for industrial control systems,” Frontiers in Artificial

Intelligence, vol. 4, Art. 1508821, 2024.

doi:10.3389/frai.2024.1508821.

Calikus E., “Context discovery for anomaly detection,” Knowledge and

Information Systems, vol. 69, no. 8, pp. 4123–4148, Oct. 2025.

Chandola V., A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”

ACM Computing Surveys, vol. 41, no. 3, pp. 1–58, 2009.

Dashdondov K. and M.-H. Kim, “Mahalanobis Distance Based Multivariate

Outlier Detection to Improve Performance of Hypertension Prediction,”

Neural Computing and Applications, vol. 33, pp. 10487–10499, 2021.

Fisch A. T. M., I. A. Eckley and P. Fearnhead, “Subset Multivariate Collective

and Point Anomaly Detection,” Computational Statistics & Data

Analysis, vol. 162, Art. 108725, 2022.

Goldstein M. and A. Dengel, “Histogram-based Outlier Score (HBOS): A fast

Unsupervised Anomaly Detection Algorithm,” in Proceedings of the

KI-2012: Poster and Demo Track, September 2012.

Goldstein M. and S. Uchida, “A Comparative Evaluation of Unsupervised

Anomaly Detection Algorithms for Multivariate Data,” PLoS ONE, vol.

11, no. 4, e0152173, 2016.,

Kohli M. and I. Chhabra, “A comprehensive survey on techniques, challenges,

evaluation metrics and applications of deep learning models for

anomaly detection,” SN Applied Sciences, vol. 7, Art. 784, Jul. 2025.

doi: 10.1007/s42452-025-07312-7.

Mavroudopoulos I. and A. Gounaris, “A comparison of proximity-based

methods for detecting temporal anomalies in business processes,”

Machine Learning, vol. 112, pp. 4101–4128, 2023. doi:10.1007/s10994-

022-06152-5

Olmo J., “Extreme value theory filtering techniques for outlier detection,”

Discussion Paper No. 09/09, Dept. of Economics, City University

London, Jun. 2009.

Olteanu M., J. Steinhauser, and A. R. Hedayati, “Meta-Survey on Outlier and

122

Anomaly Detection,” Neurocomputing, vol. 572, pp. 1–25, Dec. 2023.

doi: 10.1016/j.neucom.2023.127960.

Röchner P., H. O. Marques, R. J. G. B. Campello, A. Zimek and F. Rothlauf,

“Robust Statistical Scaling of Outlier Scores: Improving the Quality of

Outlier Probabilities for Outliers (Extended Version),” arXiv preprint,

Aug. 28 2024.

Sánchez B. V., E. Schubert, A. Zimek and R. L. F. Cordeiro, “A comparative

evaluation of clustering-based outlier detection,” Data Mining and

Knowledge Discovery, vol. 39, art. 13, Feb. 2025. doi:10.1007/s10618-

024-01086-z.

Souiden I., M. Chandola and N. Alsubaie, “A survey of outlier detection in

high dimensional data streams,” Knowledge-Based Systems, vol. 249,

Art. 110861, 2022. doi:10.1016/j.knosys.2022.110861

Thériault R., “Check your outliers! An introduction to identifying statistical

outliers,” PeerJ PrePrints, 2024. doi:10.31234/osf.io/bu6n

123

Chapter 7

WebAssembly:

An Indispensable Component of the Modern Web

Fikri AĞGÜN1

Raif SİME2

ABSTRACT

This section examines WebAssembly (Wasm) as a high-performance and

portable execution environment operating both within web browsers and outside of

them. The study begins by providing a historical background through previous

initiatives such as asm.js and Native Client, followed by an explanation of the

motivations behind the emergence of WebAssembly and the W3C standardization

process. The binary format of WebAssembly, stack-based virtual machine model,

linear memory structure, concepts of modules and instances, and import-export

based interaction with JavaScript are analyzed.

Discussions include compilation chains and practical use cases through

ecosystems such as C/C++ (Emscripten), Rust (wasm-bindgen, wasm-pack),

AssemblyScript, TinyGo, and Blazor WebAssembly; the performance gains offered

by WebAssembly compared to JavaScript, particularly how these gains manifest in

CPU-intensive applications are evaluated with supportive literature. In the security

section, the sandbox execution model, memory and type safety, controlled access to

system resources via WASI, as well as recent research on side-channel and

speculative execution attacks are summarized. The non-browser usage of WASI-

based server and edge scenarios, blockchain and smart contracts, embedded/IoT

applications, and the migration of legacy desktop software to the web are also

discussed.

The conclusion emphasizes that WebAssembly, as the fourth fundamental web

component completing the HTML/CSS/JavaScript triad, strengthens the vision of a

"portable execution layer" in both academic research and industrial projects; future

research and development trends are discussed regarding topics such as

performance, security, ecosystem maturity, and component models.

Keywords: WebAssembly, Wasm, High-Performance web, WASI, Portable

execution environment

1 Assist. Prof. Dr., Bitlis Eren University, faggun@beu.edu.tr, ORCID: 0000-0001-9550-1462
2 Bitlis Eren University, rsime@beu.edu.tr, ORCID: 0009-0008-4292-2456

124

1. INTRODUCTION

Web technologies have evolved over their approximately thirty-year history

from simple static HTML pages to a wide range of complex single-page

applications (SPAs), cloud-based gaming, and enterprise business intelligence

platforms. During this process, JavaScript has achieved a unique position as the

only built-in programming language running in browsers; its interpreted nature,

dynamic typing, and rich ecosystem have transformed the web into an

"application platform." However, it has also been observed that this flexibility

of JavaScript can be limiting in terms of performance and predictability,

particularly in scenarios that require high computational power (Wikipedia,

2017). In areas such as 3D game engines, CAD and CAM applications,

scientific simulations, image processing, cryptography, and machine learning,

developers have had to resort to various indirect methods for porting code

written in C/C++, Rust, or other system languages to the browser for years.

Initiatives like asm.js and Google Native Client (NaCl/PNaCl) have

demonstrated that the web can execute code more quickly; however, they have

not provided a universally accepted, standardized, and portable solution across

all browsers (Haas et al., 2017). WebAssembly (Wasm) is a secure, portable,

and low-level binary code format derived from these requirements, along with a

virtual machine model for executing it. In 2019, it was elevated to the level of a

core specification (Recommendation) by the W3C and declared the "fourth

language" of the web, following HTML, CSS, and JavaScript.

The primary goal of WebAssembly is to enable high-performance

applications both on the web and in non-web environments while

simultaneously ensuring security, portability, and language independence.

WebAssembly code:

• Can be compiled from a variety of languages, including C, C++, Rust,

Go, C#, AssemblyScript, and TinyGo,

• Can run in browsers, on the server side, in cloud edge platforms, and on

embedded devices,

• Is executed within a secure sandbox, with type safety ensured and

memory accesses controlled.

When comparing WASM-based web applications to traditional JavaScript

applications, it is evident that performance limitations exist when using current

JavaScript, particularly in cases where these limitations are significantly

pronounced. Due to its bytecode compilation, WebAssembly can achieve nearly

native speeds compared to JavaScript. Furthermore, WebAssembly is an

advantageous technology for executing computation-intensive algorithms with

small to medium-sized data volumes.

125

WebAssembly (WASM)-based technology presents itself as a more effective

solution in terms of speed and performance compared to classical methods. The

advantages of this technology have been corroborated by numerous studies and

documented evidence in the literature.

In their study, which aims to demonstrate how Wasm can provide native

performance for web-based AR/VR applications and address the critical

challenges faced by existing technologies such as WebXR, the authors conclude

that the potential of porting to Wasm can enhance the performance of web-

based AR/VR applications, bringing them closer to the performance of native

applications (Khomtchouk, 2021).

In their study discussing the potential of WebAssembly as an application

virtual machine for embedded systems, the authors highlight its strong isolation

features and software portability. Considering its growing ecosystem and

adoption beyond web browsers, they emphasize the significance of

WebAssembly in scalable and secure IoT deployments (Wallentowitz et al.,

2022).

In their study addressing the performance limitations of web applications in

graphics-intensive areas such as video games, simulations, and image

processing, the authors emphasize WebAssembly's integration with various

programming languages, including C/C++, C#, and Rust. They showcase its

cross-platform capabilities and efficient memory management, noting that it

provides significant performance improvements and possesses the potential to

revolutionize web application development. (Tufegdžić et al., 2024).

In the following sections, the design principles, architecture, toolchain,

security model, performance characteristics, in-browser and out-of-browser

usage scenarios, practical application examples, and current research findings

related to WebAssembly will be addressed. Additionally, code snippets and

compilation processes will also be discussed through the ecosystems of Rust,

C/C++, and C# (Blazor).

2. HISTORICAL BACKGROUND AND DEVELOPMENT

PROCESS

2.1. The Experience of asm.js and Native Client

Although JavaScript engines have experienced significant performance leaps

over the years through techniques such as JIT compilation, hidden classes, and

inline caching, the dynamic nature of the language has made it challenging to

efficiently translate to CPU instructions. (Haas et al., 2017).

126

The asm.js approach is a subset of JavaScript with significantly restricted

types and control structures. C/C++ compilers target this subset to enable JIT to

perform more predictable optimizations. However, the final output is still text-

based JavaScript, which results in large code sizes and extended parsing times.

As an approach for executing native code within the browser, Google's

Native Client aimed to run sandboxed machine code through a Chrome-specific

architecture. While Portable Native Client (PNaCl) enhanced portability, it

failed to become a standard and was not adopted by other browsers.

These initiatives demonstrated that near-native speeds are achievable on the

web; however, the need for a standard, browser-independent, and portable

bytecode became apparent. WebAssembly has emerged as a technology that

directly addresses this need.

2.2. The Emergence of WebAssembly

Starting in 2015, researchers from Mozilla, Google, Microsoft, and Apple

formed a joint working group to shape the design of WebAssembly. The first

Minimum Viable Product (MVP) was showcased in browser prototypes in

2017; the same year, the paper titled "Bringing the Web up to Speed with

WebAssembly" published at the PLDI conference outlined the fundamental

principles of the design. The core specification progressed through stages,

becoming a W3C Working Draft in 2018, a Candidate Recommendation in

2019, and reaching Recommendation status on December 5, 2019. Currently, in

addition to the WebAssembly Core Specification 1.0, work continues on the 2.0

draft and the 3.0 version, with surrounding specifications like the JavaScript

API, WebAssembly System Interface (WASI), and the component model also

maturing. (Webassembly, 2025).

