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Chapter 1 

Towards Intelligent Modern Agriculture: 

Transfer Learning-Powered Deep Learning Models 

For Comparative Classification Of Lettuce Diseases 

Mehmet BURUKANLI1 

Musa CIBUK2 

Davut ARI3 

ABSTRACT 

Lettuce is among the most popular vegetables produced and consumed 

worldwide. Unfortunately, efficient lettuce production is negatively impacted 

by environmental pollution and other external physical factors. Early detection 

of diseases in lettuce and preventing them from spreading to others are among 

the most crucial factors in growing productive and healthy lettuce. In traditional 

lettuce cultivation, this process is performed manually, with a high error rate 

and difficult control. Using Artificial Intelligence (AI)-based tools is crucial to 

overcome these challenges. AI-based models can help increase lettuce 

productivity by detecting lettuce diseases at an early stage. Therefore, in this 

study, we used 20 deep transfer learning models to detect early-stage lettuce 

diseases. Among these models, the AlexNet model achieved the highest 

accuracy of 97.88%. Furthermore, the explainability of deep learning 

approaches was enhanced by the use of Grad-CAM-based heat maps to 

demonstrate whether each model's outputs are based on meaningful regions in 

the image. Experimental results support the ability of transfer learning-based 

models to detect lettuce diseases at an early stage, thereby significantly 

improving production efficiency. 

Keywords: Lettuce disease detection, AlexNet model, Decision support 

systems, Transfer learning, Grad-CAM 
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1. INTRODUCTION

Agricultural production is being negatively impacted worldwide by factors

such as rapid population growth, environmental pollution, and climate change. 

To address these challenges, modern technologies such as artificial intelligence, 

which enable more efficient and sustainable production, are essential. Adverse 

physical conditions, particularly high temperatures and low humidity, lead to 

significant yield losses. Consequently, disease detection takes time, and the 

spread of disease to healthy lettuce plants is accelerated.(Nafil et al., 

2023)(Rathor, Choudhury, Sharma, Nautiyal, et al., 2025). Deep learning-based 

architectures, especially for disease detection, classification, and real-time 

object detection, such as YOLO(Upadhyay et al., 2025)(Qadri et al., 

2025)(Wang et al., 2024)(Zhang & Li, 2022) and Convolutional Neural 

Networks (CNNs) (Qadri et al., 2025)(Gang et al., 2022)(Rathor, Choudhury, 

Sharma, Shah, et al., 2025), are frequently preferred. However, since they 

consist of millions of parameters, their training takes some time. For this reason, 

it has become possible to come across lightweight architectures in the literature 

(Lin et al., 2022). Artificial intelligence-based decision support systems are 

frequently preferred in lettuce disease detection, as in almost every field (Qin et 

al., 2025)(Rathor, Choudhury, Sharma, Nautiyal, et al., 2025). 

This proved that deep learning models could be used in lettuce detection. 

Nafil et al. (Nafil et al., 2023) proposed a CNN-based model for the early 

detection of lettuce diseases. Using this model, they achieved 94% accuracy. 

Kumaratenna et al. (Kumaratenna & Cho, 2024) achieved high performance on 

a lettuce dataset using a deep learning-based model. Yang et al. (Yang et al., 

2023) classified lettuce leaves using machine learning-based models such as 

Multiple Linear Regression (MLR), K-Nearest Neighbors (KNN), and SVM. 

They observed that the SCM model provided satisfactory performance. Rathor 

et al. (Rathor, Choudhury, Sharma, Nautiyal, et al., 2025) proposed the Conv-7 

DCNN model for the detection of lettuce diseases. They compared this model 

with other deep learning models. Their proposed model achieved significant 

results. Rathor et al. (Rathor, Choudhury, Sharma, Shah, et al., 2025) proposed 

the CNN-WOPNet model for the detection of nutrient deficiencies in lettuce 

diseases. They also compared this model with other deep learning models. The 

model they proposed has achieved remarkable results. Flores et al. (Flores et al., 

2023) used deep learning-based models to classify lettuce samples. Their 

MobileNet+SVM-based hybrid model achieved remarkable results. Pratondo et 

al.(Pratondo et al., 2023) classified lettuce leaves using deep learning-based 

models. They also achieved significant results with the support of transfer 

learning. Upadhyay et al. (Upadhyay et al., 2025) detected plant diseases with 
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high accuracy using deep learning-based approaches. Zhang et al. (Zhang & Li, 

2022)  proposed the VOLO-D1 model to classify five different lettuce varieties. 

This model achieved very successful results.  

In this study, 20 artificial intelligence-based models (AlexNet, VGG16, 

VGG19, GoogLeNet, Places365, ResNet18, ResNet50, ResNet101, 

Inceptionv3, Inception-ResNet v2, Xception, MobileNetv2, DenseNet201, 

ShuffleNet, Darknet19, Darknet53, SqueezeNet, EfficientNet-B0, NASNet-

Mobile, and NASNet-Large) were used to detect healthy and unhealthy leaves 

on lettuce. These models were compared with each other in terms of accuracy, 

precision, recall, specificity, and F1 scores. 20 deep learning models were 

compared with each other on a lettuce dataset. The results showed that the 

AlexNet model outperformed the other models. 

 2. MATERIALS AND METHODS
2.1. Lettuce Dataset
The Lettuce dataset used �n th�s study cons�sts of two classes: "Healthy" and

"Unhealthy." The "Healthy" class conta�ns 326 �mage samples, wh�le the 
"Unhealthy" class conta�ns 381 �mage samples (Kaggle, n.d.). Some of these 
�mage samples �n the Lettuce dataset are shown �n F�gure 1. 

Figure 1. Some of these image samples in the Lettuce dataset (Kaggle, n.d.) 

2.2. Deep Transfer Learning Models 

In this section, we used the following models, AlexNet, VGG16, VGG19, 

GoogLeNet, Places365, ResNet18, ResNet50, ResNet101, Inceptionv3, 

Inception-ResNet v2, Xception, MobileNetv2, DenseNet201, ShuffleNet, 

Darknet19, Darknet53, SqueezeNet, EfficientNet-B0, NASNet-Mobile, and 

NASNet-Large, which are frequently used and have proven successful in the 

literature for lettuce disease detection. These models are particularly successful 

in classification and computer vision tasks. 
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3. RESULTS 

3.1.  Performance Metrics and Evaluation Methods 

In this work, to quantify the performance of each AI-based model, we used 

the following performance metrics: Accuracy, Precision, Recall, Specificity, 

and F1 score. The formulas for these metrics are given in Equations 1, 2, 3, 4, 

and 5, respectively (Burukanlı & Ari, 2025)(Burukanlı & Çıbuk, 2024). 

 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                            (1) 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                         (2) 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                             (3) 

Specificity =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                                                      (4) 

𝐹1 = 2 ⋅
Precision⋅Recall

Precision+Recall
                                                                                   (5) 

 

3.2. Experimental Setup 

In this study, the optimizer was set to stochastic gradient descent with 

momentum (SGDM), learning rate to 0.001, epochs to 25, and batch size to 32 

during training of all deep learning models. For the experimental computation 

of this study, HP-Z840 workstation with 10 cores, 2 x Intel CPU (Xeon 

E52687Wv3), 64 GB Ram and Quadro P5000 GPU was used. 

 

3.3. Dataset-Level Heatmap Analysis of the Models 

In this study, we used the Grad-CAM heat mapping technique to analyze in 

detail the regions of the image where the deep transfer learning models focused 

during the training phase and to understand the explainability of the models. 

This technique allows us to obtain more information about the reliability of the 

models. Visualizing the regions of the image where each model focused is 

known to increase the explainability of the methods (Raghavan et al., 2023). 

Dataset heatmap of models is given in Figure 2. 
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Figure 2. Dataset heatmap of models 

 

3.4. Experimental Results  

As illustrated in Figure 3, the AlexNet model demonstrated a high level of 

discriminatory capability by correctly classifying 320 out of 326 samples in the 

‘healthy’ class, resulting in only 6 misclassifications. Likewise, the model 

accurately identified 372 out of 381 samples in the ‘unhealthy’ class, with 

merely 9 instances incorrectly predicted. These outcomes underscore the 

robustness and reliability of AlexNet in distinguishing between healthy and 

diseased lettuce leaves. As seen in Figure 3, the lettuce dataset consists of two 

classes, comprising 326 healthy and 381 unhealthy samples. Due to the VGG16 

architecture producing NaN outputs in the Fold-1, Fold-4, and Fold-5 stages, 

these sublayers were excluded from the evaluation and were not included in the 

corresponding confusion matrix analyses. Similarly, the NaN values observed in 

the Fold-3 and Fold-4 stages of the VGG19 architecture indicate that the model 

was unable to perform reliable classification in these layers; therefore, these 

results were excluded from the confusion matrix analysis.  In addition, 

DenseNet201 and DarkNet53 exhibit the lowest misclassification rates and the 

highest overall performance, while GoogLeNet, EfficientNetB0, NASNet-

Large, and MobileNetV2 maintain stable accuracy levels around 94–95%. In 

contrast, Inception-based architectures show noticeably higher false prediction 

counts, particularly for the healthy class, indicating reduced generalization 

capability. Furthermore, a comparative evaluation of the accuracy performance 

of all models assessed on the lettuce dataset is provided in Figure 3.  
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Figure 3. Confusion matrices obtained by selected CNN architectures, 

including AlexNet, DarkNet53, DarkNet19, and DenseNet20 etc. on the lettuce 

dataset. 

 

The accuracy-loss graph obtained on the lettuce training dataset for each 

Fold of the AlexNet model depending on the number of epochs is shown in 

Figure 4. 
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Figure 4. Accuracy-Loss graph for each Fold of the AlexNet model 

depending on the number of epochs 

 

As shown in Figure 4, the accuracy value of the AlexNet model increased, 

especially after the 40th epoch, and the loss decreased accordingly. This means 

that the AlexNet model was quite successful in detecting the lettuce dataset. The 

resulting roc curve graph obtained on the lettuce training dataset for each Fold 

of the AlexNet model is shown in Figure 5. 
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Figure 5. The resulting roc curve graph for each Fold of the AlexNet model 

 

As shown in Figure 5, the AUC value obtained by the AlexNet model for 

Fold 1 was 0.9970, while the AUC value obtained for Fold 2 was 0.9962. 

Similarly, the AUC value obtained by the AlexNet model for Fold 3 was 

0.9896, while the AUC value obtained for Fold 2 was 1.000. In addition, the 

AUC value obtained by the AlexNet model for Fold 5 was 0.9998. The resulting 

average roc curve graph obtained on the lettuce dataset of the AlexNet model is 

shown in Figure 6. 
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Figure 6. The resulting average roc curve graph of the AlexNet model 

 

As shown in Figure 6, the average ROC curve obtained from the AlexNet 

model on the lettuce dataset is nearly equal to 1.000, indicating the model’s 

strong robustness and its ability to achieve highly reliable discrimination 

between healthy and diseased samples. The confusion matrix produced by the 

AlexNet model for the same dataset is presented in Figure 3, further illustrating 

its accurate classification capability with minimal false positives and false 

negatives. These results collectively demonstrate that AlexNet is one of the 

most stable and effective architectures for lettuce disease identification within 

the scope of this study. Comparison of all models in terms of accuracy on the 

lettuce dataset is given in Figure 7. 

 

 
Figure 7. Comparison of all models in terms of accuracy on the lettuce data set 

 

As shown in Figure 7, among 20 models on the lettuce dataset, the AlexNet 

model achieved the best result with an accuracy rate of 97.8823%, while the 

VGG19 model achieved the worst result with an accuracy rate of 78.487%. 
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Furthermore, the performance rates of the other models were between AlexNet 

and VGG19. Detailed comparison and Radar image of 20 deep learning based 

models on lettuce dataset is shown in Figure 8. 

 
Figure 8. Detailed comparison of 20 deep learning-based models on lettuce 

dataset 

As shown in Figure 8, 20 transfer learning models were comparatively 

evaluated using performance metrics including Accuracy (Acc), F1-score (F1), 

Specificity (Spe), Precision (Pre), and Recall (Rec). A detailed examination of 

the results reveals that the AlexNet model outperformed all other architectures, 

achieving 0.9788 Acc, 0.9771 F1, 0.9841 Spe, 9816 Pre and 0.9726 Rec values. 

In contrast, the VGG19 model obtained noticeably weaker performance relative 

to the other models, with 0.7849 Acc value, 0.8043 F1 value and 0.6926 Rec 
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value. Additionally, NASNet-Mobile achieved the lowest both Spe values at 

0.9373 and Pre values at 0. 9264. 

 

4. CONCLUSION 

In this study, 20 deep transfer learning models were used to detect lettuce 

leaf diseases. These 20 DL models were compared with each other on a lettuce 

dataset. The results obtained indicated that the AlexNet model outperformed the 

other models with an accuracy of 97.88%. Additionally, the Grad-CAM 

technique was used to identify the significant regions obtained by each deep 

learning model on the dataset. Experimental findings indicate that AI-based 

models, particularly the AlexNet model, achieve significant results in lettuce 

disease detection. In the next study, we plan to perform disease detection using 

state-of-the-art DL models on different lettuce datasets. 
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Chapter 2 
 

Prediction of Manufacturing Defects With Machine 

Learning-Based Classification Models:  

Application of Logistic Regression,  

Random Forest and Xgboost 

 
Murat BİNİCİ1 

 

ABSTRACT 

This chapter investigates the prediction of manufacturing defects using machine 

learning–based classification models on a multivariate, synthetic dataset representing 

daily operational performance in a smart manufacturing context. The dataset 

comprises 3,240 observations and 17 numerical variables, including indicators related 

to production volume and cost, supplier quality, delivery delays, maintenance and 

downtime, inventory performance, labor productivity, energy consumption, additive 

processes, and a binary target variable (DefectStatus) indicating high- versus low-

defect production days. After a structured preprocessing phase involving missing data 

checks, feature scaling where appropriate, and a two-level strategy for handling 

severe class imbalance (SMOTE-based oversampling and class weighting), three 

models—Logistic Regression (LR), Random Forest (RF), and XGBoost—are trained 

and evaluated. Model performance is assessed on a stratified train–test split using 

accuracy, precision, recall, F1-score, ROC–AUC, confusion matrices, and feature 

importance analyses. The results show that tree-based ensemble models outperform 

LR, with RF achieving the highest accuracy (0.94) and recall for the high-defect class, 

whereas XGBoost yields the best ROC–AUC, indicating superior discriminative 

power. Feature importance rankings consistently highlight maintenance-related 

indicators, defect rate, quality score, and production volume as key drivers of defect 

risk. The chapter concludes that ML-based classification, particularly with ensemble 

methods, provides an effective decision-support framework for early defect detection 

and quality improvement in manufacturing systems. 

Keywords: Machine learning–based classification, Manufacturing defects, Smart 

manufacturing, Logistic Regression, Random Forest, XGBoost

 
1 Assist. Prof. Dr., Bitlis Eren University, Faculty of Engineering and Architecture, Department of Mechanical 

Engineering, mbinici@beu.edu.tr, ORCID: 0000-0003-1814-438X. 

14



1. INTRODUCTION 

In the contemporary manufacturing sector, where global competition is 

intensifying, product quality and process reliability are of strategic importance 

for the sustainability of enterprises. Defects occurring in production systems 

result in a wide range of direct and indirect costs, including rework, scrap, 

delivery delays, warranty expenses, and customer dissatisfaction. Accordingly, 

rather than detecting defects only at the end of the production line, it has 

become increasingly critical to predict and prevent them at earlier stages. In this 

regard, artificial intelligence and machine learning approaches that rely on the 

effective analysis of multidimensional data collected from manufacturing 

processes are emerging as more flexible, scalable, and powerful predictive tools 

than classical statistical methods (Tercan and Meisen, 2022). 

With the advent of Industry 4.0 and the smart manufacturing paradigm, vast 

amounts of data are being generated from production lines through sensors, the 

Internet of Things (IoT), and cyber-physical systems. These datasets 

simultaneously encompass multiple dimensions such as production volume, 

supplier quality, maintenance activities, energy consumption, inventory 

movements, labor productivity, and quality control results. Within this complex 

data structure, the relationships between process parameters and quality 

outcomes are not expected to be linear, stable, or simple. The literature, 

particularly in the domain of smart manufacturing, shows that Machine 

Learning (ML)–based quality prediction models are widely employed to handle 

such high-dimensional and complex datasets (Deokar et al., 2025). 

Recent systematic reviews have shown that the range of ML algorithms used 

for quality assurance and defect prediction in manufacturing has expanded; 

however, tree-based ensemble methods and logistic regression stand out in a 

substantial portion of applications. In particular, tree-based approaches such as 

Random Forest (RF) and Extreme Gradient Boosting (XGBoost) are reported to 

be widely preferred in manufacturing quality and defect classification problems, 

owing to their ability to capture complex, nonlinear relationships, handle 

heterogeneous types of variables (continuous, integer, ratio, etc.), and reveal 

variable importance scores (Kausik et al., 2025). Logistic Regression (LR), on 

the other hand, is commonly employed as a comparison (baseline) model in 

many studies due to the interpretability of its coefficients and its relatively low 

computational cost (Tercan and Meisen, 2022). 

However, the class imbalance problem, which is frequently encountered in 

production and maintenance data, emerges as one of the most significant 

methodological challenges in defect prediction studies. In real manufacturing 

environments, defective products typically occur as “rare events” whose 
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proportion within total production is relatively low. This situation leads to a 

pronounced imbalance between majority and minority classes in the dataset, 

increasing the risk that conventional classification algorithms will be biased 

toward the majority class and overlook defective instances in the minority class, 

which are often of primary interest. Recent systematic reviews focusing on the 

manufacturing domain indicate that numerous approaches have been proposed 

to address class imbalance at the data level (resampling, synthetic data 

generation, etc.) and at the algorithmic level (class weighting, cost-sensitive 

learning, etc.) (de Giorgio et al., 2023). 

In this book chapter, a ML–based classification framework is proposed to 

predict whether the level of defects occurring on the production line will be 

“high” or “low,” using a multivariate manufacturing dataset that reflects daily 

production performance. The dataset employed in the study, the Predicting 

Manufacturing Defects Dataset, includes indicators covering a wide range of 

processes, such as production volume and cost, supplier quality, delivery 

delays, maintenance durations, downtime ratio, inventory indicators, labor 

productivity, occupational safety incidents, energy consumption, and additive 

production, and thus offers a holistic view of manufacturing operations (El 

Kharoua, 2024). The target variable, DefectStatus, represents in binary form 

whether the production output for a given day is highly defective (1) or has a 

low level of defects (0). 

This study examines three different classification models: LR, RF, and 

XGBoost. LR, as a probability-based and interpretable model that relies on the 

assumption of linear separability, makes it possible to investigate the direction 

and magnitude of the effects of production parameters on defect probability. 

RF, an ensemble method obtained by training a large number of decision trees 

on random subsamples of observations and subsets of features, is able to capture 

complex interactions and nonlinear relationships among variables. XGBoost, in 

turn, is an optimized representative of the gradient-boosted decision tree family 

and has come to the forefront in industrial applications in recent years due to 

both its predictive performance and its sensitivity to hyperparameter tuning 

(Chen et al., 2024). 

The main objective of this chapter is to present a comprehensive approach to 

predicting defect risk in production lines by comparatively evaluating AI–based 

decision tree models and the logistic regression method on the aforementioned 

dataset. Within this framework, the study aims to (i) analyze the relationships 

between production, procurement, maintenance, inventory, energy, and labor 

indicators and defect status; (ii) examine the impact of the class imbalance 

problem on model performance; (iii) compare different classification algorithms 
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not only in terms of the accuracy measure, but also using metrics such as F1-

score, recall, specificity, and ROC–AUC; and (iv) investigate variable 

importance levels, thereby developing an early warning and quality prediction 

framework that can support decision-makers in manufacturing processes. 

In this regard, the study aims to make a twofold contribution from both 

theoretical and practical perspectives. On the theoretical plane, it introduces a 

classification framework that follows current approaches in the manufacturing 

quality prediction literature and is sensitive to class imbalance and model 

evaluation metrics. On the practical plane, it contributes to the development of 

data-driven decision support systems by proposing a modeling approach that, 

drawing on operational indicators commonly recorded in manufacturing 

environments, anticipates defect risk and points to potential areas for 

improvement. 

 

2. LITERATURE REVIEW 

The use of ML technologies in quality assurance and defect control in the 

manufacturing sector has become increasingly critical as the volume and variety 

of data grow. Existing systematic studies show that process parameters and 

quality outcomes derived from production data are analyzed using ML models, 

thereby achieving higher prediction accuracy and greater process flexibility 

compared to traditional methods (Kausik et al., 2025). In particular, in studies 

that make use of sensor data, IoT systems, and large-scale datasets, ML 

methods emerge as effective tools for in-process quality control and early 

warning systems (Ördek et al., 2024). However, data preparation workflows, 

model interpretability, and integration costs are among the challenges 

encountered in this field (Antosz et al., 2024). 

Tree-based models and ensemble methods are widely preferred for quality 

prediction in manufacturing processes. In this context, the RF algorithm can 

effectively capture nonlinear relationships and interactions among variables by 

training a large number of tree structures on randomly sampled subsets of 

observations and features. High performance of RF has been reported in areas 

such as additive production, automotive components, and electronics 

manufacturing lines (Kausik et al., 2025). Another advantage of these methods 

is that, through feature importance measures, they provide an opportunity to 

interpret from an engineering standpoint which production parameters have a 

greater impact on quality. On the other hand, if the parameter settings (e.g., 

number of trees, depth) are not properly tuned, limitations such as the risk of 

overfitting and a tendency to favor the majority class in datasets with class 

imbalance may arise. 
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LR is one of the fundamental methods that has been used for many years in 

classification problems and is also preferred in the context of manufacturing 

quality due to the interpretability of its results (Tercan and Meisen, 2022; Md et 

al., 2022). This method makes it possible to directly assess, through the logistic 

function, the effect of a given production variable on defect probability 

(Borucka and Grzelak, 2019). In the literature, LR is typically employed as an 

initial or baseline model and subsequently compared, in terms of performance, 

with more complex models (Tercan and Meisen, 2022). However, the linear 

separability assumption of LR can be a limitation in capturing nonlinear 

interactions among variables; therefore, its performance may remain relatively 

lower in multivariate and nonlinear manufacturing processes (Md et al., 2022). 

XGBoost is a tree-based ensemble algorithm that has become particularly 

prominent in industrial data analytics and quality prediction studies. In a study 

conducted for failure prediction on a production line using XGBoost, high 

predictive accuracy was achieved (Mehregan et al., 2025). The advantages of 

this method include the possibility of hyperparameter optimization, its 

compatibility with large datasets, and its adaptability to irregular class 

distributions through settings such as class weights. However, to ensure strong 

performance, its hyperparameters must be selected carefully and overfitting 

must be avoided. 

One frequently encountered issue in manufacturing quality data is that the 

number of defective products is relatively low compared to total production, 

which leads to class imbalance in the dataset. In the literature, two main 

approaches are highlighted to address this problem: data-level resampling 

(oversampling, undersampling, SMOTE) and algorithm-level strategies such as 

assigning class weights or employing cost-sensitive learning (He and Garcia, 

2009). Moreover, since using only accuracy as a performance measure can be 

misleading in imbalanced settings, it is recommended to adopt more informative 

metrics such as F1-score, precision–recall, and ROC–AUC (Ogrizović et al., 

2024). In this context, addressing class imbalance in the modeling phase of the 

present study is in line with good practice recommendations in the literature. 

In summary, the literature indicates that ML methods are widely employed 

for quality prediction and early fault detection in manufacturing processes, and 

that tree-based methods and XGBoost in particular have demonstrated strong 

effectiveness. However, studies that use daily production metrics with 

multivariate inputs and class-imbalanced datasets to comparatively evaluate LR, 

RF, and XGBoost within a unified framework remain limited. Therefore, 

assessing these models on the same dataset, deriving variable importance levels, 
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and explicitly accounting for class imbalance has the potential to provide an 

original contribution. 

 

3. DATASET DESCRIPTION 

A correct understanding of the structure of the dataset is critically important 

for the subsequent modeling process, performance evaluation, and variable 

importance analysis. In addition, factors such as the relationship of the variables 

to the underlying production processes, the class distribution, and the nature of 

the imbalance play a decisive role in the implementation of ML models. For this 

reason, the general structure and key characteristics of the dataset, in this 

section, are first described, and then each variable is examined in detail. 

 

3.1. Data Source and Type 

The dataset used in this study is a comprehensive synthetic data set that 

reflects daily operational performance, quality indicators, and supply chain 

conditions in manufacturing processes. It was specifically constructed for the 

purpose of developing an ML-based model for the classification of production 

line defects (El Kharoua, 2024). Accordingly, it was designed by taking into 

account the variable structures, inter-variable relationships, and defect 

formation dynamics observed in real manufacturing environments, while being 

simulated in such a way that it does not contain any sensitive information 

belonging to a commercial organization or an actual production facility. This 

property makes the dataset both safe in terms of ethical use and flexible for 

academic research. 

The dataset consists of a total of 3,240 observations and 17 variables. Each 

row in the dataset represents the operational performance for a single 

production day. Variables such as production volume, cost, energy 

consumption, maintenance activities, labor productivity, supply chain 

performance, and quality control measures are summarized and recorded on a 

daily basis. Since the dataset does not contain any information on product 

categorization or product variety, the analysis is conducted under the 

assumption of a homogeneous production line manufacturing a single product 

type. This approach allows the defect prediction performance of the model to be 

examined solely on the basis of process-specific metrics. 

The synthetic nature of the dataset provides several methodological 

advantages for the study. First, it allows defect cases that are rare in real 

manufacturing environments but critical from a modeling perspective to be 

incorporated into the data in a more balanced manner. Second, it can be used in 

open-access research without raising data confidentiality concerns and is 
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suitable for educational and training applications. However, the main limitation 

of synthetic datasets is that the relationships among variables may not fully 

reflect the complexity observed in real production environments. Therefore, 

while this dataset is well suited for model development, method comparison, 

and academic teaching purposes, caution is required when transferring the 

model outputs directly to the operational strategies of an actual factory. 

In conclusion, by offering a wide range of metrics related to manufacturing 

processes and capturing day-to-day operational behavior, the dataset provides 

an appropriate and methodologically coherent basis for this study, which 

focuses on classifying production line defects using ML methods. 

 

3.2. Variables 

In the dataset used in this study, the variables are grouped under thematic 

categories in order to better reflect the multifaceted nature of manufacturing 

processes. First, the production metrics category covers daily production output 

and cost components. In this context, the variable ProductionVolume represents 

the number of units produced per day, while ProductionCost denotes the total 

cost of the corresponding production activity. Together, these two indicators 

make it possible to analyze how production intensity and cost pressure influence 

quality. 