3. DESIGN GOALS AND PRINCIPLES

The design of WebAssembly is based on several key principles:

1. Efficient Execution:

The compactness of the binary format facilitates quick downloading and

parsing, and allows the compiled code to run at near-native speeds on hardware

through JIT or AOT compilation, thereby contributing to the principle of

efficient execution.

2. Portability:

The use of a architecture-independent virtual machine model (stack-based

VM) and the fact that the bytecode has the same meaning across all modern

CPU architectures enhance the portability of this technology.

127

3. Safety and Security:

Providing memory safety, type safety, and control flow safety, along with

executing code within a sandbox with limited APIs defined by the host

environment, ensures a higher level of security for this technology. (Perrone &

Romano, 2024).

4. Compatibility and Interoperability:

WebAssembly technology can integrate with existing web platforms,

collaborating with JavaScript APIs, the DOM, and other Web APIs to function

together effectively.

5. Language Independence:

By operating independently of programming languages, WebAssembly

serves as a common compilation target for many languages, including C/C++,

Rust, Go, C#, AssemblyScript, and TinyGo, highlighting its versatility.

These principles establish WebAssembly not only as an execution platform

used in browsers but also as a general-purpose portable execution platform,

providing a platform-independent development environment for those working

in this field.

4. ARCHITECTURE AND OPERATION MODEL

4.1. Binary and Text Formats

WebAssembly programs are distributed in a binary format with the ".wasm"

extension. The compact nature of this format reduces both network transfer time

and parsing time in the browser, enabling faster access and execution. The

human-readable version of the same code is available in the text format with the

".wat" or ".wast" extensions. This format possesses an S-expression-like syntax.

Figure 1. Syntax example

When this code is compiled and converted to binary format, it can be

executed by a browser or another WASM runtime. The text format is primarily

used for debugging, education, and examining compiler outputs.

128

4.2. Stack-Based Virtual Machine

WebAssembly has a virtual machine model that reads operands and

intermediate results from a stack and writes them back to the stack. It performs

these operations in the following sequence (instructions):

• Retrieves a value from the stack (e.g., local.get, i32.const).

• Performs the operation (e.g., i32.add, f64.mul).

• Writes the result back to the stack.

This model provides an abstract machine definition that simplifies the task

for compilers to generate code for different CPU architectures.

4.3. Linear Memory

In WebAssembly, memory is organized as a one-dimensional address space

known as "linear memory". Each memory consists of 64 KB pages, and

modules can increase the size of the memory at runtime as long as resources

permit. Applications access memory using load/store instructions.

Figure 2. Memory access of application

This linear model facilitates portability across different architectures, allows

for memory boundaries to be monitored, and thus serves as an important

foundation for sandboxing.

4.4. Module and Instance

A .wasm file is a module. The module consists of type definitions, functions,

global variables, tables, and optionally, a start function. At runtime, this module

is instantiated by the host environment.

Modules can import functions and resources from the host and can export

functions, memory, or tables to the outside. For example, the relationship

between a JavaScript application and a WebAssembly module can be

established as follows:

129

Figure 3. Relationship established between JavaScript and

WebAssembly module

5. INTEGRATION WITH THE WEB PLATFORM

5.1. Browser Support

All modern browsers, including Chrome, Firefox, Safari, and Edge, support

the core features of WebAssembly. In most browsers, WebAssembly is

integrated within the JavaScript engine (such as V8, SpiderMonkey, JSC, etc.)

and shares the same JIT infrastructure.

5.2. JavaScript – WebAssembly Interaction

WebAssembly modules interact with JavaScript in the following ways:

1. JavaScript loads the WebAssembly module (e.g., using

WebAssembly.instantiateStreaming).

2. The functions exported by the module are called by JavaScript.

3. WebAssembly accesses web APIs such as DOM, network, and storage

indirectly by calling the host functions it imports.

This collaboration results in the following architecture in practice:

• UI, DOM management, and events are handled on the JavaScript side.

• CPU-intensive computations are executed on the WebAssembly side.

This approach preserves the web ecosystem that developers have been using

for years, while also accelerating performance-critical components.

5.3. Direct Access to the DOM

By design, WebAssembly cannot directly access the DOM or browser APIs.

This limitation allows WebAssembly to be used not only for browsers but also

for general-purpose platforms, maintaining security and a simple architecture by

leaving web-specific concepts to the host environment. Therefore, to modify the

DOM, JavaScript bridges are utilized, as illustrated in the following example.

130

Figure 4. Example of a JavaScript bridge

6. LANGUAGE ECOSYSTEMS AND TOOLCHAIN

The language ecosystems and tools used with WebAssembly can be

categorized as follows:

6.1. Emscripten and C/C++

Emscripten is an LLVM-based compilation toolchain used in WebAssembly

that compiles C/C++ code into WebAssembly (and asm.js if necessary).

For example,

// sum.c

int sum(int a, int b) {

 return a + b;

} a simple C code like the following can be compiled using command:

emcc sum.c -O3 -s WASM=1 -s EXPORTED_FUNCTIONS="['_sum']" -o

sum.js

As a result of this process:

• sum.wasm: WebAssembly module,

• sum.js: "Glue" code that loads and executes the module,

• Optionally, a sum.html file are produced.

Emscripten is extensively used for porting game engines and desktop

applications to the web, providing SDL, OpenGL to WebGL conversions,

POSIX-like APIs, and threading support (Emscripten, 2021) .

6.2. Rust ve Wasm-bindgen Rust and Wasm-bindgen

Rust is naturally well-suited for WebAssembly due to its memory safety

guarantees and zero-cost abstractions.

In the Rust ecosystem:

• Compilation can be done directly to Wasm using the wasm32-

unknown-unknown target.

• The wasm-bindgen library automatically generates glue code while

exporting Rust functions to JS.

• wasm-pack simplifies integration with bundlers and automates the

process of publishing packages to NPM.

Here is a simple example in Rust:

131

Figure 5. Rust example

This code can be compiled using the wasm-pack build command and can be

used as a JavaScript project by being packaged as an NPM module.

6.3. AssemblyScript

AssemblyScript is a statically typed language that closely resembles

TypeScript and is designed to be compiled directly to WebAssembly.

• The learning curve is low for JavaScript/TypeScript developers.

• The type system is closely aligned with WebAssembly's data types.

• It works in conjunction with tools like Binaryen and wasm-opt to

produce compact Wasm modules.

AssemblyScript offers a "soft transition" to WebAssembly, particularly for

developers coming from the JavaScript world, and there are real-world use

cases such as accelerating hash functions in tools like Webpack.

6.4. TinyGo and the Go Ecosystem

TinyGo is an optimized alternative Go compiler for embedded systems and

WebAssembly. It can produce significantly smaller .wasm files (e.g., a few

hundred KB compared to the classic Go compiler). It enables the creation of

Wasm components that operate on the server/edge side with the WASI target.

6.5. .NET ve Blazor WebAssembly .NET and Blazor WebAssembly

Microsoft's Blazor WebAssembly framework enables running .NET code

written in C# in the browser via WebAssembly.

• A .NET runtime and application code downloaded to the browser are

executed in Wasm format.

• UI components are defined using Razor/HTML, while event handling

and business logic are implemented in C#.

• .NET WebAssembly build tools are based on Emscripten and provide

AOT compilation support.

This approach facilitates the entry of not only JavaScript but also C#

developers into the world of WebAssembly.

132

7. PERFORMANCE ANALYSIS AND COMPARISON WITH

JAVASCRIPT

7.1. Performance Advantages of WebAssembly

The study by Haas and colleagues demonstrates that elements such as:

• Compact binary format,

• Single-pass validation,

• Efficient JIT/AOT compilation

can provide significant speed advantages over JavaScript, especially in

numerically intensive (CPU-bound) tasks. (Haas et al., 2017).

Research by Yan and colleagues examining the performance of

WebAssembly applications reports that, across various benchmark sets,

WebAssembly is faster than JavaScript in most scenarios. However, it also

indicates that optimizations can sometimes lead to unexpected results. (Yan et

al., 2021).

The performance gains achieved through the use of WebAssembly can be

summarized as follows:

• In loop-based computations, large matrix operations, and cryptography,

WebAssembly can typically provide several times the speedup.

• Because the code size is smaller, download and load times are reduced.

7.2. Strengths of JavaScript

Despite the advantages of WebAssembly, there are still areas where

JavaScript remains very strong. Features such as DOM manipulation, event

handling, UI management, dynamic data structures, and reflection, as well as

the NPM ecosystem and mature libraries, are aspects in which JavaScript can be

considered superior.

Therefore, many real-world applications employ a hybrid architecture that

uses both "JS + Wasm" together. A significant portion of the logic and UI is

handled on the JavaScript side, while core computation libraries are maintained

on the WebAssembly side.

7.3. SIMD, Multithreading, and WebAssembly 2.0

The WebAssembly 2.0 draft and ongoing efforts aim to standardize features

to enhance performance, including:

• SIMD instructions,

• Multithreading (threads) and atomic memory operations,

• Multiple return values,

• Reference types and GC integration (Webassembly, 2025).

133

These capabilities will make WebAssembly significantly more attractive in

the future for fields such as image processing, machine learning, and scientific

computing.

8. SECURITY MODEL

8.1. Sandbox Execution and Memory Safety

WebAssembly adopts the following principles for secure execution:

• Code runs within a sandbox and cannot directly access real operating

system resources.

• Memory accesses are controlled within linear memory boundaries;

accessing an invalid address results as a "trap".

• The type system prevents passing parameters of incorrect types to

functions.

These features create a natural barrier against classic buffer overflow and

most memory corruption attacks.

8.2. Speculative Execution and Side-Channel Attacks

Speculative execution attacks, such as Spectre, affect not only JavaScript in

the browser environment but also WebAssembly. McIlroy et al. have

highlighted that speculative side-channel attacks should be examined from the

perspective of programming languages, pointing out that classical abstract

machine models do not account for these threats. They emphasize that such

threats need to be considered during the design phase for new languages like

WebAssembly. (Mcilroy et al., 2019).

Narayan and others' Swivel project provides a compiler-based framework

that hardens WebAssembly code against Spectre attacks. (Narayan et al., 2021).

8.3. WebAssembly and Security in the Real World

Musch and colleagues, in their study of the Alexa Top 1M websites, found

that a significant portion of sites using WebAssembly engaged in malicious

activities such as cryptocurrency mining and obfuscation (Musch, Wressnegger,

Johns, & Rieck, 2019). The study by Hilbig and colleagues, which analyzed

8,461 real-world WebAssembly binaries, reveals the diversity of use cases and

indicates that a significant portion of the security vulnerabilities still stems from

inherited C/C++ source code. (Hilbig et al., 2021).

A comprehensive security survey from 2024 indicates that static and

dynamic analysis tools for WebAssembly are rapidly evolving, particularly

highlighting the increasing adoption of Wasm in smart contracts and blockchain

environments (Perrone & Romano, 2024).

134

The 2025 study "Wemby's Web" demonstrates that data read from linear memory

is being transferred to security-critical locations in many sites without sufficient

validation, potentially giving rise to new attack vectors (Draissi et al., 2025).

9. OUT-OF-BROWSER WEBASSEMBLY: WASI, SERVER, AND

EDGE SCENARIOS

9.1. WebAssembly System Interface (WASI)

WASI is a POSIX-like system interface standard for WebAssembly. Its goal

is to provide access to essential system services in Wasm modules, including:

• File system,

• Time and randomness,

• Standard input/output,

• Socket access

With WASI, WebAssembly becomes a general-purpose execution

environment outside the browser, enabling its use in server environments, edge

platforms, and embedded systems (Perrone & Romano, 2024).

When looking at server-side and edge platforms, services like Cloudflare

Workers, Fastly Compute@Edge, and similar platforms utilize WebAssembly

as a lightweight isolation layer to execute functions with millisecond-scale

startup times. This approach offers several advantages over traditional

containers or VMs, including:

• Significantly faster "cold start" times

• Lower memory footprint

• Language independence (any language that can be compiled to Wasm)

• Strong sandboxing

The small code size and portability of WebAssembly have made it attractive

for embedded systems and IoT devices as well. Compilers like TinyGo and

recent surveys indicate that WebAssembly can be utilized as a software-based

security layer even on hardware that does not provide memory isolation.

(Orlando et al., 2025).

10. APPLICATION AREAS

10.1. Games and Graphics Applications

Game engines like Unity and Unreal Engine can export games to the

browser using a combination of WebGL and WebAssembly. Thanks to tools

like Emscripten, the following can operate on the web with high frame rates:

• 3D games

• Physics simulations

• Visual editors

135

10.2. Scientific and Numerical Computing

WebAssembly can transform the browser into a lightweight scientific

computing environment for CPU-intensive tasks such as large matrix

multiplications, linear algebra, and statistical simulations. In recent years, there

has been an increasing number of projects using the Rust+Wasm combination in

web-based data visualization and analysis tools.

10.3. Cryptography and Security Software

Porting cryptographic libraries to WebAssembly:

• Enhances performance,

• Allows for the processing of sensitive data on the client side,

• May reduce server load in some case.

However, special precautions must be taken against speculative execution

and side-channel attacks; research projects like Swivel(Narayan et al., 2021)

and Wasm-Mutate(Cabrera-Arteaga et al., 2024) provide significant

contributions in this area.

10.4. Blockchain and Smart Contracts

Many next-generation blockchain platforms prefer WebAssembly as a smart

contract execution environment due to its language independence, formal

semantics, and the guarantee of safe execution within a sandbox. (Perrone &

Romano, 2024).

10.5. Porting Legacy Desktop Applications to the Web

Compiling long-standing desktop libraries and applications written in C/C++

to WebAssembly has led to the emergence of installation-free, platform-

independent web versions. Notable examples of this approach include Google

Earth, various CAD/graphics applications, and retro game emulators.

11. LIMITATIONS AND CHALLENGES

11.1. Toolchain Complexity

While tools such as Emscripten, wasm-bindgen, wasm-pack, the Blazor

toolchain, and the AssemblyScript compiler are powerful, they can appear

complex, especially for beginners. The installation of the toolchain (including

LLVM, Node.js, Python, etc.) and platform-specific configurations add an

additional burden.

11.2. Debugging

136

Although source map support and browser developer tools for

WebAssembly have improved, line-by-line tracking of optimized binary code is

more challenging compared to JavaScript. This situation can adversely affect

the experience of developers, particularly in complex Rust/C++ projects.

11.3. Security-Related Limitations

While the sandbox model offers security advantages, it also presents

challenges such as:

• The inability to make direct system calls,

• Dependency on WASI or host functions for file system and network

access

which can necessitate additional architectural layers for certain types of

applications, making installation and deployment more cumbersome.

11.4. Risks in Real-World Usage

The misuse of WebAssembly (such as cryptocurrency mining, obfuscation,

exploit kits, etc.) and inadequate security analysis of modules create new attack

surfaces on the browser side. Large-scale analyses have shown that a significant

portion of sites using Wasm exhibit weak security practices. (Musch et al.,

2019).

12. FUTURE PERSPECTIVE

12.1. WebAssembly 2.0 ve 3.0

The W3C and the WebAssembly community continue to expand the core

specifications with versions 2.0 and 3.0. Features such as SIMD, reference

types, tail calls, exception handling, and GC integration will enhance both

performance and language compatibility. (Webassembly, 2025).

12.2. Component Model and Modularity

The developing Component Model aims to enable different Wasm modules

and languages to work together in a type-safe and versionable manner. This will

allow developers to build large systems from small, reusable Wasm components

(Haas et al., 2017).

12.3. Industry Perspective

A 2025 industry-focused study emphasizes that WebAssembly is

increasingly adopted, particularly in the fields of gaming, video processing, data

analysis, and fintech. However, it also highlights the ongoing need for

137

improvements in debugging, security, and ecosystem maturity. (Ghosh et al.,

2018).

13. CONCLUSION

WebAssembly is one of the paradigm-shifting technologies in the web and

the broader software world. By providing a low-level yet secure binary format

and a formally defined virtual machine model, it:

• Enables high-performance applications on the web,

• Provides a lightweight isolation layer in server and edge environments,

• Serves as a common target for numerous programming languages.

Both academic research and industrial use cases demonstrate that

WebAssembly is not merely a "browser optimization" but a concrete

representation of the vision for a portable execution layer.

138

REFERENCES

Cabrera-Arteaga, J., Fitzgerald, N., Monperrus, M., & Baudry, B. (2024).

WASM-MUTATE: Fast and effective binary diversification for

WebAssembly. Computers and Security, 139(January), 103731.

doi:10.1016/j.cose.2024.103731

Draissi, O., Cloosters, T., Klein, D., Rodler, M., Musch, M., Johns, M., & Davi,

L. (2025). Wemby’s Web: Hunting for Memory Corruption in

WebAssembly. Proceedings of the ACM on Software Engineering,

2(ISSTA), 1326–1349. doi:10.1145/3728937

Emscripten, (2021), APIs, Accessed on 12/01/2025 at the URL

https://emscripten.org/

Ghosh, T., Debnath, A., Paul, A., Chattopadhyay, C., Hazra, S., & Singh, S. K.

(2018). Hybrid Routing Approach Depending on Different Message

Types in VANET, 3(5), 335–338.

Haas, A., Rossberg, A., Schuff, D. L., Titzer, B. L., Holman, M., Gohman, D.,

… Bastien, J. F. (2017). Bringing the web up to speed with

WebAssembly. ACM SIGPLAN Notices, 52(6), 185–200.

doi:10.1145/3062341.3062363

Hilbig, A., Lehmann, D., & Pradel, M. (2021). An empirical study of real-world

webassembly binaries: Security, languages, use cases. The Web

Conference 2021 - Proceedings of the World Wide Web Conference,

WWW 2021, 2696–2708. doi:10.1145/3442381.3450138

Khomtchouk, B. B. (2021). WebAssembly enables low latency interoperable

augmented and virtual reality software, 1–11. Tarihinde adresinden

erişildi http://arxiv.org/abs/2110.07128

Mcilroy, R., Sevcik, J., Tebbi, T., Titzer, B. L., & Verwaest, T. (2019). Spectre

is here to stay: An analysis of side-channels and speculative execution, 1–

26. Tarihinde adresinden erişildi http://arxiv.org/abs/1902.05178

Musch, M., Wressnegger, C., Johns, M., & Rieck, K. (2019). New kid on the

web: A study on the prevalence of webassembly in the wild. Lecture

Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 11543 LNCS,

23–42. doi:10.1007/978-3-030-22038-9_2

Narayan, S., Disselkoen, C., Moghimi, D., Cauligi, S., Johnson, E., Gang, Z., …

Stefan, D. (2021). Swivel: Hardening WebAssembly against spectre.

Proceedings of the 30th USENIX Security Symposium, 1433–1450.

Orlando, T., D’Agati, L., Longo, F., & Merlino, G. (2025). A Survey of

WebAssembly Usage for Embedded Applications: Safety and Portability

Considerations. CEUR Workshop Proceedings, 3962.

139

Perrone, G., & Romano, S. Pietro. (2024). WebAssembly and security: A

review. Computer Science Review, 56. doi:10.1016/j.cosrev.2025.100728

Tufegdžić, J., Dodović, M., Ogrizović, M., Babić, N., Dukić, J., & Drašković,

D. (2024). Application of WebAssembly Technology in High-

Performance Web Applications. Proceedings - 2024 11th International

Conference on Electrical, Electronic and Computing Engineering,

IcETRAN 2024, (June), 3–6.

doi:10.1109/IcETRAN62308.2024.10645198

Wallentowitz, S., Kersting, B., & Dumitriu, D. M. (2022). Potential of

WebAssembly for Embedded Systems. 2022 11th Mediterranean

Conference on Embedded Computing, MECO 2022, 1–4.

doi:10.1109/MECO55406.2022.9797106

Webassembly, (2025), webassembly.org, Accessed on 12/01/2025 at the URL

https://webassembly.org/specs/

Wikipedia, (2017), WebAssembly, Accessed on 12/01/2025 at the URL

https://en.wikipedia.org/wiki/WebAssembly

Yan, Y., Tu, T., Zhao, L., Zhou, Y., & Wang, W. (2021). Understanding the

performance of webassembly applications. Içinde IMC ’21: Proceedings

of the 21st ACM Internet Measurement Conference (ss. 533–549).

doi:10.1145/3772356.3772396

140

Chapter 8

Machine Learning Regression Models:

Methods and Application in

Insurance Cost Prediction

Murat BİNİCİ1

ABSTRACT
Th�s chapter presents an emp�r�cal study on the use of mach�ne learn�ng–

based regress�on models to pred�ct health �nsurance costs. The analys�s draws
on the Med�cal Cost Personal Dataset, wh�ch �ncludes demograph�c and
behav�oral var�ables such as age, BMI, smok�ng status, number of ch�ldren, sex,
and reg�on. After standard preprocess�ng steps—�nclud�ng encod�ng of
categor�cal var�ables and an 80–20 tra�n–test spl�t—three regress�on models
were �mplemented: L�near Regress�on, Random Forest Regressor, and XGBoost
Regressor. Model performance was assessed us�ng f�ve evaluat�on metr�cs (R²,
MAE, MSE, RMSE, and MAPE). The f�nd�ngs show that ensemble methods
outperform the l�near model, w�th the Random Forest Regressor ach�ev�ng the
h�ghest pred�ct�ve accuracy and the lowest error measures. XGBoost also
demonstrated strong performance, espec�ally for observat�ons w�th h�gher cost
values, wh�le L�near Regress�on struggled to capture nonl�near patterns �nherent
�n the dataset. Feature �mportance analyses conf�rmed that smok�ng status �s the
dom�nant pred�ctor across all models, followed by BMI and age. Overall, the
results h�ghl�ght the effect�veness of ensemble-based mach�ne learn�ng
approaches �n model�ng complex and nonl�near relat�onsh�ps �n �nsurance cost
pred�ct�on, wh�le also recogn�z�ng the cont�nued value of L�near Regress�on �n
contexts where �nterpretab�l�ty rema�ns essent�al.