Supply chain and logistics indicators also occupy an important place in the 

dataset. SupplierQuality reflects the quality of inputs provided by suppliers 

using a percentage-based score, whereas DeliveryDelay indicates the duration of 

delays in supply processes. Considering the impact of supplier quality and 

logistical disruptions on the reliability of production outputs, these variables are 

critical for the contribution they make to the model. 

The quality control category includes two key variables that relate directly to 

the quality performance observed at the end of the production process. 

DefectRate quantitatively represents the number of defects per thousand units, 

while QualityScore expresses the overall quality level of production as a 

percentage score. These variables both summarize the quality outcome of the 

process and can be regarded as important independent variables for defect 

prediction models. 

Variables related to maintenance and downtime include MaintenanceHours 

and DowntimePercentage. MaintenanceHours, which indicates the weekly 

duration of maintenance activities, and DowntimePercentage, which reflects the 

proportion of time the production line is not operational, provide important 

operational indicators of equipment efficiency and continuity. Since increases in 
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these values are typically associated with declines in quality performance, they 

make meaningful contributions to the model. 

Among the variables related to inventory management are 

InventoryTurnover and StockoutRate. InventoryTurnover, which represents 

stock turnover, indicates the efficiency of the firm’s inventory management, 

while StockoutRate reflects the risk of production interruptions through the rate 

of stock depletion. These two indicators are important for examining how 

disruptions in the flow of raw materials may indirectly affect quality 

performance. 

Variables related to labor productivity and safety are also included in the 

dataset. WorkerProductivity expresses workers’ productivity levels in 

percentage terms, whereas SafetyIncidents indicates the number of safety 

incidents that occur within a given month. Considering that worker motivation, 

safety, and productivity are closely associated with quality outcomes, the 

inclusion of these indicators in the model is important. 

Variables representing energy consumption and energy efficiency include 

EnergyConsumption and EnergyEfficiency. EnergyConsumption, which 

expresses daily energy use in kilowatt-hours, and EnergyEfficiency, which 

indicates the level of efficiency in energy utilization, are incorporated into the 

model based on the assumption that overall line efficiency and fluctuations in 

machine performance may affect quality. 

Finally, the variables related to one of the modern manufacturing 

technologies, namely additive manufacturing processes, AdditiveProcessTime 

and AdditiveMaterialCost, represent, respectively, the duration of the additive 

manufacturing process and the unit cost of the additive material used. These 

parameters are important for assessing how innovative production techniques 

influence defect formation. 

Beyond all these categories, the main target variable of the study, 

DefectStatus, enables the classification of the production output as low-defect 

(0) or high-defect (1). This variable constitutes the primary outcome of the 

modeling process in relation to all other indicators in the dataset. 

The dataset used in this study consists of a total of 3,240 observations and 17 

variables. This size is sufficient both to provide an appropriate sample for 

training machine learning models and to allow for an analytical examination of 

the multidimensional structure of manufacturing processes.  

All variables in the dataset are numerical, and there are no categorical 

variables. A subset of the variables are of integer type, namely 

ProductionVolume, DeliveryDelay, MaintenanceHours, SafetyIncidents, and the 

target variable in the classification process, DefectStatus. All remaining 
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variables are continuous numerical (float) in nature and cover a wide range of 

measurements related to the production process, such as production cost, quality 

indicators, inventory performance, energy usage, and additive manufacturing 

times. Specifically, ProductionCost, SupplierQuality, DefectRate, QualityScore, 

DowntimePercentage, InventoryTurnover, StockoutRate, WorkerProductivity, 

EnergyConsumption, EnergyEfficiency, AdditiveProcessTime, and 

AdditiveMaterialCost fall into this group.  

The fact that the entire dataset consists of quantitative variables allows it to 

be analyzed directly by both LR and tree-based classification models, and it also 

substantially simplifies the preprocessing stage, as no encoding procedures are 

required. Researchers who wish to access detailed descriptive statistics for all 

variables in the dataset can obtain this information via the Kaggle platform 

(Kaggle Dataset: Predicting Manufacturing Defects Dataset). 

 

3.3. Class Imbalance 

In the dataset, the class distribution of the target variable DefectStatus is 

observed to be highly imbalanced; the high-defect class accounts for 

approximately 84% of all instances, whereas the low-defect class constitutes 

only about 16%. Such a distribution is referred to in the literature as class 

imbalance and represents a fundamental issue that directly affects the 

performance of ML-based classification models. Since the number of defective 

products is typically low in real manufacturing data, it is likely that the model 

will develop a bias in favor of the majority class and fail to adequately learn the 

minority class (de Giorgio et al., 2023). 

Class imbalance plays a critical role particularly in applications such as 

production quality control and defect prediction. Recent reviews of application 

domains show that imbalanced learning is still a major obstacle in “real-world” 

data and is explicitly addressed in studies on production line failure or defect 

detection (Gao et al., 2025). This situation indicates that evaluating models 

solely on the basis of the accuracy metric can be misleading; therefore, it is 

recommended to use performance measures such as F1-score, precision–recall 

curves, and ROC–AUC (Gao et al., 2025). 

To address class imbalance, the literature highlights two main approaches: 

data-level resampling techniques (oversampling, undersampling, SMOTE, etc.) 

and algorithm-level strategies such as assigning class weights or adopting cost-

sensitive learning. In this regard, Chen et al. (2024) note that, in addition to 

data-level and algorithm-level solutions, hybrid methods have also become 

increasingly widespread. In the manufacturing context, Giorgio et al. (2023) 

show that, in fault/defect detection problems with imbalanced data where the 
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error/defect class is rare, resampling procedures and class weight adjustments 

are commonly employed. 

In this study as well, appropriately addressing class imbalance prior to the 

modeling stage will not only improve the performance of the model but also 

enhance the reliability of the inferences drawn for quality control applications. 

In this way, it will become possible to predict in advance the days with a high 

defect risk on the production line and to establish a more robust foundation for 

decision-support systems. 

 

4. METHODOLOGY 

This section presents the methodological framework of the ML approach 

applied to classify production line defects. The methodology of the study covers 

the data preprocessing steps carried out to make the dataset suitable for analysis, 

the theoretical foundations of the LR, RF, and XGBoost models used in the 

classification process, and finally the criteria selected to evaluate model 

performance. Considering the multidimensional and imbalanced nature of 

production data, planning the methodological procedure in a systematic and 

coherent manner is of great importance both for the reliability of the results 

obtained from the models and for the validity of the implications for industrial 

applications. For this reason, the methodology section explains in detail both the 

data processing procedures and the analytical logic of the selected algorithms. 

 

4.1. Pre-Processing 

The ability of ML models to produce reliable and generalizable results 

depends on subjecting the dataset to appropriate preprocessing prior to analysis. 

Since multidimensional data structures derived from manufacturing processes 

may contain issues such as differences in scale, unequal distributions across 

variables, and class imbalance, a systematic preprocessing procedure was 

applied before modeling. This section discusses key steps such as checking for 

missing data, scaling, addressing class imbalance, and splitting the dataset into 

training and test sets. 

 

4.1.1. Missing data analysis 

The first step in the preprocessing procedure is to check the dataset for 

missing or erroneous records. Missing data can reduce the learning capacity of 

the model and may directly introduce bias, particularly in statistical methods 

such as LR. Although the dataset used in this study contains no missing values 

because it was generated synthetically, missingness is quite common in real 
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manufacturing data. For this reason, missing data analysis is a critical step for 

preserving methodological integrity. 

 

4.1.2. Feature scaling 

Differences in the scales on which the variables in the dataset are measured 

can adversely affect coefficient estimates and convergence behavior, 

particularly in LR and other gradient-based methods. For this reason, variables 

with wide ranges, such as production volume (100–1000), cost (5,000–20,000), 

and energy consumption (1,000–5,000 kWh), may take much larger values than 

percentage- or ratio-based metrics, potentially destabilizing weight updates in 

the models. In this study, standard scaling (StandardScaler) was applied to 

ensure stable behavior of LR and to allow for consistent comparison across 

models. For the tree-based methods, no scaling was applied, as they are more 

flexible and less sensitive to differences in feature scales. 

 

4.1.3. Addressing class imbalance 

Given the substantial class imbalance in the dataset (approximately 84% 

high-defect vs. 16% low-defect), it is necessary to apply methods that increase 

the model’s sensitivity to the minority class. Imbalanced data structures tend to 

induce a bias toward the majority class in ML models and reduce the 

classification performance for the minority class (Chen et al., 2024; de Giorgio 

et al., 2023). Therefore, two complementary approaches were adopted in this 

study: 

(a) Data-level approach: By applying SMOTE (Synthetic Minority Over-

sampling Technique), synthetic samples were added to the minority class and 

the class distribution was balanced. This method aims to enable the model to 

learn the low-defect cases, which are rarely observed in manufacturing 

processes, more effectively. 

(b) Algorithm-level approach: In the LR, RF and XGBoost models, the 

class_weight parameter was set to "balanced", thereby forcing the model to 

assign greater weight to the misclassification cost of the minority class. 

This two-stage strategy can enhance the model’s sensitivity in predicting 

production line defects. 

 

4.1.4. Splitting the dataset into training and test sets 

The dataset was split into 80% training and 20% test in order to evaluate the 

generalization capacity of the models. The training set represents the stage in 

which the model parameters are learned, while the test set is used to objectively 

assess model performance on previously unseen data. Taking class imbalance 
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into account, a stratified split technique was applied so that the class proportions 

were preserved in both the training and test subsets. This approach eliminates 

the risk that the minority class might be entirely absent from either the training 

or the test set. 

 

4.2. Applied Machine Learning Models 

In this study, three different ML-based classification models were employed 

for classifying production line defects: LR, RF, and XGBoost. This section 

briefly explains the basic assumptions, working principles, and the specific role 

of each model within the context of the present study. 

 

4.2.1. Logistic regression 

LR is a statistically grounded method that has long been used to solve binary 

classification problems and offers a high degree of interpretability. The model 

expresses the relationship between the independent variables and the target 

variable in probabilistic terms through the logistic (sigmoid) function, and this 

feature allows it to provide directly interpretable outputs for decision-makers in 

risk-oriented processes such as production defect prediction (Hosmer et al., 

2013). In addition, the coefficient-based structure of LR makes it possible to 

directly infer from the model the direction and magnitude of the effects of 

variables such as production volume, quality scores, and supplier quality on 

defect probability. 

One of the main advantages of LR is that its model parameters are directly 

interpretable and that the effect of each variable on the target can be assessed in 

terms of log-odds. This property contributes to the frequent use of LR as a 

baseline model in decision-oriented domains such as quality engineering and 

production analytics. Indeed, the literature commonly reports LR as a reference 

model both for evaluating classification performance and for benchmarking 

against more complex models (Kovács et al., 2024). 

In this study, the LR model was applied to classify defects occurring in the 

production process (0 = low defect, 1 = high defect). The model was 

implemented using a Pipeline structure that incorporates the data preprocessing 

steps. The training of the model consists of the following steps: 

(a) Data splitting: After separating the target variable DefectStatus, the 

dataset was split into training and test sets in an 80–20 ratio, and a stratified 

split procedure was employed to preserve the class distribution. 

(b) Scaling: Since the LR model can be affected by the scale of the 

features, all independent variables were standardized using StandardScaler. 
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(c) Handling class imbalance: Since the high-defect class is dominant in 

the dataset, two strategies were applied. The first is a model-level adjustment 

using class_weight = "balanced", and the second is a data-level procedure using 

SMOTE. Both approaches were integrated into the Pipeline. 

(d) Model specification: The model was defined with the following 

parameters: class_weight="balanced", max_iter=1000, solver="liblinear", 

random_state=42. 

(e) Pipeline structure: The Pipeline was composed of three components: 

StandardScaler, SMOTE, and LR. This configuration ensured a clean workflow 

and prevented data leakage. 

(f) Training the model: The Pipeline was fitted on the training data to 

construct the model. Subsequently, predictions were generated on the test data; 

however, this section reports only the model implementation procedure, while 

the performance evaluation is presented in the following sections. 

 

4.2.2. Random forest classifier 

RF is an ensemble ML method based on decision trees. The core idea is to 

build a large number of decision trees on different subsamples of the training 

data and then aggregate their predicted classes using majority voting for the 

classification task. In this way, the overfitting problem to which a single deep 

tree is prone is substantially reduced, and the model’s generalization 

performance is improved (Breiman, 2001). RF reduces correlation among trees 

by using both random sampling of observations (bootstrap sampling) and 

random subsets of features at each node; thus, instead of individual trees with 

high variance, a more balanced and stable ensemble model is obtained 

(Breiman, 2001). 

One of the main reasons why RF models are widely used in manufacturing 

and quality control is their success in capturing nonlinear relationships and 

interactions among variables. Recent studies show that RF outperforms 

traditional statistical methods in terms of predictive performance, owing to its 

ability to process high-dimensional sensor data and to achieve high accuracy in 

predicting quality outcomes in complex production processes (Kausik et al., 

2025; Antosz, 2024). In addition, despite its relatively “black-box” nature, RF 

offers a practically useful level of transparency for decision-support systems by 

providing feature importance scores that indicate which inputs contribute more 

strongly to the model output (Scornet, 2021). 