Keywords: Health �nsurance, Cost pred�ct�on, Mach�ne learn�ng, L�near
regress�on, Random forest, XGBoost

 Ass�st. Prof. Dr., B�tl�s Eren Un�vers�ty, Faculty of Eng�neer�ng and Arch�tecture, Department of Mechan�cal 1

Engineering, mbinici@beu.edu.tr, ORCID: 0000-0003-1814-438X.

141

1. INTRODUCTION

In recent years, Machine Learning (ML) and Artificial Intelligence (AI)

techniques have played a growing role in data analytics and decision-support

systems, and their influence continues to grow. In today’s data-driven world,

organizations increasingly rely on AI-driven approaches to extract valuable

information from complex and high-dimensional datasets, going beyond the

capabilities of traditional statistical methods. These techniques not only learn

from historical information but also help anticipate future trends, offering

institutions a strategic advantage in their decision-making processes.

Within the broader field of data analytics, regression models serve as one of

the key components of predictive analytics. Regression analysis aims to

mathematically describe the relationship between independent variables and a

dependent variable. By doing so, it becomes possible to estimate the future

value of an outcome based on past observations. In domains such as healthcare,

finance, and insurance, regression-based cost, risk, or demand forecasting can

significantly enhance the effectiveness of AI-supported decision-making

systems.

The insurance industry is one of the fields in which predictive modeling is

used most extensively, largely due to its strong emphasis on risk assessment and

cost estimation. Setting insurance premiums accurately forms the basis of a fair,

sustainable, and profitable insurance system for both individuals and institutions

(Ivanovna et al., 2018). For this reason, it is essential to model the influence of

factors such as age, gender, body mass index (BMI), smoking habits, and family

structure on premium levels in a reliable way. Although traditional linear

regression models have shown some success in explaining these relationships,

AI-driven algorithms such as Random Forest and XGBoost have gained

prominence in recent years for their ability to capture nonlinear patterns and

deliver higher predictive accuracy (Kapse et al., 2025; Mishra et al., 2024).

Previous research has extensively explored the prediction of health insurance

costs. While some of these studies rely on classical linear regression models, the

growing volume of data and increasing computational power in recent years

have encouraged the use of more advanced machine learning techniques. For

instance, Panda et al. (2022) compared Lasso, Ridge, Simple Linear,

Polynomial Regression and Multiple Linear models in estimating health

insurance premiums, reporting that the polynomial regression model achieved

both the lowest error rate (RMSE = 5100.53) and the highest explanatory power

(R² = 0.80).

Similarly, Kaushik et al. (2022) proposed a comprehensive framework for

the prediction of health insurance premiums employing a ML-based regression

142

approach. Their framework incorporates not only model performance, but also

data preprocessing, hyperparameter tuning and feature selection. The study

demonstrates that the accuracy of regression models largely rely on the quality

of data cleaning, the relevance of selected variables, and the choice of an

appropriate combination of models.

Bhardwaj and Anand (2020) compared Multiple Linear Regression, Gradient

Boosting and Decision Tree algorithms using individual health data, reporting

that the Gradient Boosting model succeeded the highest accuracy, with a rate of

99.5%. In a more recent study, Bader and Maalouf (2024) analyzed the

determinants of health insurance premiums by applying Multiple Linear

Regression, Lasso, Ridge and Support Vector Regression (SVR) models, and

found that the SVR approach produced the lowest error level (RMSE = 0.84).

As these studies demonstrate, both linear and nonlinear approaches offer

strong predictive capability in estimating health insurance costs. In addition, the

framework and hybrid models developed in recent years have been used

effectively not only for calculating individual premium levels, but also for

examining regional variations, identifying risk groups, and optimizing policy

pricing strategies. Consequently, AI- and machine-learning-based regression

approaches enhance the accuracy of financial forecasting in the health insurance

sector while also providing a data-driven perspective for policy development.

The purpose of this work is to determine the factors that affect insurance

premiums and to collate the predictive performance of several ML-based

regression models. In this context, Linear Regression, XGBoost Regressor and

Random Forest Regressor models are implemented, and their outputs are

evaluated. This approach allows for a clearer assessment of how effectively

different machine learning techniques can model and forecast health insurance

costs.

2. FOUNDATIONS OF REGRESSION AND MACHINE

LEARNING

2.1. The Concept of Regression Analysis

Regression analysis is a fundamental method used in machine learning and

statistical modeling to mathematically describe the relation between

independent variables and a dependent variable. In its broadest sense, regression

examines how a given variable (typically denoted as Y) is influenced by other

variables (X₁, X₂, …, Xₙ) and models this relationship quantitatively to enable

prediction. The main objective of regression is to identify the structural

relationship among variables and to determine the function that best explains

this association (Montgomery et al., 2021).

143

Regression models can take various forms relying on the structure of the

dataset and the nature of the relationships among variables. Simple linear

regression analyzes the impact of a single independent variable on a dependent

variable. For example, attempting to explain insurance premiums solely through

an individual’s age would fall under this type of model. The general form of the

model can be expressed as in Eq. 1.

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜀 (1)

In equation (1), 𝑌 represents the dependent variable, 𝑋 denotes the

independent variable, 𝛽₀ is the intercept term, and 𝛽₁ refers to the regression

coefficient. The term 𝜀 captures the random error component that the model is

unable to explain.

In a multiple linear regression model, the effects of independent variables on

a dependent variable are examined simultaneously. Such models are widely

utilized in areas like the social sciences, engineering, economics, and health

insurance analysis. For instance, multiple linear regression is applied to

understand how age, smoking status, body mass index (BMI) and regional

factors collectively influence insurance premiums. The model is typically

expressed using Eq. 2.

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + . . + 𝛽𝑛𝑋𝑛 + 𝜀 (2)

Eq. 2 assumes a linear relationship among the variables, meaning that the

effects of the independent variables are additive and constant. However, many

relationships observed in real-world data are not linear. In such cases, nonlinear

regression models become more appropriate.

Nonlinear regression models are utilized when the relations between

variables takes a complex, curved, or exponential form. For example, the rapid

increase in healthcare expenditures after a certain age threshold or the nonlinear

impact of smoking on insurance premiums are situations in which such models

are appropriate. In these cases, the model can be expressed as in Eq. 3.

𝑌 = 𝑓(𝑋1, 𝑋2 … , 𝑋𝑛; 𝛽1, 𝛽2, … , 𝛽𝑛) + 𝜀 (3)

In Eq. 3, 𝑓 denotes a nonlinear function, which may take forms such as

logarithmic, exponential, or polynomial. Although nonlinear models often

provide a better fit to the data, they tend to be more complex in terms of

interpretability (Kutner et al., 2005).

144

In sum, regression analysis not only quantifies the relationships among

variables but also serves as a powerful tool in predictive analytics and decision-

support systems. With advances in machine learning and artificial intelligence,

the notion of regression has moved beyond traditional statistical approaches and

has become a central component of data-driven modeling.

Machine learning (ML) methods are generally grouped into two main areas:

unsupervised learning and supervised. Supervised learning refers to an approach

in which the model learns from previously labeled data and uses this knowledge

to make predictions for new observations. In such models, the system identifies

patterns between the inputs and output, enabling it to generate forecasts for

similar data in the future (James et al., 2021).

Regression analysis is one of the most fundamental forms of supervised

learning, as regression models enable the prediction of a continuous (numerical)

outcome based on historical data. The supervised learning process typically

consists of three main stages:

a. Training the model: The model is taught the relationship among the

variables using labeled data.

b. Validating the model: The model’s capability to generalize is assessed,

and the risk of overfitting is evaluated.

c. Making predictions: The model’s predictive capability is tested on

new or previously unseen data.

Regression models, which lie at the core of this process, are among the most

suitable approaches when the outcome of interest is continuous—such as price,

cost, income, temperature, or production rate. In contexts like the insurance

industry, where problems such as premium estimation or cost analysis involve a

continuous dependent variable, regression techniques can be applied directly

and effectively.

Within the supervised learning framework, regression models represent a

key area in which methods that originated in traditional statistics have evolved

into AI-driven approaches. While classical linear regression explains the

relationship among variables under a set of assumptions, modern machine

learning regression algorithms learn these relationships from the data without

depending on such assumptions. This capability is particularly advantageous for

nonlinear or high-dimensional datasets, where it often leads to substantially

higher predictive accuracy (Hastie et al., 2017).

For example, algorithms such as XGBoost and Random Forest Regressors

preserve the statistical foundation of classical regression while adding the

flexibility of artificial intelligence to the learning process. These models

perform strongly in identifying complex patterns and capturing interactions

145

among variables, particularly in large datasets. In this sense, regression analysis

can be viewed not only as a statistical prediction tool but also as an AI-driven

predictive core within supervised learning.

At the core of regression analysis lies the mathematical modeling of the

relations between independent variables and a dependent variable. The

dependent variable represents the outcome of interest or the value to be

predicted, whereas the independent variables capture the factors that influence

or help explain that outcome (Gujarati and Porter, 2009). Accordingly, the

purpose of regression is to determine as accurately as possible how variations in

the independent variables are effective on the dependent variable.

This relationship is typically expressed in a functional form as in Eq. 4.

𝑌 = 𝑓(𝑋1, 𝑋2, . . . , 𝑋𝑛) + 𝜀 (4)

In Eq. 4, 𝑌 denotes the dependent variable, while 𝑋1, 𝑋2, ..., 𝑋𝑛 represent

the independent variables. The function 𝑓(⋅) captures the systematic

relationship among these variables, and 𝜀 stands for the random error term that

the model cannot explain. The form of this function varies relying on the type of

regression method being employed. For instance, linear regression assumes a

linear relationship, whereas nonlinear or AI-based models allow this

relationship to take more complex, curved, or interaction-driven forms.

Selecting and modeling independent variables appropriately is crucial for the

reliability of regression analysis. Variable selection directly affects both the

explanatory power of the method (R²) and its capability to generalize (Guyon

and Elisseeff, 2003). Including unnecessary or highly correlated variables may

lead to multicollinearity, which can undermine the significance of coefficients.

For this reason, relationships among variables must be examined carefully,

particularly in multiple regression settings.

AI-based regression models offer a significant advantage at this point.

Models such as XGBoost and Random Forest can automatically identify which

independent variables contribute most to explaining the dependent variable.

Through feature-importance calculations, these models quantify the relative

influence of each predictor (Lundberg and Lee, 2017). This capability makes it

easier to understand complex interactions that are often difficult to interpret in

classical regression analysis.

For instance, in a model designed to predict insurance premiums, the

dependent variable may be charges, while the independent variables could

include factors such as age, bmi, children, smoker, and region. In such a case,

an AI-based model can automatically identify smoker as the most influential

146

factor in predicting insurance costs. This not only enhances predictive accuracy

but also improves the interpretability of variable effects.

In conclusion, accurately modeling the relationship between independent

variables and dependent is a critical determinant of the effectiveness of AI-

based regression approaches. Models that capture this relationship appropriately

not only give highly correct predictions but also provide meaningful

information for decision-support systems.

2.2. Linear Regression

Linear regression is a fundamental approach that models the expected value

of a dependent variable as a linear combination of explanatory variables and

their associated parameters. Its general form can be expressed by using Eq. 5.

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑛𝑋𝑛 + 𝜀 (5)

Here, 𝑌 denotes the dependent variable, 𝑋𝑛 represents the explanatory

variables, 𝛽𝑛 refers to the coefficients, and 𝜀 stands for the error term. The

parameters are calculated utilizing Ordinary Least Squares (OLS), which

minimizes the sum of squared distictions between the predicted and actual

values (Eq. 6).

𝑚𝑖𝑛 ∑ (𝑦𝑖 − 𝑌𝑖)2𝑛
𝑖=1 (6)

The reliability of the model depends on the reasonable fulfillment of several

standard assumptions: (i) Linearity, meaning the expected value of the

dependent variable is a linear combination of the predictors; (ii)

Homoscedasticity, which requires the error variance to remain constant; and

(iii) Absence of multicollinearity, indicating that the explanatory variables are

not perfectly or strongly linearly related.

In practice, these assumptions are examined using simple diagnostic tools

such as residual plots, Breusch–Pagan or White tests, and the Variance Inflation

Factor (VIF). When necessary, variable transformations, weighted least squares,

or regularization techniques (such as Ridge or Lasso) may be applied (James et

al., 2021).

The interpretation of the coefficients is simple: 𝛽𝑛 demonstrates the marginal

impact of a one-unit increase in 𝑋𝑛 on 𝑌, holding all other variables constant. In

log-transformed models, this effect is often interpreted as an approximate

percentage change.

147

Linear regression is strong in terms of interpretability, computational

efficiency, and its role as a fundamental baseline model. However, its

performance may weaken in the presence of nonlinear patterns,

heteroskedasticity, outliers, or substantial multicollinearity. In such situations,

transformations, regularization methods, or more flexible ones such as tree-

based and boosting models are recommended as complementary analyses

(Hastie et al., 2017).

2.3. Decision Trees and Ensemble Regression Methods

A Decision Tree Regressor models the data by repeatedly splitting it into

two groups, choosing feature–threshold combinations that reduce prediction

error (often measured by MSE). Each leaf of the tree returns a simple estimate,

such as the mean value of the target variable. Overfitting is controlled by

limiting the depth of the tree, requiring a minimum number of samples per leaf,

or using pruning. Decision trees do not require feature scaling and are relatively

easy to interpret thanks to their rule-based structure. However, a single tree can

be highly variable, which is why ensemble approaches, such as random forests

or boosting, are often preferred in practice (Blockeel, 2023).

Random Forest Regressor is a bagging model that trains many decision trees

on bootstrap samples. It uses a randomly selected subset of features at each

split. The predictions from all trees are then averaged. These sources of

randomness reduce the correlation between trees, which in turn lowers the high

variance typically seen in a single decision tree. Random forests can capture

nonlinear relationships and interactions effectively, and they are generally

robust to scaling issues and outliers. They also offer practical advantages such

as the out-of-bag (OOB) error, which provides an internal estimate of

generalization performance, and measures of variable importance based on

impurity reduction or permutation. The overall performance largely depends on

tuning hyperparameters such as the the number of features considered at each

split (max_features), number of trees (n_estimators), minimum samples per leaf

and tree depth. These choices help balance bias and variance depending on the

data size and noise level (Probst et al., 2019).

XGBoost, or more generally the Gradient Boosting Regressor, builds a

strong predictive model by adding weak learners sequentially and additively,

each focused on reducing the residual errors of the previous steps. At every

iteration, a shallow decision tree is trained to explain the remaining residuals.

Techniques such as learning rate (shrinkage) and subsampling of rows and

features help prevent overfitting, while early stopping is often used to track

generalization performance (Chen and Guestrin, 2016).

148

XGBoost includes several engineering improvements, such as L1/L2

regularization, limits on tree depth and number of leaves, split criteria optimized

for sparse data, automatic handling of missing values, and scalable memory-

access patterns for large datasets. In practice, performance is driven by the joint

tuning of number of trees, learning rate, maximum depth and subsampling ratios

(Chen and Guestrin, 2016).

Feature importance shows which input variables matter most in a model.

Tree-based models usually measure this by how much each split reduces error,

while model-agnostic methods such as permutation importance or SHAP values

offer alternative ways to check variable effects. However, highly correlated

features may appear more important than they are. Using several importance

measures together generally gives a more reliable understanding (Fisher et al.,

2019).

2.4. Regression in the Context of Artificial Intelligence

In the AI context, regression goes beyond classical statistics by using

algorithms that can learn nonlinear patterns and interactions in the data. Models

like tree ensembles, gradient boosting, and regularized linear models often

provide higher accuracy and better scalability. However, stronger models can be

harder to interpret, so tools such as SHAP values, permutation importance, and

solid validation methods are needed. In practice, AI-based regression is widely

used from predicting health insurance premiums to estimating energy demand.

It can produce useful insights when supported by good preprocessing, proper

model choice, and reliable evaluation metrics (James et al., 2021).

3. MATERIALS AND METHODS

This section describes the dataset employed in the work, the variables it

contains, and the preprocessing steps applied before model development. The

analysis is based on the Medical Cost Personal Dataset obtained from Kaggle,

which includes 1,338 observations and seven variables related to individual

demographic and lifestyle characteristics. The section introduces the structure of

the data, summarizes key attributes of numerical and categorical variables, and

outlines the steps taken to prepare the dataset for modeling, including

descriptive analysis and checks for missing values. These elements provide the

foundation for building and comparing the regression models used in the study.

3.1. Dataset Overview

The dataset utilized in this study is the insurance.csv file obtained from the

“Medical Cost Personal Datasets” resource on Kaggle (Abdelghany, 2025).

149

3.1.1. Variables

The dataset consists of 1,338 observations and includes seven variables:

charges (target), age, sex, bmi, children, smoker, and region. The dataset is

complete with no missing observations. Information about the variables is

presented in Table 1.

The variable charges, which represents the insurance premium, is the target

(dependent) variable and is continuous. The aim is to predict an individual’s

health insurance premium using the remaining six independent variables. The

variable bmi indicates body mass index and is also continuous. The integer

variables in the dataset are age and children. The age variable represents the

individual’s age, while children denotes the number of children they have. The

sex variable identifies the individual’s gender and is categorical. Two additional

categorical variables are smoker and region. The first indicates whether the

person is a smoker, and the second specifies the geographical region in which

they live (northeast, northwest, southeast, southwest).

Table 1. Information about the variables

Variables Definition Type Obs.

charges

(target)
Health insurance premium (USD) Continious 1338

age Participant's age Integer 1338

bmi Body mass index (kg/m²) Continious 1338

children Number of dependent children Integer 1338

sex Participant's gender (female/male) Categorical 1338

smoker Smoking (yes/no) Categorical 1338

region
Region of residence

(northeast/northwest/southeast/southwest)
Categorical 1338

3.1.2. Descriptive statistics

The descriptive statistics for the numerical variables are given in Table 2,

reporting the standard deviation, mean, maximum and minimum values for each

variable.

Table 2. Descriptive statistics for the numeric variables

Variables min max mean Std.

charges

(target)
1121.87 63770.43 13270.42 12110.01

age 18 64 39.21 14.05

bmi 15.96 53.13 30.66 6.10

children 0 5 1.09 1.21

150

The distribution of the categorical variable sex in the insurance dataset is

presented in Table 3. Approximately half of the participants are male and the

other half are female, indicating a well-balanced gender distribution. This

balance reduces the risk of bias related to class imbalance when the gender

variable is included in the modeling process.

Table 3. Statistics for the sex variable

Category Observations Percentage (%)

female 662 49.5 %

male 676 50.5 %

Total 1338 100 %

The statistics for smoker, another categorical variable, are presented in Table

4. Approximately 20.5% of the individuals in the dataset are smokers, while

79.5% are non-smokers. This distribution gives the smoker variable

considerable discriminative power during modeling, as the average insurance

cost for smokers is roughly 3.8 times higher than that of non-smokers.