In this study, the RF classifier was applied to classify the target variable 

DefectStatus (0 = low defect, 1 = high defect) using the large set of operational 

variables measured on a daily basis in the production process. As in the LR 
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model, the target variable was first separated from the dataset, and all remaining 

variables were defined as the feature set (X). To preserve the class distribution, 

the dataset was then split into training and test subsets in an 80–20 ratio using a 

stratified structure. In this way, the imbalanced class structure was represented 

in a similar manner in both the training and test sets, and a fair basis for 

comparison across models was established. 

Since RF is a tree-based method, it is not sensitive to feature scales unlike 

LR; therefore, no additional scaling step was applied for this model. However, 

the class imbalance present in the dataset (with the high-defect class being 

dominant) was taken into account, and a two-level strategy was adopted to 

mitigate this issue. First, SMOTE  was applied to the training data to 

synthetically increase the number of minority-class observations, thereby 

enabling RF to learn the underrepresented class more effectively. Second, the 

classifier’s class_weight parameter was set to "balanced", ensuring that the loss 

function assigns greater weight to the minority class. The combined use of these 

two approaches is consistent with good practice recommendations in the 

literature for imbalanced datasets (Khan et al., 2024). 

The RF model was implemented in Python using the 

RandomForestClassifier class from the scikit-learn library. To enhance model 

stability, the n_estimators parameter was set to a relatively high value (300 

trees), while the random_state parameter was fixed to ensure reproducibility of 

the results. In addition, by setting n_jobs = -1, the training process was 

executed in parallel, taking advantage of multi-core processor architectures. As 

in the LR model, the specification and training of the RF model were defined 

within a Pipeline, thereby ensuring that SMOTE was applied only to the training 

data and preventing data leakage. 

After the training procedure was completed, the RF model generated 

predictions on the test set, and performance metrics such as accuracy, precision, 

recall, F1-score, and ROC–AUC were computed based on these predictions. 

However, this subsection presents only the theoretical framework and 

implementation steps of the RF model; the resulting performance scores are 

discussed in Section 5, Results and Discussion, where they are comparatively 

evaluated together with the other models (LR and XGBoost) in order to 

preserve the overall coherence of the study. 

 

4.2.3. XGBoost classifier 

XGBoost is an optimized, high-performance implementation of a tree-based 

gradient boosting algorithm. Its core working principle is to build weak learners 

sequentially in such a way that they minimize the residual error, focusing on the 
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parts of the data that previous models failed to explain. Thanks to 

hyperparameters such as learning rate, tree depth, subsampling, and strong 

regularization mechanisms, the model both keeps overfitting under control and 

delivers high predictive performance on large and complex datasets (Chen and 

Guestrin, 2016). 

In recent years, XGBoost has come to be regarded as one of the leading 

gradient boosting methods for critical applications such as quality classification, 

fault detection, and anomaly detection in manufacturing processes. Various 

studies report that XGBoost models optimized for anomaly detection on 

production lines achieve high accuracy, precision, and F1-scores, and that they 

outperform traditional methods as well as some other ensemble approaches 

(Dalal et al., 2024; Nilsson and Kyrk, 2025). Similarly, in complex 

manufacturing environments such as printed circuit board production, 

XGBoost-based models have been shown to be effective in defect detection 

using high-dimensional data generated by the production process (Prasad-Rao et 

al., 2023). Owing to its capacity to handle large datasets, its embedded 

regularization mechanisms, and its success in capturing nonlinear relationships, 

XGBoost has become a frequently preferred algorithm for data-driven quality 

control and decision-support systems within the scope of Industry 4.0 (Kausik 

et al., 2025; Qu et al., 2024). 

In this study, the XGBoost classifier was used to classify defects occurring 

in manufacturing processes (0 = low defect, 1 = high defect). The 

implementation steps were designed to remain consistent with the previous 

models. First, the target variable was separated from the dataset, and all 

independent variables were defined as the feature set. To allow for a fair 

evaluation of the model, the dataset was split into 80% training and 20% test 

using a stratified procedure. 

Since XGBoost is a tree-based algorithm, it does not require additional 

scaling (standardization). However, the pronounced class imbalance in the 

dataset was taken into account, and SMOTE was applied during training to 

increase the representation power of the minority class. To ensure that SMOTE 

was applied only to the training data and to prevent data leakage, the model was 

defined within a Pipeline, as in the RF setup. 

In this study, the XGBoost classifier was configured with specific 

hyperparameter settings to ensure a balanced learning process and to keep 

overfitting under control in the classification task. The parameter 

n_estimators=300 was chosen to obtain a more stable and well-trained 

ensemble of trees, while max_depth=4 was used to limit tree depth and thereby 

prevent overfitting. To ensure a more gradual learning process, 
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learning_rate=0.1 was adopted so that the contribution of each individual tree 

to the model was reduced in a controlled manner. In addition, the 

hyperparameter subsample=0.8, which randomly samples a portion of the 

dataset, was employed to enhance the generalization ability of the model, 

whereas colsample_bytree=0.8, which creates a feature subset for each tree, 

introduced further diversity and supported model performance. This 

combination of parameters provides an effective configuration for XGBoost, 

balancing its predictive accuracy with its capacity to control overfitting. 

 

4.3.  Model Evaluation Metrics 

In ML-based classification problems, accurately evaluating model 

performance is critically important, especially in datasets that exhibit class 

imbalance. For this reason, assessing a model on the basis of a single metric is 

often inadequate. Below, the main classification metrics used in this study are 

described. 

 

4.3.1. Accuracy 

Accuracy represents the proportion of correctly classified instances to the 

total number of instances. However, this metric can be misleading when there is 

a severe imbalance between classes. For example, in a dataset where the 

positive class is very rare, a model that predicts all instances as “negative” may 

still achieve a high accuracy score (He and Garcia, 2009). 

 

4.3.2. Precision ve recall 

Precision indicates how many of the instances that the model predicts as 

positive are actually positive, whereas recall shows how many of the truly 

positive instances are correctly identified by the model. In domains such as 

production defects, where errors can lead to costly consequences, these two 

metrics are particularly critical. This is because false positives (unnecessary 

intervention costs) and false negatives (missed actual defects) directly affect 

decision-making processes (Saito and Rehmsmeier, 2015). 

 

4.3.3. F1-score 

The F1-score is the harmonic mean of precision and recall, and it enables 

these two metrics to be optimized jointly. In situations with class imbalance, the 

F1-score is a much more informative evaluation measure than accuracy alone, 

because it balances the impact of both false positives and false negatives 

(Chicco and Jurman, 2020). 
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4.3.4. ROC-AUC 

The ROC (Receiver Operating Characteristic) curve illustrates the model’s 

ability to distinguish the positive class across different threshold values. The 

AUC (Area Under the Curve) represents the area under this ROC curve, and as 

it approaches 1, the model is considered to have better discriminative power 

(Fawcett, 2006). 

 

4.3.5. Confusion matrix 

The confusion matrix provides a detailed breakdown of the model’s correct 

and incorrect classifications in terms of four components (TP, FP, FN, TN). 

This matrix is extremely important for understanding the impact of false 

negatives (missing actual defects) and false positives (unnecessary intervention) 

on manufacturing processes (Kelleher et al., 2015). 

 

5. RESULTS AND DISCUSSION 

In this section, the performance results of the three classification models 

used in the study—LR, RF, and XGBoost—are examined in a comparative 

manner. All models were evaluated using the same train–test splitting strategy, 

and SMOTE was applied to address class imbalance. Model performance was 

assessed not only in terms of accuracy, but also using more comprehensive 

metrics such as precision, recall, F1-score, and ROC–AUC, thereby enabling a 

more robust analysis of the ability of the different classification models to 

distinguish between high- and low-defect conditions. 

 

5.1. Performance Comparison 

The test-set performances of the LR, RF, and XGBoost models are compared 

in detail. The main evaluation metrics used for the three models are summarized 

in Table 1, and classification performance is assessed not only in terms of 

accuracy, but also using precision, recall, F1-score, and ROC–AUC. As can be 

seen from the table, LR, due to its structure based on linear relationships, lags 

behind the other models and shows more limited success, particularly in 

distinguishing the high-defect class. By contrast, the RF model achieves the 

highest accuracy (0.94) and the highest recall value, demonstrating a notably 

strong performance in detecting the high-defect class. XGBoost, on the other 

hand, attains the highest ROC–AUC value, making it the model that best 

separates the classes. In this regard, although all the three models exhibit 

different strengths, the tree-based methods appear to be more successful, 

especially when dealing with manufacturing data characterized by complex and 

nonlinear relationships. 
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Table 1. Model performance summary 

Model Accuracy 
Precision 

(Class 1) 

Recall 

(Class 1) 

F1-Score 

(Class 1) 

ROC-

AUC 

Logistic 

Regression 
0.7546 0.93 0.76 0.84 0.79 

Random 

Forest 
0.9414 0.95 0.98 0.96 0.83 

XGBoost 0.9151 0.95 0.95 0.95 0.84 

 

The confusion matrix results for the models are presented in Table 2. An 

examination of the confusion matrices shows that LR produces a high number 

of false negatives (FN = 130), indicating that the model frequently classifies 

high-defect products as “low defect.” In a critical domain such as production 

defect detection, a high false negative rate is a highly undesirable outcome. By 

contrast, the RF model yields only nine false negatives and, in this respect, is 

the method that captures the high-defect class best among the three models. 

Although the number of false negatives produced by XGBoost (FN = 26) is 

higher than that of RF, it still demonstrates a much better classification 

performance than LR. The fact that all three models share the same number of 

true negatives (TN = 74) and false positives (FP = 29) suggests that, after 

SMOTE, class rebalancing and model complexity primarily affect the high-

defect class. 

Table 2. Confusion matrix results 

Model TN FP FN TP 

Logistic 

Regression 
74 29 130 415 

Random 

Forest 
74 29 9 536 

XGBoost 74 29 26 519 

 

Evaluating model performance in terms of ROC curves provides a more 

detailed understanding of the discriminative power between classes. In the ROC 

plots (Figure 1), the curves of RF and XGBoost lie above that of LR, indicating 

that the tree-based methods offer a more consistent and stronger separation 

capability across different threshold values. In particular, the ROC curve of 

XGBoost attains higher true positive rates at both low and high false positive 

rates, revealing that the model has strong generalization performance. Although 

the ROC–AUC value of RF is slightly lower than that of XGBoost, it still 

constitutes a robust alternative from an operational risk management 

perspective due to its high success in capturing the positive (high-defect) class. 

The ROC curve of LR, by contrast, remains lower, indicating that it cannot 
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deliver optimal performance for manufacturing data characterized by nonlinear 

relationships. 

 
Figure 1. Comparison of ROC curves for LR, RF, and XGBoost models 

 

Overall, when Table 1, Table 2, and the ROC curves (Figure 1) are evaluated 

jointly, it is evident that tree-based methods perform markedly better in the 

production defect classification problem. RF largely prevents high defects from 

being missed by minimizing false negatives, whereas XGBoost provides a 

higher discriminative capacity and a more balanced overall performance. 

Although LR has the advantage of interpretability, it lags behind the other 

models in terms of predictive performance. These results indicate that ensemble 

methods are more suitable for analyzing complex data structures in 

manufacturing processes. 

 

5.2. Feature Importance Ranking 

When the comparative feature importance values obtained from the three 

models (LR, RF, XGBoost) are examined, it is observed that certain variables 

systematically stand out across all models in determining production defects. 

According to the findings presented in Table 3, MaintenanceHours and 

DefectRate are the two key determinants with the highest importance scores in 

all three models. This result indicates that maintenance activities and existing 

defect levels play a central role in predicting the emergence of new defects in 

production. 
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Table 3. Comparative feature importance of LR, RF, and XGB models 

Feature 
LR 

Coefficient 

LR Abs. 

Importance 

RF 

Importance 

XGB 

Importance 

MaintenanceHours 1.238882 1.238882 0.257275 0.215104 

DefectRate 1.037257 1.037257 0.199312 0.178374 

QualityScore -0.652453 0.652453 0.132414 0.121911 

ProductionVolume 0.456485 0.456485 0.105837 0.105118 

SupplierQuality 0.139299 0.139299 0.024049 0.027003 

StockoutRate 0.107314 0.107314 0.027081 0.030488 

DeliveryDelay 0.094509 0.094509 0.023217 0.056954 

EnergyConsumption 0.079072 0.079072 0.031444 0.027456 

 

Table 3. Comparative feature importance of LR, RF, and XGB 

models (Cont.) 

Feature 
LR 

Coefficient 

LR Abs. 

Importance 

RF 

Importance 

XGB 

Importance 

InventoryTurnover 0.056089 0.056089 0.030937 0.036420 

ProductionCost 0.051716 0.051716 0.027198 0.027782 

EnergyEfficiency -0.045549 0.045549 0.022840 0.029812 

AdditiveMaterialCost 0.043202 0.043202 0.024409 0.026204 

AdditiveProcessTime 0.035864 0.035864 0.024945 0.030594 

WorkerProductivity -0.035269 0.035269 0.023239 0.026643 

SafetyIncidents 0.012323 0.012323 0.016844 0.029211 

DowntimePercentage 0.003322 0.003322 0.028958 0.030925 

 

QualityScore and ProductionVolume are also consistently found to be 

important across the models. By contrast, some variables exhibit different 

importance levels from one model to another. For example, while 

DowntimePercentage has a low coefficient in LR, it attains higher importance 

in both RF and XGBoost. This indicates that linear models may be insufficient 

for capturing certain nonlinear relationships. Similarly, the variable 

DeliveryDelay stands out clearly in the XGBoost model, whereas it remains 

more in the background in LR and RF. 