Table 4. Statistics for the smoker variable

Category Observations Percentage (%)

no 1064 79.5 %

yes 274 20.5 %

Total 1338 100 %

Finally, the statistics for the categorical variable region are provided in Table

5. As shown, the dataset is regionally well balanced, with each of the four

regions represented by a similar number of observations. This balance reduces

the likelihood of regional bias during modeling and allows the effect of the

region variable to be examined more reliably.

Table 5. Statistics for the region variable

Category Observations Percentage (%)

southeast 364 27.2 %

southwest 325 24.3 %

northwest 325 24.3 %

northeast 324 24.2 %

Total 1338 100 %

151

3.2. Data Preprocessing

Data preprocessing refers to the set of systematic transformation, cleaning,

and standardization steps applied to raw data to prepare it for analysis and

modeling. In other words, it aims to make sure that the input data employed by

the model is correct, consistent, complete, and statistically meaningful

(Kotsiantis et al., 2006).

3.2.1. Missing value analysis

Checking for missing values is a crucial step in data preprocessing, as it

helps preserve data integrity and the predictive power of the method. In this

stage, missing observations are systematically identified, their proportions are

calculated, and the nature of the missingness is evaluated. Simple statistical

functions such as isnull() or isna() support this analysis. When the amount of

missing data is low, basic imputation methods such as replacing values with the

mode, median, or mean may be sufficient. For higher levels of missingness,

regression-based approaches, KNN imputation, or multiple imputation (MICE)

techniques are recommended. Importantly, imputation must be performed only

on the training data, with the same transformation applied to the test data, to

avoid data leakage. The goal of this process is to prevent missingness from

introducing bias into the model, reduce information loss, and improve

predictive performance (Little & Rubin, 2019; Jadhav et al., 2019).

In the insurance dataset used in this study, there are no missing observations.

The checks conducted on the dataset show that all seven variables are fully

populated for all 1,338 records, with no NaN or empty values. This simplifies

the preprocessing stage considerably and allows the analysis to move directly to

model development.

3.2.2. Encoding of categorical variables

Transforming (encoding) categorical variables is an essential step in machine

learning and regression analysis, as most models operate only on numerical

inputs. This process converts text-based categories into statistically meaningful

numerical representations. The three most common methods are Dummy

Encoding, One-Hot Encoding and Label Encoding, each suited to different

model types and data structures (Kuhn and Johnson, 2019; Potdar et al., 2017).

In Dummy Encoding, only K−1 columns are created from K categories. One

category is left out as the reference (baseline). This prevents linear dependence

among variables and helps avoid multicollinearity.

In One-Hot Encoding, a separate binary (0/1) column is created for each

category. This removes any ordinal relationship among the classes and allows

152

the model to treat each category as an independent indicator variable. However,

when a variable has many categories, the number of columns can increase

rapidly, leading to a high-dimensional feature space. For this reason, one-hot

encoding is commonly used with methods such as linear regression, SVM, and

neural networks.

In Label Encoding, a unique integer value is assigned to every category

(such as female = 0, male = 1). Although this method is simple and efficient, it

introduces an artificial ordinal relationship among categories. Therefore, it is

more appropriate for models that are insensitive to ordering such as tree-based

algorithms like XGBoost, Random Forest, or Decision Tree.

For example, suppose the region variable contains four categories (northeast,

northwest, southeast, southwest). In that case, the encodings would be as

follows:

Table 6. Examples of categorical variable coding

Observations Region
Dummy Encoding

(Ref: northeast)

One-Hot

Encoding

Label

Encoding

1 southwest (0, 0, 1) (0, 0, 0, 1) 0

2 southeast (0, 1, 0) (0, 0, 1, 0) 1

3 northwest (1, 0, 0) (0, 1, 0, 0) 2

4 northeast (0, 0, 0) (1, 0, 0, 0) 3

In this example, Label Encoding introduces an artificial ordering among the

categories, while One-Hot Encoding represents all classes. Dummy Encoding,

on the other hand, includes all categories except the reference category

(northeast).

In the insurance dataset used in this study:

• Since the variables sex and smoker are binary, they were encoded using

Label Encoding (0–1),

• Since the region variable contains four categories, Dummy Encoding

was applied, with northeast selected as the reference category.

This approach may help avoid linear dependence in linear regression models

while also providing an effective representation of categorical information for

tree-based algorithms.

3.2.3. Scaling numerical variables

Feature scaling is a preprocessing technique used to eliminate imbalances

arising from differences in magnitude or measurement units among numerical

variables. It ensures that the model’s learning process proceeds properly,

especially when variables span different value ranges. Scaling helps stabilize

153

parameter estimation, improves the convergence speed of gradient-based

algorithms, and enhances overall generalization performance (Han et al., 2012;

Kuhn and Johnson, 2019).

Some of the scaling methods generally utilized in machine learning are as

follows:

Min–Max Normalization: The data is scaled to the range of 0–1 by using

Eq. 7. It is frequently used in gradient-based models such as neural networks

and logistic regression, but it is sensitive to outliers.

𝑥′ =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 (7)

Standardization (Z-score Scaling): The data is transformed by using Eq. 8

so that the standard deviation becomes 1, and the mean is 0. This approach is

more resilient to outlier effects and is a standard approach in methods such as

SVM, linear regression, and PCA.

𝑥′ =
𝑥−μ

𝜎
 (8)

Robust Scaling: It uses the median and interquartile range (IQR), as stated

in Eq. 9. It is preferred when the dataset contains many outliers. This method is

especially suitable for variables such as income, expenditure, or health costs,

which tend to have extreme values.

𝑥′ =
𝑥−𝑚𝑒𝑑𝑖𝑎𝑛

𝐼𝑄𝑅
 (9)

The three models used in this study have different characteristics in terms of

their need for feature scaling:

Linear Regression: Linear regression coefficients are directly affected by

the scale of the variables. Features with larger magnitudes tend to dominate the

model. Therefore, standardization (z-score scaling) is recommended when using

linear regression (Kuhn and Johnson, 2019).

Random Forest Regressor: As a tree-based model, it splits data according

to the ranking of feature values, not their actual scales. As a result, Random

Forest is not affected by scaling and does not require any feature scaling (Lantz,

2019).

XGBoost Regressor: XGBoost is also a tree-based algorithm and is

therefore insensitive to differences in feature scales. However, in some cases,

normalizing the variables can improve numerical stability and speed up

convergence.

154

In the insurance dataset used in this study, the numerical variables (age, bmi,

children, charges) are measured on different scales; however, given the structure

of the models, extensive scaling is not required. Random Forest and XGBoost

are insensitive to feature scale differences. Although Linear Regression can

theoretically benefit from scaling, the small number of independent variables

and their relatively comparable statistical ranges mean that scaling would not

provide a meaningful improvement in model performance. Therefore, no

scaling procedures were applied in this study. The variables were used in their

original form, preserving their natural interpretability and avoiding unnecessary

transformations.

3.2.4. Training and test-data split

Train–test splitting is a fundamental validation method employed in ML to

appraise a model’s ability to generalize. This approach divides the available

dataset into two subsets:

• Training dataset: It is used during the learning phase of the model to

estimate its parameters.

• Testing dataset: It consists of data the model has never seen before and

is utilized to appraise its actual performance.

This split helps prevent the method from overfitting to the training data and

allows its predictive power on new data to be evaluated objectively (Han et al.,

2012).

Commonly used train–test ratios are 70–30 or 80–20. In larger datasets, the

proportion allocated to training can be increased, while smaller datasets may

require a slightly higher test ratio. In some cases, a third subset called the

validation set is also created, or the training process is stabilized using methods

such as k-fold cross-validation (Kuhn and Johnson, 2019).

The dataset employed in this work has 1,338 observations. To objectively

appraise the overall performance of the methods, the dataset was separated into

two parts: 20% for testing and 80% for training. The training set (1,070

observations) was used during the learning phase of the XGBoost, Random

Forest and Linear Regression models. The test set (268 observations) was used

to determine how well the methods perform on unseen data. This ratio is

appropriate for the size of the dataset, providing sufficient data for model

training while allowing reliable evaluation on the test set.

The split was performed randomly (random_state = 42), ensuring

reproducibility. This approach allowed each model to see only a portion of the

data during training and to be assessed on observations it had not encountered

before. As a result, the risk of overfitting was reduced and the models’ ability to

155

generalize was improved. The performance of all three methods on the test data

was evaluated using R², MAE, MSE, RMSE, and MAPE.

3.3. Applied Machine Learning Methods

This section introduces the three ML models used to predict the insurance

premium (charges) variable. The modeling process includes XGBoost

Regressor, Random Forest Regressor and Linear Regression in order to capture

both nonlinear and linear relationships in the data. These models were selected

because they are capable of explaining potential linear effects as well as

interaction patterns among the variables in the dataset.

All data preprocessing and modeling steps in this work were carried out on

the Google Colab platform. Colab is a cloud-based development environment

that allows effective use of Python data science libraries. This made the analysis

process both computationally efficient and reproducible. During model

development, the pandas, NumPy, scikit-learn, and XGBoost libraries were

used, and all coding was performed in Python.

3.3.1. Linear regression

Linear regression is a well-established statistical approach employed to

describe the linear association between independent variables and a dependent.

In this study, it is assumed by the model that the target variable, charges, can be

represented as a linear combination of the predictors, which are age, bmi,

children, sex, smoker, and region. The general structure of the model can be

written as in Eq. 10.

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑛𝑋𝑛 + 𝜀 (10)

In Eq. 10, y represents the dependent variable, xᵢ denotes the independent

variables, βᵢ refers to the coefficients, and ε is the error term. The goal of the

model is to determine the coefficients minimizing the sum of squared

distinctions between the actual and predicted values, commonly measured by

the mean squared error (MSE) (Han et al., 2012).

The key advantages of linear regression lie in its straightforward structure

and the ease with which it can be interpreted. Each coefficient reflects the

expected change in the dependent variable associated with a one-unit change in

the corresponding predictor, holding the other variables constant. However,

when the core assumptions of the method (linearity, normality of the errors,

homoscedasticity, and independence) are violated, the predictive performance

of the model may weaken (Kuhn and Johnson, 2019).

156

In the insurance dataset, the categorical variables sex and smoker were

encoded using Label Encoding since both have a binary structure. The region

variable, which contains four categories, was transformed using Dummy

Encoding, with northeast set as the reference group. The encoded dataset was

subsequently split into two parts, with 80% allocated for training and the

remaining 20% reserved for testing. The model was fitted using the training

portion of the data and its performance was assessed on the test subset. Its

predictive performance was assessed through R², MAE, MSE, RMSE, and

MAPE. This analysis served as a baseline model for identifying the general

linear patterns within the data.

3.3.2. Random forest regressor

The Random Forest Regressor is an ensemble technique that relies on

multiple decision trees. Instead of depending on a single deep tree, which is

prone to overfitting, the method constructs numerous trees using different

bootstrap samples of the data and combines their predictions by averaging them

to obtain the final estimate. This approach lowers variance and helps generate

more stable and generalizable predictions.

The Random Forest algorithm incorporates two main forms of randomness:

(i) bootstrap sampling, which ensures that each tree is built using a different

portion of the data, and (ii) the random selection of feature subsets at each

splitting step. Together, these elements enhance the diversity of the trees in the

ensemble and help lower the likelihood of overfitting.

In this work, the Random Forest Regressor was implemented using the

insurance.csv dataset. The dependent variable, charges (insurance cost), was

modeled using the predictors age, bmi, children, sex, smoker, and region. The

model was configured to use 500 trees (n_estimators = 500). Since sex and

smoker are binary categorical variables, they were encoded using Label

Encoding (0–1). The region variable, which includes four categories, was

transformed using Dummy Encoding with northeast selected as the reference

category. The dataset was divided into an 80% training and a 20% testing

portion, and the model’s performance was assessed using the metrics MAPE,

MAE, RMSE, MSE, and R².

3.3.3. XGBoost regressor

XGBoost (Extreme Gradient Boosting) is an algorithm that constructs

decision trees in a sequential manner, reducing prediction errors through the

gradient boosting process. Each successive tree is designed to address the

157

mistakes of the preceding ones, leading to progressively improved predictive

accuracy (Chen and Guestrin, 2016).

Compared with traditional Gradient Boosting approaches, the key distinction

of XGBoost is its use of a regularized objective function. This structure

incorporates both L1 (Lasso) and L2 (Ridge) penalty terms, making the model

more resistant to overfitting. In addition, XGBoost provides high computational

efficiency through features such as built-in handling of missing values, parallel

processing, histogram-based tree growth, and early stopping.

In this study, the XGBoost Regressor model was configured with 500 trees

(n_estimators = 500) for predicting insurance premiums. During preprocessing,

the variables sex and smoker were converted into binary form using Label

Encoding, while the region variable with four categories was transformed using

Dummy Encoding, with northeast defined as the reference category. The dataset

was then divided into a 20% test set ann an 80% training set. The XGBoost

model was trained on the training data using a gradient boosting approach, and

its performance was assessed utilizing R², MAE, MSE, RMSE, and MAPE.

3.4. Evaluation Metrics

To compare the performance of the ML methods and evaluate their

predictive accuracy, several statistical metrics are commonly used. In this study,

the performance of the regression models was assessed employing five key

evaluation metrics: R², MAE, MSE, RMSE, and MAPE. Taken together, these

measures offer a thorough assessment of how large the model’s errors are, how

they are distributed, and how closely the predictions align with the actual

values.

3.4.1. Coefficient of determination (R²)

The R² shows the proportion of the variation in the dependent variable that is

accounted for by the model and it can be calculated using Eq. 11. Its value

ranges from 0 to 1, with figures closer to 1 indicating greater explanatory

strength.

𝑅2 = 1 −
∑(𝑦𝑖−𝑦̂𝑖)2

∑(𝑦𝑖−𝑦̅𝑖)2 (11)

Eq. 11 corresponds to the share of variance the model is unable to explain,

whereas the denominator represents the total variance in the dependent variable.

A larger R² value shows that the model fits the data more effectively. However,

it should not be viewed as a standalone indicator of performance.

158

3.4.2. Mean absolute error (MAE)

MAE represents the mean of the absolute deviations between the model’s

predictions and the true values and it can be calculated using Eq. 12. It does not

take the direction of the errors (positive or negative) into account and focuses

solely on their magnitude.

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖| (12)

The interpretation of MAE is straightforward; its unit is the same as that of

the dependent variable. Lower MAE scores suggest that the model’s predictions

align more closely with the observed values.

3.4.3. Mean squared error (MSE)

MSE is calculated as the mean of the squared prediction errors, meaning that

larger deviations contribute disproportionately to the final value due to the

squaring process. The formula is given in Eq. 13.

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2 (13)

MSE is often used for comparing models, but because its unit is the square

of the original variable, it is not as easy to interpret directly as MAE.

3.4.4. Root mean square error (RMSE)

RMSE is obtained by taking the square root of the MSE as in Eq. 14, which

allows the error to be reported in the same unit as the dependent variable.

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 (14)

It is sensitive to large errors and provides an indication of the model’s

“typical error magnitude.” A lower RMSE value shows that the model produces

consistent and accurate predictions.

3.4.5. Mean absolute percentage error (MAPE)

MAPE is a performance measure that reports prediction errors in percentage

terms. It can be calculated using Eq. 15.

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
| (15)

159

Expressing the result as a percentage makes interpretation easier. However,

when the actual values are very close to zero, sensitivity issues may arise.

Collectively, these five metrics offer a well-rounded assessment of the

model’s overall performance. While R² measures the proportion of variance

explained, MAE and RMSE capture the magnitude of errors with different

levels of sensitivity. MAPE, on the other hand, expresses errors as percentages,

offering an interpretation that is particularly intuitive for decision-makers. For

this reason, the XGBoost Regressor, Random Forest Regressor and Linear

Regression models used in this study were evaluated using this combined set of

metrics.

4. FINDINGS AND EVALUATION

4.1. Findings of the Models

To assess how each model performed, the five primary evaluation metrics

(R², MAE, RMSE, MSE, and MAPE) were computed for the XGBoost

Regressor, Random Forest Regressor, Linear Regression models. Using these

measures, each model’s predictive accuracy, error magnitude, and

generalization ability were analyzed comparatively. The resulting findings are

summarized in Table 7.

Tablo 7. Comparative evaluation of the ML models

Model R² MAE MSE RMSE
MAPE

(%)

Linear Regression 0.7836 4181.19 33,596,915.85 5796.28 46.89

Random Forest

Regressor
0.8640 2560.02 21052750.53 4588.33 32.48

XGBoost Regressor 0.8349 2921.27 25,633,697.49 5062.97 37.07

Table 7 provides a comparison of the performance indicators for the three

ML methods. The findings indicate that the Random Forest Regressor achieves

the best overall results, demonstrating the highest R² value (0.864), which

shows that it captures a substantial share of the variance in the dependent

variable. Additionally, its lower MAPE, RMSE, MSE, and MAE scores,

relative to the other models, further highlight its ability to significantly reduce

prediction errors.

XGBoost Regressor performs better than Linear Regression overall but

remains slightly behind Random Forest. The Linear Regression model shows

the lowest performance, largely because its inherently linear framework cannot

represent the nonlinear and complex relationships embedded in the dataset.

160

Overall, these findings indicate that ensemble methods provide higher

accuracy than classical linear models when predicting insurance premiums.

To provide a qualitative assessment of model performance, the predicted

insurance premiums for five randomly selected observations from the test

dataset were compared with their actual values. This approach complements the

general evaluation provided by the error metrics and offers insight into how the

models behave at the individual observation level. The closeness of the

predictions to the true values is especially important for understanding model

consistency and the practical significance of the errors. The randomly selected

observations are presented in Table 8, and their corresponding comparisons are

shown in Table 9.

Table 8. Randomly chosen observations from the insurance dataset

Obs.

No
age sex bmi children smoker

Region

northwest

Region

southeast

Region

Southw

est

764 45 0 25.175 2 0 0 0 0

887 36 0 30.020 0 0 1 0 0

890 64 0 26.885 0 1 1 0 0

1293 46 1 25.745 3 0 1 0 0

259 19 1 31.920 0 1 1 0 0

Table 9. Actual and predicted insurance premiums for the random

observations

Obs.

No

Actual

Charges

LR

Prediction

LR

Error

RF

Prediction

RF

Error

XGB

Prediction

XGB

Error

764 9095.07 8969.55 1.38 % 10282.31 13.06% 9336.78 2.66%

887 527218 7068.75 34.1% 5342.62 1.34% 9343.56 77.20%

890 29330.99 36858.41 25.7% 28331.83 3.41% 29616.47 0.97%

1293 9301.90 9454.67 1.64% 11353.21 22.05% 9575.83 2.95%

259 33750.30 26973.17 20.1% 34763.78 3.00% 33304.64 1.32%

Table 9 presents a comparison of actual and predicted insurance charges for

five randomly selected observations across the three machine learning models.

The results demonstrate that XGBoost Regressor generally produces the lowest

percentage errors, particularly for high-cost observations, indicating its strong

capability to determine complicated nonlinear relationships in the data. Random

Forest Regressor also performs robustly, yielding the smallest errors in several

cases and showing high consistency, especially for low and medium charge

levels. In contrast, Linear Regression exhibits substantially higher prediction

errors for multiple observations, suggesting that its linear structure is

insufficient for modeling the nonlinear patterns inherent in medical cost data.

161

Overall, the table supports the conclusion that ensemble-based models

(especially XGBoost and Random Forest) provide significantly more correct

and trustable predictions compared to the traditional Linear Regression

approach.

To compare how the three ML methods assign importance to the

independent variables, the feature importance values for each method are given

in Table 10. For the Linear Regression, the coefficients were standardized to

create a comparable measure of importance, while the variable importance

scores produced by the Random Forest and XGBoost models were used

directly. This comparison reveals how the key factors influencing insurance

premiums differ across models and shows that ensemble methods tend to

capture nonlinear interactions more effectively.

Table 10. Feature importance comparison across LR, RF, and XGB models

Models age sex bmi children smoker region

LR 0.0097 0.0007 0.0127 0.0160 0.8916 0.0693

RF 0.1349 0.0064 0.2142 0.0194 0.6096 0.0155

XGB 0.0136 0.0045 0.0196 0.0079 0.9371 0.0174

Table 10 compares the feature importance values gathered from the

XGBoost, Random Forest, and Linear Regression models. Across all three

approaches, the smoker variable emerges as the most influential predictor of

insurance charges, reflecting the well-established impact of smoking on health-

related expenditures. Ensemble models—particularly XGBoost, with an

importance score of 0.9371—assign an even stronger weight to this variable,

indicating their enhanced ability to capture nonlinear and interaction effects.