Overall, the common findings across the three models indicate that 

indicators related to maintenance, quality, and production volume are the 

primary determinants of in-process quality risk, whereas differences between 

the models show that interaction and nonlinear effects among variables are 

captured more effectively, particularly by tree-based methods. Therefore, the 

feature importance analysis not only helps to explain model behavior, but also 

provides a practical roadmap for identifying which parts of the production 

process should be targeted in order to reduce defect risk. 
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5.3. Comparison of Model Predictions on A New Observation 

To assess the practical usefulness of the models, the predictive performance 

of the three models was compared on an example new observation representing 

a production scenario (Table 4). This new observation simulates a 

manufacturing situation in which features such as production volume, supplier 

quality, maintenance time, quality score, and energy consumption are set at 

realistic levels. 

Table 4. Feature values of the new observation used in the model 

comparison  

Feature Value Feature Value 

ProductionVolume 750 InventoryTurnover 5.2 

ProductionCost 12000 StockoutRate 3.1 

 

Table 4. Feature values of the new observation used in the model 

comparison (Cont.) 

Feature Value Feature Value 

SupplierQuality 92.5 WorkerProductivity 95 

DeliveryDelay 1 SafetyIncidents 2 

DefectRate 2.3 EnergyConsumption 2500 

QualityScore 88 EnergyEfficiency 0.32 

MaintenanceHours 10 AdditiveProcessTime 6.5 

DowntimePercentage 1.5 AdditiveMaterialCost 230 

 

The results indicate substantial differences among the models (Table 5). LR 

predicts the defect class for this observation as 1 (high risk) and assigns a very 

high probability to this outcome (≈ 0.99999). By contrast, RF classifies the 

observation in class 0 (low risk) and estimates a more moderate defect 

probability of 0.1667. The XGBoost model, in turn, yields the lowest risk 

estimate, computing the defect probability at approximately 0.0043. 

These results show that the models differ in the sensitivity of their decision 

boundaries. The high sensitivity of LR stems from the fact that its linear 

decision boundary more readily labels certain combinations of variables as 

“risky.” RF and XGBoost, by contrast, assign the same observation to a lower-

risk category because they capture interactions and nonlinear relationships 

among features more effectively. In particular, the extremely low defect 

probability produced by XGBoost can be attributed to its tree-based structure, in 

which most observations similar to this one tend to fall into the non-defective 

class. 
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Table 5. Comparison of model predictions on a new observation 

Model 
Predicted 

Class 

Predicted Probability of High Defect 

(P(Class=1)) 

Logistic 

Regression 

1 (High 

Defect) 
0.99999 

Random Forest 0 (Low Defect) 0.16667 

XGBoost 0 (Low Defect) 0.00427 

 

5.4. Discussion 

In this study, among the three ML models compared, XGBoost achieving the 

highest performance is closely related to its structural advantages. XGBoost 

stands out by constructing a strengthened ensemble model in which sequential 

weak learners minimize residual errors, by effectively controlling overfitting 

through its regularization (L1–L2) mechanisms, and by performing well on data 

structures characterized by complex, nonlinear relationships. Since 

manufacturing processes exhibit a high degree of variability driven by the 

interaction of multiple inputs, it is to be expected that XGBoost can capture 

such patterns. The findings obtained in this study confirm this tendency. 

Although LR has the advantage of interpretability, its reliance on a linear 

decision boundary can be limiting in highly multidimensional and complex 

processes such as manufacturing. In this study, the model lagged behind in 

terms of classification performance, particularly in situations where interactions 

among variables were strong and nonlinear relationships were dominant. 

Moreover, in the presence of an imbalanced data structure, the sensitivity of LR 

tends to decrease. In this dataset, where the high-defect class is dominant, this 

caused the model to make more conservative predictions. This is clearly 

reflected in the prediction results on the new data. 

When evaluated from the perspective of real manufacturing environments, 

the results indicate that all three models are practically usable, but that the most 

reliable outputs for decision-support systems are obtained particularly from 

ensemble models. Models such as XGBoost and RF, with their high accuracy 

and consistent performance, can reduce operators’ workload in defect detection 

processes on the production line, contribute to maintenance planning, and 

support supply chain optimization. Nevertheless, LR remains an important tool 

due to its simple structure and interpretability advantage, enabling production 

managers to quickly understand which factors increase defect probability. 

From a quality improvement perspective, the importance scores obtained 

from the three models show that variables such as MaintenanceHours, 

DefectRate, and QualityScore play a central role in defect formation. This 

indicates that firms should place greater emphasis on maintenance planning, 
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quality control procedures, and the relationship between production volume and 

quality. Moreover, the fact that the new-data scenario is assigned to different 

classes by the models suggests that companies should consider adopting a 

multi-model approach, since relying on the decision of a single model may 

introduce risk in critical production decisions. 

 

6. CONCLUSION AND RECOMMENDATIONS 

In this study, three different ML models (LR, RF, and XGBoost) were 

comprehensively compared for predicting defect states in manufacturing 

processes. The dataset used in the analysis consists of multidimensional 

variables such as production volume, supply chain performance, quality 

indicators, maintenance activities, energy consumption, and labor productivity, 

thereby reflecting the characteristic complexity of modern manufacturing 

environments. In addition, the class imbalance problem in the dataset was 

addressed using methods such as SMOTE and class weights, enabling the 

models to produce more balanced predictions. 

The findings show that XGBoost is the most successful model in terms of 

overall performance. This can be explained by its ability to capture nonlinear 

relationships and its robustness against overfitting through regularization 

mechanisms. The RF model also demonstrates a high level of success, 

particularly by providing stable results in feature importance rankings. LR, on 

the other hand, while advantageous in terms of interpretability, remains 

comparatively weaker in performance because it cannot fully capture the 

dynamics of complex manufacturing processes. 

When the feature importance scores are examined, it is observed that 

MaintenanceHours, DefectRate, QualityScore, and ProductionVolume play a 

decisive role in defect prediction. This finding underscores the importance for 

firms of strengthening their maintenance strategies, optimizing quality control 

procedures, and adopting a more fine-grained approach to production planning. 

In the prediction for the new observation, the differences observed among the 

models indicate that a multi-model approach should be considered in 

manufacturing systems, and that relying on a single model in critical decision-

making processes may be risky. 

Based on the findings of this study, the following recommendations can be 

made: 

• Ensemble methods such as XGBoost or RF can be integrated into 

operational systems for the early detection of production defects. 
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• Regular monitoring of maintenance and quality control processes is a 

critical area for improvement, particularly in light of the high importance of the 

MaintenanceHours and QualityScore variables. 

• To enhance the consistency of model results, firms should standardize 

their data collection processes, reduce the proportion of missing data, and 

improve overall data quality. 

• In situations that require straightforward interpretation, LR remains a 

valuable tool, clearly showing decision-makers which variables increase defect 

probability. 

• Future studies can be supported by explainable AI techniques such as 

SHAP values, enabling a clearer understanding of model decisions. 

• The models’ generalization capability could be enhanced by extending 

the dataset to include different product types, multiple production lines, or a 

time-series structure. 

In conclusion, this study has shown that ML-based classification models can 

serve as a powerful decision-support tool in manufacturing processes. With 

appropriate feature selection, suitable data preprocessing steps, and balanced 

model evaluation, companies can transform their quality improvement 

processes into a more systematic and predictable structure. 
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ABSTRACT 

A Web Application Firewall (WAF) is a security solution designed to protect 

web applications against cyber threats. The increasing volume of cyber attacks 

and the widespread adoption of web applications have made the use of WAFs 

essential for ensuring data security. The evolution of WAFs encompasses a 

transformation from their initial, simple functionalities into more intelligent 

systems through the integration of artificial intelligence and machine learning. 

WAFs operate by analyzing incoming requests to modern web applications 

based on predefined rules, evaluating these requests and blocking suspicious 

activities. They are deployed in various forms (cloud-based, hardware-based, 

and software-based) across different domains and are particularly preferred in 

environments with high data sensitivity, such as e-commerce platforms and 

financial institutions. However, WAFs also have limitations; complex rule 

management and high false positive rates may adversely affect user experience. 

Moreover, their effectiveness is often confined to known threats, which can 

result in limited protection against emerging attack vectors. 

 

Keywords: Web application security, Reverse proxy, Cross-Site scripting 

(XSS) attacks, SQL injection, Regular expressions (ReGex) 
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1. INTRODUCTION 

The rapid evolution of the Internet has rendered web applications one of the 

most critical components of organizations. Numerous processes, ranging from 

banking and e-government services to educational systems and e-commerce, are 

now conducted on web-based platforms. However, this evolution has 

simultaneously introduced significant security threats. The inadequacy of 

traditional security mechanisms particularly network-level firewalls and 

IDS/IPS solutions in preventing attacks targeting web applications has led to the 

emergence of the need for Web Application Firewalls (WAFs). Institutions and 

organizations with network traffic implement strict security measures and 

surround their systems with multiple preventive solutions. Nevertheless, due to 

the conscious or unconscious use of various technical and facilitative services 

within applications operating on web platforms, there is always a potential for 

security vulnerabilities to arise. 

Even a minor vulnerability in corporate systems may lead to exposure to 

cyber attacks, resulting in reputational damage and significant business losses. 

In this context, Web Application Firewall (WAF) solutions come into play and 

assume a major role in protecting web applications. 

 

2. WHAT IS A WEB APPLICATION FIREWALL? 

A WAF is a specialized security mechanism designed to detect, block, and 

filter attacks targeting web applications, and to stop malicious traffic before it 

reaches the application. Unlike traditional firewalls, a WAF does not operate at 

the network layer but directly at the application layer (Layer 7 of the OSI 

model). Accordingly, it performs a detailed analysis of all incoming HTTP and 

HTTPS requests to determine whether they contain malicious content. The 

primary objective of a WAF is to establish a protective shield against attacks 

targeting the underlying code base, database, and business logic of the web 

application. 

Web applications are inherently dynamic systems, particularly due to the 

processing of user inputs. This characteristic leads to an expansion of the attack 

surface with every newly developed feature, added parameter, and integrated 

module. 

The advanced structure of web applications, the lack of validation for user-

supplied data, and the fact that not all developers adhere to the same security 

standards increase the likelihood of security vulnerabilities. These 

vulnerabilities are frequently exploited by attackers and can often lead to severe 

consequences such as data theft, content manipulation, unauthorized access, and 

complete system compromise. WAFs have been developed to mitigate the 
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impact of such vulnerabilities in web applications and to block malicious 

requests before they reach the application. Their core features include simple 

filtering; regular expression-based filtering; URL encoding validation; Unicode 

encoding validation; auditing; null byte attack prevention; upload memory 

limitations; and server identity masking (Razzaq et al., 2013). The operating 

principle of a WAF is to filter all traffic directed to the application and allow 

only secure traffic to pass through. A WAF analyzes the headers, parameters, 

URL structure, body, and cookies of HTTP requests. It is also capable of 

detecting anomalies related to session management, authentication attempts, IP 

addresses with an excessive number of failed login attempts, suspicious bot 

activities, and behaviors resembling known attack signatures.  Today, in order 

to mitigate increasing cyber threats and enhance the level of protection, efforts 

are being made to establish a new framework for existing traditional firewalls 

by integrating artificial intelligence support. As can be observed from the 

sample studies in the literature discussed below, WAF systems which operate at 

the application layer and are significantly more effective than traditional, 

hardware-based system-level countermeasures against cyber attacks are being 

combined with contemporary artificial intelligence algorithms, emerging as 

highly effective, fast, and high-performance security solutions.  

Various methodologies and techniques, such as secure coding, configuration 

analysis, and the deployment of web application firewalls, are employed for 

application security. To prevent web application issues, web administrators 

typically rely on web application firewalls. Web application firewalls operate at 

the web application layer, perform in-depth inspection of HTTP packets and 

each of their components, and search for web application attacks. They detect 

malicious strings and configuration errors by using different techniques such as 

whitelisting, blacklisting, and greylisting. (Razzaq et al., 2013). 

A Web Application Firewall (WAF) performs deep packet inspection of the 

network traffic occurring between the client and the server. By analyzing the 

data transmitted between the client and the server, a WAF can detect potential 

attacks even if the application itself lacks such detection capabilities. Utilizing 

the default configuration of a web server may lead to security vulnerabilities 

despite the presence of a firewall; this situation must be mitigated through 

comprehensive security testing  (Clincy & Shahriar, 2018). As a solution to this 

problem, WAFs are extensively utilized. In the studies on WAFs available in 

the literature, WAFs have been examined from multiple perspectives and their 

benefits have been documented. In their work focusing on the use of WAFs for 

multi-attack detection, the authors concentrate on an Adaptive Web Application 

Firewall (WAF) that employs machine learning for real-time threat detection, 
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enhances security, and reduces cyber risks. They report that WAF 

implementations are capable of protecting against a wide range of threats, 

including SQL injection, DDoS attacks, directory traversal, and CSRF, and that 

the system can reliably detect threats by distinguishing malicious patterns with 

fewer false positives (Maheshwari et al., 2024). In their study focusing on an 

advanced WAF that leverages machine learning for enhanced security, Dhote et 

al. aimed to distinguish between different types of attacks at the application 

layer by classifying requests, and conducted a noteworthy investigation on 

attack detection using WAFs. (Dhote et al., 2024). In another study employing 

deep learning-based artificial intelligence to enhance web application security, 

the authors achieved an accuracy rate of 98.61% in attack detection with their 

proposed CNN-LSTM model. They emphasized that the performance of the 

DL-based WAF is more effective than that of traditional rule-based WAFs 

(such as ModSecurity), and demonstrated that the critical and high-severity 

vulnerabilities observed in conventional systems are effectively mitigated by the 

DL-based WAF (Muttaqin & Sudiana, 2025). In a study proposing a Web 

Application Firewall (WAF) that employs hybrid detection methods for XSS 

attacks, the authors introduced an effective artificial intelligence approach for 

the early detection of XSS attacks by leveraging machine learning and deep 

learning techniques. Extensive experimental evaluations demonstrated that the 

random forest method, when used with the proposed feature set, outperforms 

state-of-the-art approaches and achieves a high performance score of 0.99. 