The bmi and age variables show moderate importance in the Random Forest and

XGBoost models, whereas Linear Regression assigns comparatively smaller

weights, suggesting its limited capacity to model complex relationships in the

data. Additionally, the region and sex variables consistently exhibit low

importance across all models, implying minimal direct contribution to premium

variation. Overall, the table highlights the superiority of ensemble methods in

identifying dominant predictors and modeling heterogeneous patterns in

medical insurance costs.

4.2. Comparison of the models

In thhis section comparative evaluation of the three machine learning models

used in the study is presented, examining their performance, error metrics,

prediction behavior, and variable importance patterns. Considering both the

162

structural characteristics of the models and the statistical features of the dataset,

this analysis highlights which approach produces more effective results for the

problem of insurance premium prediction, where the relations are complex and

nonlinear.

Based on the performance metrics, the Random Forest Regressor stands out

with the highest R² value (0.8640) and the lowest error measures (MAE, MSE,

RMSE, MAPE). This outcome can be attributed to the model’s capability to

avoid overfitting by averaging predictions from many decision trees and to

effectively capture complicated relationships in the data. The XGBoost

Regressor also performs strongly, achieving low error rates particularly for

higher premium values and successfully representing nonlinear patterns.

The Linear Regression model showed the weakest performance among the

three models. This outcome is mainly due to the fact that many relationships in

the dataset are nonlinear. For instance, the effects of variables such as smoking

status, body mass index (BMI), and age on medical costs are far from linear;

after certain threshold levels, costs increase sharply. Because a linear model

cannot capture these kinds of patterns, its error levels were higher.

Another aspect of the model comparison is the assessment of variable

importance. In all three models, the smoker variable clearly ranks as the most

influential factor, confirming the dominant impact of smoking on healthcare

expenditures. In the ensemble models, its importance score is even higher,

which indicates that these algorithms capture interactions and nonlinear

relationships more effectively. The variables BMI and age show moderate

importance in the Random Forest and XGBoost models, whereas their effects

appear more limited in Linear Regression. This finding further illustrates that

the linear model has difficulty representing more complex patterns in the data.

Finally, when the predicted and actual values are examined, XGBoost

appears to produce more consistent estimates for individuals with high premium

levels, while Random Forest performs more reliably for medium and low

premium ranges. This difference can be linked to how each model responds to

the distribution of the data. On the other hand, Linear Regression generates

substantial errors for extreme values, highlighting the limitations of a linear

approach when dealing with health expenditure data that exhibit high variance

and deviate significantly from normality.

Overall, the findings demonstrates that the ensemble-based methods, namely

the Random Forest Regressor and the XGBoost Regressor, offer higher

accuracy and stronger generalization ability for problems like insurance

premium prediction, where relationships are highly multivariate and complex.

However, in scenarios where interpretability is essential, the Linear Regression

163

model remains a valuable reference, even though its performance clearly falls

behind that of modern ensemble techniques.

4.3. Interpretation of Findings

The results of this study offer a detailed insight into the key factors that most

significantly affect individual health insurance premiums. Across all the three

machine learning models, the smoker variable consistently emerges as the most

dominant predictor. This is particularly evident in the ensemble models, where

smoker receives exceptionally high importance scores, reflecting its substantial

contribution to medical expenditures. These results are well aligned with the

existing literature, which demonstrates that smoking dramatically increases the

likelihood of chronic diseases, hospitalization, and long-term healthcare costs.

Consequently, individuals who smoke are classified as high-risk members in

insurance pools, leading to significantly higher premium levels.

The body mass index (BMI) is another critical determinant of insurance

charges. The moderate importance assigned to BMI by Random Forest and

XGBoost indicates that medical costs respond nonlinearly to changes in BMI—

a pattern that ensemble methods can effectively capture. The age variable

similarly demonstrates a notable influence on premium levels, reflecting the

natural increase in health risks as individuals grow older. Age-related

deterioration in physical health, combined with heightened susceptibility to

chronic illnesses, explains the progressive rise in predicted insurance charges.

In contrast, variables such as children, sex, and region contribute relatively

less to premium variation. Although these factors may have indirect or context-

dependent effects on healthcare utilization, their overall influence remains

minor compared with the strong and direct impact of smoking behavior, BMI,

and age. This pattern suggests that insurance pricing is primarily driven by

individual health risks and lifestyle-associated factors rather than demographic

or geographic attributes.

5. CONCLUSIONS AND RECOMMENDATIONS

This study provided a detailed comparative analysis of three ML models

(XGBoost Regressor, Random Forest Regressor, and Linear Regression)

applied to the prediction of individual health insurance premiums. The findings

show that ensemble-based ML methods demonstrate clear superiority over

classical regression approaches, particularly in modeling complex, nonlinear

relationships within health cost data.

Among the evaluated models, the Random Forest Regressor achieved the

strongest predictive performance, demonstrated by its higher R² value and lower

164

error scores (MAE, RMSE, MSE, and MAPE). Its ensemble structure,

combining the outputs of numerous decision trees, enables robust generalization

and reduces overfitting, even when the dataset contains variability or noise. The

XGBoost Regressor also showed strong performance, especially for high-cost

observations, reflecting its capacity to capture intricate nonlinear patterns and

feature interactions. Conversely, the Linear Regression method demonstrated

relatively weak predictive performance. Although its structure provides high

interpretability, its inability to capture nonlinearities resulted in higher error

levels, reinforcing the limitations of classical regression in complex real-world

prediction tasks.

Overall, the findings highlight the advantages of AI-based regression

techniques over traditional statistical models. In particular, ensemble algorithms

offer enhanced flexibility, stronger modeling capacity for nonlinear

relationships, and more realistic representations of variable importance. The

pronounced dominance of factors such as BMI, smoking status, and age in the

ensemble models aligns with established medical and actuarial knowledge,

underscoring the robustness of these methods in cost estimation.

In conclusion, the findings of this study highlight the strong capability of

machine learning and artificial intelligence methods to accurately predict health

insurance expenditures. The comparison between classical and modern models

underscores the importance of nonlinear modeling capabilities, robust feature

interaction handling, and data-driven variable importance estimation.

Expanding the methodology to other datasets and exploring more advanced

modeling strategies will further contribute to the development of accurate and

reliable predictive systems in the health insurance domain and beyond.

165

REFERENCES

Bader, M., & Maalouf, M. (2024, December). Evaluating Determinants of

Health Insurance Premiums Using Advanced Multiple Linear Regression

Techniques. In 2024 IEEE International Conference on Industrial

Engineering and Engineering Management (IEEM) (pp. 440-444). IEEE.

Bhardwaj, N., & Anand, R. (2020). Health insurance amount prediction. Int. J.

Eng. Res, 9, 1008-1011.

Blockeel, H. (2023). Decision trees: from efficient prediction to responsible AI.

Frontiers in Artificial Intelligence.

Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System.

Proceedings of the 22nd ACM SIGKDD Conference.

Fisher, A., Rudin, C., & Dominici, F. (2019). All models are wrong, but many

are useful: Variable importance for black-box, proprietary, or

misspecified prediction models. The Annals of Applied Statistics, 13(4),

2353–2381.

Géron, A. (2022). Hands-On Machine Learning with Scikit-Learn, Keras, and

TensorFlow (3rd ed.). O’Reilly Media.

Gujarati, D. N., & Porter, D. C. (2009). Basic Econometrics (5th ed.). McGraw-

Hill Education.

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature

selection. Journal of Machine Learning Research, 3, 1157–1182.

Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques

(3rd ed.). Morgan Kaufmann.

Hastie, T., Tibshirani, R., & Friedman, J. (2017). The Elements of Statistical

Learning: Data Mining, Inference, and Prediction (2nd ed.). Springer.

Ivanovna, K. O., Vladimirovna, M. O., & Turgaeva, A. (2018). Insurance risks

management methodology. Journal of Risk and Financial management,

11(4), 75.

Jadhav, A., Pramod, D., & Ramanathan, K. (2019). Comparison of performance

of data imputation methods for numeric dataset. Applied Artificial

Intelligence, 33(10), 913-933.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An Introduction to

Statistical Learning with Applications in Python. Springer.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An Introduction to

Statistical Learning with Applications in Python. Springer.

Kapse, M., Sharma, V., Vidhale, R., & Vellanki, V. (2025). Customization of

health insurance premiums using machine learning and explainable AI.

International Journal of Information Management Data Insights, 5(1),

100328.

166

Kaushik, K., Bhardwaj, A., Dwivedi, A. D., & Singh, R. (2022). Machine

learning-based regression framework to predict health insurance

premiums. International journal of environmental research and public

health, 19(13), 7898.

Kotsiantis, S. B., Kanellopoulos, D., & Pintelas, P. E. (2006). Data

preprocessing for supervised leaning. International journal of computer

science, 1(2), 111-117.

Kuhn, M., & Johnson, K. (2019). Feature Engineering and Selection: A

Practical Approach for Predictive Models. CRC Press.

Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). Applied Linear

Statistical Models (5th ed.). McGraw-Hill.

Lantz, B. (2019). Machine Learning with R: Expert Techniques for Predictive

Modeling. Packt Publishing.

Little, R. J., & Rubin, D. B. (2019). Statistical analysis with missing data. John

Wiley & Sons.

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model

predictions. Advances in Neural Information Processing Systems

(NeurIPS), 30.

Mishra, S., Kapoor, R., Yukti, & Mahesh, G. (2024, September). Prediction of

Health Insurance Premium Using XG Boost Algorithm. In International

Conference on Electrical and Electronics Engineering (pp. 433-455).

Singapore: Springer Nature Singapore.

Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to Linear

Regression Analysis (6th ed.). Wiley.

Panda, S., Purkayastha, B., Das, D., Chakraborty, M., & Biswas, S. K. (2022,

May). Health insurance cost prediction using regression models. In 2022

International conference on machine learning, big data, cloud and parallel

computing (COM-IT-CON) (Vol. 1, pp. 168-173). IEEE.

Potdar, K., Pardawala, T. S., & Pai, C. D. (2017). A comparative study of

categorical variable encoding techniques for neural network classifiers.

International Journal of Computer Applications, 175(4), 7–9.

Probst, P., Wright, M. N., & Boulesteix, A.-L. (2019). Hyperparameters and

tuning strategies for random forest. WIREs Data Mining and Knowledge

Discovery, 9(3), e1301.

Abdelghany, Mosap. (2025). Medical Insurance Cost Dataset [Data set].

Kaggle. https://doi.org/10.34740/KAGGLE/DSV/12853160

167