(Younas et al., 2024). 

 

3. WHY HAS A WAF BECOME NECESSARY? 

Today, web applications have become an indispensable component for 

institutions and organizations in conducting their operations; however, 

alongside the convenience they provide, they also introduce numerous 

vulnerabilities and issues. These systems have been exposed to malicious 

activities that may lead to severe and often uncontrollable consequences such as 

data theft, disruption of business processes and functions, and service outages. 

Among the major initiatives undertaken to contain and prevent these threats, the 

WAF stands out as one of the most significant countermeasures. 

Web applications have become one of the most critical components of 

modern organizations. Government services, educational platforms, e-

commerce websites, banking systems, enterprise management tools, API-based 

microservice architectures, and cloud-based applications now play a central role 

in the functioning of society and the economy. Within this expanding digital 

ecosystem, security is not merely a technical requirement but a multi-layered 
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necessity that extends from national security and financial stability to business 

continuity and personal data protection. Consequently, the rise in attacks 

targeting web applications has evolved into a serious issue that significantly 

affects institutions, individuals, and states. 

At precisely this point, Web Application Firewall (WAF) technology has 

emerged as one of the indispensable components of modern cyber security 

architectures. The primary objective of a WAF is to stop attacks targeting web 

applications before they reach the application, to detect anomalous behavior, 

and to provide protection against threats occurring at the application layer. 

However, there are much deeper reasons why a WAF is regarded not merely as 

a necessity but as an obligation. These reasons are closely related to 

technological advancements, the evolution of attack patterns, and the 

transformation of organizational operating models. 

Below, the reasons why a WAF is needed are examined and elaborated from 

historical, technical, operational, and security perspectives in a comprehensive 

manner. 

 

3.1. The Explosion of Web Applications and the Increased Attack 

Surface as a Driver for WAF Adoption 

The acceleration of digital transformation since the early 2000s has led to an 

extraordinary increase in the use of web applications. The Internet environment, 

which previously consisted only of simple, informational websites, has over 

time evolved into complex structures such as:  

• User Account Management Systems 

• Online Payment Modules 

• E-Government Services 

• E-Signature and Identity Authentication Services 

• API and Microservice-based Architectures 

• Remote Education Systems 

• Enterprise ERP, CRM and HR Systems  

Protecting such an extensive surface manually is practically impossible. 

Regardless of how carefully developers work, numerous risks naturally emerge, 

such as:  Coding errors, Insufficient input validation, Iinadequate input filtering, 

Authentication weaknesses, Security issues in third-party libraries. 

For this reason, WAF technology, which filters incoming traffic to the 

application, blocks suspicious requests, and provides an additional protection 

layer for the application has become mandatory. 
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3.2. The Inadequacy of Traditional Firewalls Against Application-

Layer Attacks 

Traditional firewalls and IDS/IPS solutions operate at the network layer. 

These systems block attacks by inspecting: IP addresses, port numbers, protocol 

types, packet direction. 

However, the majority of modern cyber attacks occur at the application 

layer. These attacks typically resemble standard web traffic, originate from 

ports 80 and 443, and carry malicious payloads embedded within seemingly 

normal HTTP requests (as in the case of SQL Injection, XSS (Cross-Site 

Scripting), RFI/LFI, and CSRF attacks). 

For example, attacks such as SQL Injection, XSS (Cross-Site Scripting), 

RFI/LFI, CSRF, Path Traversal, Command Injection, Bad Bot Attacks, API 

Abuse, Business Logic Attacks are perceived as legitimate traffic by a 

traditional firewall, because they appear as ordinary HTTP requests. 

A traditional firewall, when inspecting such requests, may effectively 

conclude: “This is port 443, protocol HTTPS. It does not appear dangerous,” 

and therefore forward the request to the internal network. However, the 

malicious content embedded in the parameters or payload of the request may 

completely compromise the application. For this reason, a mechanism capable 

of understanding application-layer attacks has become necessary, and this 

mechanism is the WAF. 

 

3.3. The Rise of OWASP Top 10 Attacks and Security Vulnerabilities 

The OWASP Top 10, which is updated every few years, lists the most 

critical web application vulnerabilities worldwide. Nearly all entries in this list 

stem from the way web applications process user input.  Most of these 

vulnerabilities arise from issues such as injection attacks, authentication 

weaknesses, authorization flaws, improper input validation, and security 

misconfigurations.  

A WAF provides direct protection particularly against items in the OWASP 

Top 10 such as Injection, Broken Authentication, Sensitive Data Exposure, 

XML External Entities, Broken Access Control, Security Misconfiguration, 

and XSS. Since the absence of adequate controls against the OWASP Top 10 is 

considered a major risk in corporate security audits, the WAF has become a 

critical component for meeting these requirements. 

 

3.4. The Rise of SQL Injection, XSS, and Other Critical Vulnerabilities 

Over the past 20 years, some of the most widely used attack types worldwide 

have included SQL Injection, XSS, File Inclusion (LFI/RFI), Command 
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Injection, and Broken Authentication. Because these attacks can be executed 

even with relatively simple techniques, they are frequently observed especially 

in small, medium-sized, and poorly coded systems. An attacker may inject an 

SQL command into the parameters of a web application to take control of the 

database, inject JavaScript code to hijack user accounts, or manipulate the file 

upload mechanism to execute commands on the server. The common 

characteristic of these attacks is that all of them occur at the application layer. A 

WAF detects and blocks such attacks using signature-based analysis, behavioral 

analysis, and input validation techniques. 

 

3.5. The Rise of Zero-Day Vulnerabilities and Aggressive Attack 

Techniques  

In the contemporary cybersecurity landscape, threat actors are capable of 

exploiting undiscovered (zero-day) vulnerabilities with increasing rapidity. In 

the event of a zero-day vulnerability, relying solely on vendor patches is 

insufficient to mitigate such attacks. Upon the discovery of a vulnerability, a 

remediation cycle is required wherein the software vendor must fix the flaw, 

users must acquire the update, and system administrators must test and deploy 

the patch. While this process may span days or even weeks, attackers are often 

able to exploit the vulnerability within minutes. Consequently, a WAF protects 

the application by filtering malicious traffic until the official patch is deployed, 

effectively buffering the system against zero-day attacks. 

 

3.6. The Rise of Distributed Microservices and API-based Architectures 

The paradigm shift from traditional monolithic applications to microservices 

architectures has significantly compounded the complexity of security 

management. Modern systems are no longer constituted by a single application; 

rather, they function as an aggregate of dozens of API endpoints, hundreds of 

microservices, diverse protocols, and heterogeneous authentication 

mechanisms. As this architectural complexity increases, security risks escalate 

accordingly. Consequently, the Web Application Firewall (WAF) has become 

an indispensable primary solution for API security. Within this complex 

architectural framework, a WAF: Analyzes API traffic, Blocks malicious bots, 

Detects authentication violations, Enforces rate limiting, Prevents data 

manipulation. 

 

3.7. Automated Attacks, Bot Traffic and Scraping Threats 

While cyberattacks were historically executed manually, the contemporary 

threat landscape is dominated by automated tools such as SQLmap, DirBuster, 
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Nikto, and Burp Suite automations, alongside Python scripts and AI-assisted 

attack vectors. These tools provide adversaries with the capability to perform 

high-velocity scanning, automated exploit attempts, and API exploitation. 

Furthermore, malicious bots are capable of engaging in activities such as price 

scraping, brute force login attempts, comment spamming, API token theft, and 

content manipulation. 

By analyzing this traffic, a WAF: Identifies bot behavior, Issues CAPTCHA 

challenges, Enforces rate limiting, Performs IP reputation checks, Blocks 

anomalous requests. Consequently, it safeguards the web application against 

automated attacks. 

 

3.8. The Necessity of Protection Against DDoS and Application Layer 

Flood Attacks 

Modern iterations of DDoS attacks no longer target solely the network layer 

but increasingly focus on the application layer (Layer 7). For instance, attacks 

such as: 

• Flooding an API endpoint with thousands of requests per second, 

• Overloading login forms via brute-force attempts, 

• Submitting resource-intensive queries to search fields, 

• Disrupting filtering mechanisms 

can exhaust system resources and precipitate application failure. It is not 

feasible to mitigate application layer DDoS attacks using standard network 

firewalls alone. Consequently, a WAF intervenes to protect the application by 

employing mechanisms such as rate limiting, behavioral analysis, IP reputation 

checks, bot scoring, and automated blocking. 

 

3.9. Enterprise Requirements and Regulatory Compliance 

In order to ensure logging and the security of real-time transactions at the 

application level across various sectors, the deployment of Web Application 

Firewalls (WAF) has become a standard and indispensable requirement. This 

necessity arises from regulatory mandates and legal obligations that enforce 

specific protection levels for web applications, including: PCI-DSS (mandatory 

for payment systems), ISO 27001 (security requirements), GDPR/KVKK 

(prevention of data breaches), Banking regulations, Public sector security 

standards, Healthcare data protection laws. 

Given that a single data breach can result in substantial financial penalties, 

reputational damage, operational downtime, and litigation processes, 

organizations are compelled to adopt WAF solutions proactively. 
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3.10. The Inevitability of Human Error and the Persistence of Security 

Vulnerabilities 

Regardless of the rigor of the development process, no software can be 

rendered entirely secure. Factors such as the inevitability of human error, 

increased error rates in code developed under time constraints, the continuous 

emergence of new vulnerabilities in third-party libraries, and the lack of 

familiarity among new developers with legacy security decisions make it 

impossible to exhaustively test for all vulnerabilities in complex systems. By 

mitigating the impact of these unavoidable errors, a WAF enhances the overall 

security resilience of the system. 

 

4. THE EVOLUTION OF WAF 

The evolutionary trajectory of WAF technology originated as a technical 

countermeasure to the escalating cyber threats associated with the proliferation 

of the Internet. To fully comprehend the contemporary status of WAFs, it is 

essential to analyze both the evolution of web applications and the shifting 

landscape of attack vectors. This progression represents not merely a technical 

advancement, but the result of a comprehensive transformation driven by 

enterprise requirements, security standards, next-generation software 

architectures, and DevSecOps methodologies. 

The following section examines the timeline of WAF development, ranging 

from its inception to its current sophisticated architecture, through a 

chronological framework. 

 

4.1. The Early Era of Web Applications and Fundamental Security 

Needs (1990–2000) 

In the mid-1990s, the World Wide Web consisted primarily of static HTML 

pages. As client-server interaction was minimal, the attack surface remained 

relatively narrow. During this period, fundamental enterprise security solutions 

were limited to traditional network firewalls and Intrusion Detection/Prevention 

Systems (IDS/IPS). However, with the advent of web technologies such as CGI, 

PHP, ASP, and Java Servlets, websites evolved into dynamic and interactive 

platforms. Users gained the capability to submit data, complete forms, and 

interact directly with backend databases. 

This shift precipitated the onset of application-level exploits, leading to the 

emergence of attack vectors such as SQL Injection, Command Injection, and 

File Inclusion, alongside a rise in database manipulation attempts. 

Traditional network firewalls, operating primarily at the TCP/IP layer, were 

incapable of detecting such attacks. Similarly, while IDS/IPS systems analyzed 
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network traffic, they lacked the depth of inspection required to comprehend the 

specific business logic of web applications. Consequently, a novel security layer 

was required to mitigate threats targeting the application layer. This necessity 

laid the groundwork for the inception of the WAF. 

 

4.2. The Emergence of First-Generation WAFs (2000–2005) 

The establishment of the Open Web Application Security Project (OWASP) 

in the early 2000s catalyzed a significant shift in the security community's focus 

toward web application security. The publication of the OWASP Top 10 list 

established global recognition regarding the criticality of application security. 

The fundamental characteristics of the first-generation WAFs developed during 

this era were as follows:  

• Static Signature and Rule-Based Architecture  

Early WAF solutions analyzed attacks using static signature sets, analogous 

to IDS systems. For instance, patterns such as “ ‘ OR 1=1--” were identified as 

SQL Injection attempts and subsequently blocked. 

• HTTP Packet-Level Filtering  

These WAFs inspected HTTP requests and blocked those deemed 

anomalous. However, they lacked the capability to comprehend the application 

context. 

• Reverse Proxy Architecture  

Many WAF solutions operated as reverse proxies, analyzing incoming traffic 

to the web server within an intermediary layer. 

• Limited Flexibility  

Rule-based systems frequently generated high rates of false positives, 

thereby increasing the operational overload associated with WAF deployment. 

During this period, WAF technology began to advance commercially, and 

the first open-source solutions, such as ModSecurity, were introduced. 

 

4.3. The Expansion of Web and the Maturation Phase of WAF 

Technology (2005–2012) 

Post-2005, the landscape of web applications expanded significantly with the 

widespread adoption of AJAX, SOAP, REST APIs, desktop-like web 

applications, and mobile web technologies. Concurrently, attack vectors 

diversified to include Cross-Site Scripting (XSS), CSRF, RFI/LFI, XML 

Injection, Session Hijacking, and Cookie Manipulation. 

Since the majority of these attacks targeted application behavior, WAF 

solutions were compelled to evolve. During this period, WAFs acquired the 

following capabilities: 
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• Behavioral Analysis and Anomaly Detection  

Recognizing the inadequacy of static signatures, WAF models were 

developed to learn the baseline traffic of an application and detect deviations. 

• Advanced Rule Engines  

Flexible rule engines based on Regular Expressions (RegEx) and extensible 

rule sets in tools such as ModSecurity emerged. 

• OWASP ModSecurity Core Rule Set (CRS)  

The introduction of the CRS marked a significant milestone in the 

standardization of WAF rule sets. 

• Application Layer Protection  

In addition to HTTP/HTTPS inspection, advanced controls were 

implemented for data formats such as JSON, XML, and SOAP. This era 

facilitated the widespread adoption of WAFs within enterprise infrastructures. 

 

4.4. Rise of Cloud Technologies and the Reshaping of WAF (2012–2018) 

The proliferation of cloud-based applications, microservices architectures, 

and the exponential increase in traffic volume necessitated the transformation of 

WAFs into scalable architectures. During this period, Content Delivery 

Network (CDN)-based protection services and Software-as-a-Service (SaaS) 

WAF solutions gained particular prominence. The pivotal transformation points 

of this era can be outlined as follows: 

• Cloud WAF Solutions  

Major technology corporations such as Cloudflare, AWS, Azure, and Google 

began offering WAF services via globally distributed infrastructures. 

• DDoS Integration  

WAFs gained the capability to detect and mitigate Distributed Denial of 

Service (DDoS) attacks in addition to ensuring application security. 

• WAF as a Service  

The service model requiring no local installation and offering real-time 

updates became widespread. 

• API Security  

Specialized controls for REST and SOAP APIs were integrated into the 

functional repertoire of WAFs. 

This era marks the period in which WAF technology became more user-

centric, significantly reducing the operational overload associated with 

deployment and maintenance. 
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4.5. Artificial Intelligence, Machine Learning, and the Modern WAF 

Era (2018–Present) 

The foundation of the current state of WAF technology is constituted by 

decision-making mechanisms based on Artificial Intelligence (AI) and Machine 

Learning (ML). 

 

Key Features of Modern WAFs: 

• Machine Learning-Based Anomaly Detection 

By learning the behavioral patterns of the application, anomalous requests 

are automatically identified. This methodology exhibits significantly higher 

efficacy compared to static signature-based approaches. 

• Bot Management and Anti-Automation 

Contemporary WAFs possess the capability to autonomously distinguish and 

mitigate malicious bots, scrapers, and credential stuffing attempts. 

• Zero-Day Attack Detection 

Early warning mechanisms facilitate the detection of attacks for which 

signatures have not yet been generated. 

• Large-Scale Distributed Architectures 

Utilizing CDN-based global networks, requests are filtered at the network 

edge (nearest point of presence). 

• API Gateway Integration 

API security has evolved into a fundamental component of WAF 

architecture. 

• DevSecOps Integration 

Modern WAF solutions are integrated into CI/CD pipelines, ensuring 

security enforcement as early as the code development phase. Consequently, 

WAF technology has transcended its role as a mere firewall, evolving into a 

comprehensive application security platform. 

 

4.6. Future Projections and the Evolution of WAF Technology 

The evolutionary trajectory of WAF technology is not yet complete. In the 

forthcoming years, it is anticipated that Artificial Intelligence will evolve 

toward a rule-less operational model through Fully Automated Security 

Policies; WAF capabilities will converge with Service Mesh technologies (e.g., 

Istio, Linkerd) via the full integration of API and microservices security; the 

focus will extend beyond mere attack detection to include user behavior 

profiling through User Behavior Analytics (UBA); requests will be filtered at 

the network edge prior to reaching the data center via the implementation of 
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Edge-Computing based WAFs; and WAFs will establish themselves as a 

fundamental authentication layer within the system through Zero-Trust 

Integration. 

 

5. HOW WAF OPERATES 

What is the fundamental concept? What functions does a WAF, where 

is it positioned? 

The primary role of a WAF is to inspect inbound HTTP/HTTPS traffic at the 

application layer (OSI Layer 7) and intercept malicious requests before they 

reach the web application. This mechanism is distinct from traditional network 

security approaches based on IP addresses and ports. A WAF analyzes the 

request body, Uniform Resource Identifier (URI), HTTP headers, cookies, 

JSON/XML payloads, and even session logic. 

The deployment models of a WAF can be categorized as follows: 

• Reverse Proxy (Inline): The most prevalent model, wherein client 

requests are first routed to the WAF for analysis and, if deemed benign, are 

subsequently forwarded to the origin server. 

• Transparent Bridge: Deployed within the network infrastructure to 

passively monitor traffic without modification or to perform active inline 

blocking. 

• Host-Based (Agent): Operates as a module directly on the application 

server, residing on the same host machine as the application itself. 

• Cloud/CDN-Based WAF: Traffic is filtered through the provider's 

distributed network infrastructure, facilitating mitigation at the network edge. 

• API Gateway / Service Mesh Integration: Provides gateway-level 

integration within microservices or API-first architectures. 

The selection of deployment topology is critical regarding security efficacy, 

latency, and scalability. While reverse proxy and cloud-based WAFs offer 

distinct advantages in scalability and DDoS mitigation, host-based solutions 

provide deeper visibility into the application context. 

 

The WAF Request Inspection Pipeline 

The request processing logic of a Web Application Firewall typically 

adheres to the following sequential stages: 

1. TLS Decryption (Termination): If the WAF operates with inline TLS 

termination, the encrypted request is first decrypted. (Note: Deep packet 

inspection is not feasible if TLS termination does not occur at the WAF level.) 

2. HTTP Parsing and Normalization: This phase involves URL 

decoding, character normalization, Unicode normalization, and content-type 

53



  

determination (e.g., JSON, XML, form-data). This step is of critical importance 

for neutralizing evasion techniques. 

3. Header, URI, and Body Inspection: A granular analysis is performed 

on HTTP headers, methods, Uniform Resource Identifiers (URIs), query strings, 

and the request body. 

4. Rule Application and Modeling: This stage involves the execution of 

signature-based rules (pattern matching, Regular Expressions), the evaluation of 

behavioral and statistical models, and the application of positive/negative 

security logic (allowlisting/blocklisting). 

5. Rate Limiting and Connection Control: Traffic volume is assessed 

against predefined thresholds; temporary bans or throttling may be enforced 

based on these limits. 

6. Bot Challenge / CAPTCHA: Based on the calculated bot score, the 

requester may be redirected to a CAPTCHA or a similar computational 

challenge. 

7. Action Execution (Allow/Deny/Redirect/Sanitize): Based on the 

outcome of the rule evaluation, specific actions such as blocking with an alert or 

payload sanitization are executed. 

8. Logging, Telemetry, and Forwarding: Comprehensive logs are 

generated and forwarded to Security Information and Event Management 

(SIEM) systems for incident response and forensic analysis. 

Inspection Methodologies: 

WAFs employ diverse techniques to execute inspection processes. These 

methodologies can be categorized as follows: 

• Signature-Based Detection: This method utilizes string matching and 

regular expressions (RegEx) to identify known attack patterns, such as SQL or 

JavaScript snippets. While highly efficient in detecting established threats with 

precision, it often proves inadequate against novel or polymorphic attack 

variants. For example, a RegEx pattern such as (\bselect\b.*\bfrom\b) identifies 

SQL Injection attempts. 

• Positive Security Model (Allowlisting): This approach defines a strict 

set of permissible request formats (allowlist) and rejects all others. It is a robust 

technique, particularly suitable for static and well-defined applications. 

However, its primary disadvantages include the administrative complexity of 

management within dynamic environments and a high potential for false 

positives. 

• Negative Security Model (Blocklisting): This model focuses on 

identifying and blocking known malicious patterns. It is the most widely 

adopted approach for filtering out recognized threats. 
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• Behavioral and Anomaly Detection: This technique establishes a 

baseline traffic profile (e.g., request frequency, parameter structures), triggering 

alerts upon the detection of deviations. Machine Learning algorithms are often 

employed to distinguish between benign and anomalous traffic. For instance, 

500 login attempts against an endpoint from a single IP address within a short 

timeframe would be identified as a brute-force attack. 

• Stateful Application: Logic Inspection The WAF validates session 

identifiers, CSRF tokens, and the sequential integrity of specific business 

workflows. It detects logic anomalies, such as a user attempting to submit a 

payment request while bypassing the requisite checkout sequence. 

• Payload Normalization and Decoding: This process neutralizes 

evasion techniques such as path traversal (%2E%2E), Unicode obfuscation, 

double-encoding, and chunked transfer manipulation. Signature matching and 

malicious content detection are executed subsequent to the normalization 

process. 

• Context-Aware Parsing: The WAF parses payloads according to their 

specific content type (e.g., JSON, XML, multipart/form-data) to apply relevant 

security policies. Format-specific vectors, such as XML External Entity (XXE) 

attacks, are identified at this layer. 

 

WAF Rule Categories: 

Web Application Firewalls utilize a diverse range of rule sets to enforce 

security policies. These encompass simple string and Regular Expression 

(RegEx) rules for basic pattern matching of known signatures, as well as 

complex logical rules involving boolean logic or multi-condition criteria. 

Furthermore, the system employs rate-limiting rules to restrict request 

frequency, geo-location rules for restrictions based on geographic origin, and IP 

reputation rules to filter traffic according to the trustworthiness history of IP 

addresses. Additionally, WAFs support time-based (temporal) rules for policies 

active during specific timeframes and custom rules, such as specialized rule sets 

developed for frameworks like ModSecurity. 

WAF Action Policies 

Upon the triggering of a security rule, a Web Application Firewall (WAF) is 

capable of executing a diverse range of enforcement actions. These include 

Block (Deny), which serves to immediately reject the request; Redirect / 

Challenge, employed to enforce verification mechanisms such as CAPTCHA 

or HTTP 302 redirects; Alert / Log Only, a passive mode particularly 

beneficial during the operational tuning phase for generating telemetry without 

service interruption; Sanitize / Scrub, which neutralizes malicious payloads 
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while permitting the sanitized request to proceed to the origin; Quarantine, 

utilized to isolate the request or reroute it to a secondary processing queue; and 

Rate-Limit / Throttle, designed to restrict traffic velocity based on defined 

thresholds. 

 

Performance and Scalability 

Since the Web Application Firewall (WAF) is positioned at the application 

perimeter, latency and throughput are of critical importance. To ensure optimal 

performance, the following considerations must be addressed: 

• TLS Termination: Due to the high CPU overhead associated with 

decryption, hardware acceleration or termination at the network edge should be 

prioritized. 

• Rule Complexity: An excessive number of complex Regular 

Expressions (RegEx) can significantly increase CPU consumption; 

therefore, rule optimization is essential. 

• Caching / Fast Path: Caching mechanisms should be implemented to 

provide rapid access to static content and validated (sanitized) traffic. 

• Horizontal Scaling: Horizontal scalability should be achieved through 

Cloud/Content Delivery Network (CDN)-based WAFs or the utilization of load 

balancers. 

• Connection Persistence and Pooling: Efficient connection 

management contributes to performance enhancement. 

During the planning phase, the processing cost per request must be 

evaluated, and Service Level Agreements (SLA) must be taken into account. 

 

Bot Management, CAPTCHA, and Rate Limiting 

Modern Web Application Firewalls (WAFs) transcend simple signature-

based detection by incorporating bot behavioral analysis through the utilization 

of Fingerprinting, Behavioral Scoring, Challenge/Response, and Rate 

Limiting techniques. Specifically, Fingerprinting is employed to discern 

between legitimate browsers and automated agents. Behavioral Scoring 

calculates a probabilistic bot score by analyzing telemetry data, including 

mouse movements and cookie support capabilities. The Challenge/Response 

mechanism validates the client by imposing computational or interactive tasks, 

such as CAPTCHAs, JavaScript Challenges, or Proof-of-Work algorithms. 

Furthermore, Rate Limiting enforces traffic constraints based on specific 

endpoints, IP addresses, or authentication tokens. 
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Attack Evasion Techniques and WAF Countermeasures 

Adversaries employ various methodologies to circumvent WAF inspection 

mechanisms, including: 

• Encoding / Double-Encoding: Manipulating character sets to disguise 

malicious strings. 

• Chunked Transfer or Fragmentation: Splitting requests to bypass 

pattern matching. 

• Obfuscated Payloads: Using techniques such as comment injection 

and whitespace obfuscation to hide payloads. 

• Polymorphic Payloads: Altering the appearance of the payload while 

retaining malicious functionality. 

• Out-of-Band / External Channels: Exploiting vectors like XML 

External Entity (XXE) or Server-Side Request Forgery (SSRF). 

• Malicious Business-Logic Flows: Executing attacks that appear 

syntactically valid but violate business logic. 

In response to these evasion attempts, WAFs implement the following 

countermeasures: 

• Normalization & Decoding: Applying rigorous input sanitization 

steps. 

• Multiple Parsing Passes: Recursively analyzing nested inputs. 

• Context-Aware Parsing: Conducting content-specific analysis for 

formats like JSON and XML. 

• Behavioral Detection: Identifying anomalies based on traffic patterns. 

Nevertheless, detecting sophisticated evasion tactics (specifically "low-and-

slow" attacks) remains a significant challenge. Consequently, a WAF should not 

constitute the sole layer of defense within the security architecture. 

Having examined the functional mechanics and capabilities of Web 

Application Firewalls, it is pertinent to illustrate their operational workflow 

through a sequential use-case scenario involving a standard deployment cycle: 

1. A new API endpoint is deployed. 

2. The WAF monitors this endpoint in "learning" or "log-only" mode for a 

designated period (7 days). 

3. The WAF generates automated policy recommendations, such as JSON 

schema validation and rate limiting thresholds. 

4. The security operations team reviews the proposed rules and tentatively 

applies them in the production environment under "log-only" mode. 

5. False positives are eliminated, and the rule set is fine-tuned. 

6. Upon validation, the rules are transitioned to "block" (active 

enforcement) mode. 
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7. The system is integrated with a SIEM solution, and automated ticketing 

workflows are configured. 

This methodology ensures robust security enforcement while maintaining an 

uncompromised user experience. 

 

6. WAF TYPES AND DEPLOYMENT MODELS 

Web Application Firewall technologies have evolved significantly over time, 

diversifying into various distinct types to address differing operational 

requirements and usage scenarios. The primary drivers behind the emergence of 

these diverse WAF classifications include the heterogeneity of application 

hosting infrastructures, varying security assurance levels, scalability 

expectations, and the diversity of enterprise governance policies. Consequently, 

WAF solutions are categorized into multiple distinct classes based on their 

deployment models, architectural frameworks, traffic processing 

methodologies, and operational modalities. 

 

WAF Classifications: 

• Based on Deployment Model 

o Hardware-Based WAF (Appliance) 

o Software-Based WAF 

o Virtual Appliance WAF 

o Cloud-Based WAF 

• Based on Operational Principle 

o Reverse Proxy WAF 

o Transparent (Bridge Mode) WAF 

o Embedded (In-App) WAF 

• Based on Security Approach 

o Signature-Based WAF 

o Behavioral (Heuristic) WAF 

o Machine Learning-Based WAF 

• Based on Architecture 

o Centralized WAF 

o Distributed WAF 

• Based on Service Model 

o SaaS WAF (WAF-as-a-Service) 

o Managed WAF 

• Based on Specific Use Cases 

o API Security Firewall (API-WAF) 
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o WAF with Integrated Bot Management 

o CDN-Integrated WAF 

In alignment with contemporary technological advancements and evolving 

requirements, WAF technologies are structured and deployed to address a 

diverse array of application domains and varying levels of security necessities. 

Consequently, the functional spectrum and application scope of WAF solutions 

have expanded significantly. 

The application domains of WAF technology can be delineated as follows: 

1. Web Application Protection: The most fundamental and prevalent use 

case for a WAF is ensuring the security of web applications. WAFs protect 

applications against threats such as SQL Injection, Cross-Site Scripting (XSS), 

Remote Command Execution, File Inclusion attacks, Directory Traversal, CSRF 

attacks, and XML/JSON manipulation attacks. Given that web applications are 

central to contemporary business processes, the mitigation of these attacks is of 

critical importance. As a secondary function, WAFs ensure the Protection of 

Sensitive Data. In systems processing critical data (such as those in banking, 

healthcare, education, and the public sector) WAF protection prevents data 

leakage, manipulation, and unauthorized access. 

2. Protection of APIs and Microservices: The majority of modern 

software development practices rely on API-based architectures. Mobile 

applications, IoT devices, microservices, and integration systems operate via 

APIs. Through API Traffic Inspection, WAFs detect threats such as API brute-

force attacks, rate limit violations, JWT token manipulation, API key abuse, and 

GraphQL query exploitation. Furthermore, as distributed systems entail unique 

security requirements for each service, WAFs are integrated with API 

Gateways to consolidate all microservices under a centralized and consistent 

security policy. 

3. E-Commerce and Financial Sector: E-commerce sites and financial 

transaction platforms are among the most frequent targets for attackers due to 

the monetary value, personally identifiable information (PII), and payment data 

they transmit. In this domain, WAFs perform duties related to Fraud 

Prevention, Bot Detection, and protection against malicious automation 

attempts. Specifically, they provide defense against attacks such as Carding 

(payment card guessing), Fake Account Creation, Credential Stuffing, and 

CAPTCHA Bypass attempts. Additionally, many financial institutions are 

mandated to deploy WAF solutions to ensure compliance with PCI-DSS 

regulations for the protection of payment systems. 

4. Public Sector and Academic Institutions: Digital platforms operated 

by public institutions process citizen data, while universities host student, 
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personnel, and academic records. In this context, WAFs are deployed to ensure 

the Protection of Critical E-Government Services, including Electronic 

Document Management Systems (EBYS/EDMS), Integration Platforms, Email 

Portals, Personnel and Student Information Systems, and Public-Facing Web 

Services. Furthermore, as public sector entities are frequently subjected to 

active cyber hostilities, Threat Intelligence Integration is achieved via WAF 

deployment. By leveraging real-time threat intelligence, WAFs provide rapid 

defense capabilities against emerging attack vectors. 

5. Healthcare Sector: In healthcare systems, personal data represents 

some of the most sensitive information categories. Consequently, healthcare 

organizations in many jurisdictions are obligated to deploy WAF solutions. The 

Protection of Electronic Health Records (EHR) including patient files, 

laboratory results, appointment systems, and centralized physician appointment 

systems is facilitated by WAFs. Moreover, Compliance Requirements such as 

KVKK (PDPL) and HIPAA mandate that healthcare organizations protect data 

access; WAFs constitute a critical component of this compliance framework. 

6. Cloud Environments and CDN Services: The proliferation of cloud-

based systems has expanded the deployment scope of WAFs. On cloud 

platforms such as AWS, Azure, and GCP, WAFs are utilized to protect Web 

Servers, API Gateways, Kubernetes Ingress Controllers, and Serverless 

backend functions. Additionally, WAF services provided by Content Delivery 

Networks (CDNs) ensure that attacks are blocked at the network edge before 

reaching the origin server, facilitating integration with DDoS mitigation and 

enabling low-latency global operations. 

7. Mobile Application Backend Services: Mobile applications establish 

direct connectivity to backend services, which predominantly rely on API-based 

architectures. WAFs perform Mobile Backend API Protection, safeguarding 

applications against threats such as Token Validation failures, mobile bot 

attacks, rate limit violations, and unauthorized data extraction attempts. 

8. IoT and Industrial Systems: As the number of IoT devices increases, 

attacks targeting the web-based control panels managed by these devices also 

escalate. WAFs are deployed to protect IoT management interfaces in domains 

such as Smart City Infrastructures, Sensor Control Systems, Industrial SCADA 

Interfaces, and Home Automation Systems. 

9. Protection of Internal Enterprise Systems: WAF deployment is not 

limited to public-facing services but also extends to intranet environments. 

Internal Web Applications, including Enterprise Resource Planning (ERP) 

systems, Customer Relationship Management (CRM) software, Corporate 

Portals, and HR Automation systems, can be protected by WAFs. Furthermore, 
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WAFs can be positioned to mitigate risks associated with insider threats 

(network attacks) caused intentionally or inadvertently by personnel. 

10. Regulatory and Compliance Requirements: In numerous sectors, the 

deployment of WAFs has become mandated by law or industry standards. 

Compliance frameworks such as PCI-DSS (Payment Card Industry), ISO 

27001 (Information Security Management), GDPR/KVKK (Personal Data 

Protection), and HIPAA (Healthcare) either recommend or mandate the 

protection of web applications via WAFs. 

11. Mitigation of DDoS and Botnet Attacks: Certain WAF solutions 

provide integrated protection against Layer 7 DDoS attacks, including HTTP 

Flood, Slowloris, and Cache Bypass attacks, as well as botnet driven volumetric 

traffic. Additionally, they offer advanced rate limiting and bot filtering 

capabilities to halt automated attacks. 

 

7. LIMITATIONS OF WAF 

Although Web Application Firewall (WAF) solutions have become 

fundamental components of modern network and application security, like any 

technology, they possess certain limitations and vulnerabilities. These 

limitations may arise from both architectural design and usage methodologies. 

While the protection offered by a WAF can be quite effective with correct 

configuration and up-to-date rules, it is inherently unable to provide a complete 

security guarantee. The fundamental limitations of WAFs are discussed below. 

1. Inability to Detect All Attacks (False Negative Problem) 

WAF solutions detect attacks using signature-based, behavior-based, or 

statistical models. However: 

• They may not always detect new, yet unidentified attack techniques 

("zero-day attacks"). 

• Payloads that are cleverly concealed, encoding methods, or multi-

layered attacks may evade the WAF's analysis. 

• Attacks targeting the application's business logic often appear as normal 

traffic, making them difficult for the WAF to detect. 

For these reasons, WAFs cannot provide 100% attack detection. 

2. Generation of False Positives (False Positive Problem): 

One common issue with WAFs is the generation of false positives. Particularly 

under strict security rules: 

• Normal user requests may be perceived as attacks. 

• API requests, dynamic parameters, or custom input formats may be 

blocked. 

61



  

• Software development teams frequently need to spend additional time 

correcting these erroneous blocks. 

False positives degrade user experience and increase the management 

burden. 

3. Challenges in Analyzing Encrypted Traffic: 

Modern web applications predominantly use HTTPS. To analyze this traffic, 

a WAF must: 

• Perform SSL/TLS termination or operate in reverse proxy mode. 

This setup: 

• Can lead to performance losses. 

• Requires an additional certificate management process. 

• Makes it challenging to decrypt traffic in certain environments (e.g., 

applications using mutual TLS on end-user devices). 

When encrypted traffic is not fully analyzed, some attacks may go 

unnoticed. 

4. Impact on Performance: 

A WAF must analyze every request, model behaviors, and enforce rules. 

This process: 

• May cause latency. 

• Can result in performance degradation under load. 

• Increases the need for scaling in applications with heavy traffic. 

Even cloud-based WAFs can lead to service delays by implementing rate 

limits during high traffic conditions. 

5. Inadequacy Against Business Logic Attacks: 

WAFs primarily focus on attacks at the technical layer. However: Threats 

such as fake return requests, Logic manipulation, Privilege escalation attempts, 

Multi-step attacks are often not detected by WAFs as they may resemble normal 

user behavior. These attacks require specialized "business logic security" to be 

effectively safeguarded against. 

6. Difficulty in Staying Up-to-Date: 

Attack techniques are continuously evolving. For a WAF to be effective: 

• Rules must be regularly updated. 

• Machine learning models need to be retrained. 

• New threat intelligence must be integrated. 

However, many organizations do not perform these updates regularly, 

causing the WAF to become ineffective over time. 
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7. Dependency on Development and Operations Teams: 

For WAF rules to function correctly, it is essential to recognize all endpoints 

of the application, model normal behavior, and accurately define allowed 

parameters. A misconfigured WAF can: 

• Render the entire application inaccessible, 

• Accidentally block critical endpoints, 

• Completely overlook security vulnerabilities. 

Therefore, managing a WAF requires specialized expertise. 

8. Integration Issues with CDN and Distributed Architecture: 

Since a WAF operates under the principles of a reverse proxy or edge 

firewall, it may encounter integration challenges with CDNs. In microservices 

architectures, separate configurations may be necessary for each service, and 

conflicts can arise with API gateway structures. Particularly in container-based 

environments (like Kubernetes), WAF management can become complex. 

9. Ineffectiveness Against Internal Threats: 

WAFs primarily provide protection against external threats. However, 

attacks originating from the internal network, such as abuse by authorized users 

or database hijacking, are generally not blocked by the WAF. 

10. Limitations Against Advanced Evasion Techniques: 

Attackers have developed specialized methods to bypass WAFs, including 

multiple encoding (double/triple encoding), payload fragmentation, HTTP 

parameter polymorphism, low-rate attacks, and stealth attack techniques. Such 

methods can make it challenging for the WAF to detect the attack. 

11. Inadequacy Against Zero-Day Vulnerabilities: 

Due to the operational nature of WAFs, their protection level is low against 

attacks that are unprecedented, not yet defined by signatures, and exhibit 

unknown behaviors. WAFs cannot provide complete protection against zero-

day attacks. 

 

8. WAF INSTALLATION AND EXAMPLE RULE SET 

To provide a reference for a WAF installation, the steps for setting up a 

WAF using Nginx web server and ModSecurity rule sets within an enterprise 

network are outlined below. The installation environment chosen is Ubuntu 

24.04 LTS, and the ModSecurity installation (Nginx + OWASP CRS) has been 

carried out on this platform. The following steps detail the installation of 

ModSecurity + OWASP Core Rule Set (CRS) on an Ubuntu 24.04 LTS server 

in the most updated and stable manner. 

1. System Update Procedure: First, the Ubuntu server to be used as the 

platform must be updated to the latest version. 
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Bash 

sudo apt update && sudo apt upgrade -y 

2. Installing Required Packages: Necessary packages, such as nginx and 

modsecurity, must be installed. 

Bash 

sudo apt install -y nginx libnginx-mod-security (In Ubuntu 24.04, 

ModSecurity is now available in the official repositories under the package 

libnginx-mod-security). 

3. Verification of ModSecurity Nginx Module Installation: 

Bash 

nginx -t | grep modsecurity veya dpkg -L libnginx-mod-security  

The installations of the packages are verified using these commands. 

4. Creating ModSecurity Main Configuration File: 

Bash 

sudo cp /usr/share/modsecurity-crs/modsecurity.conf-recommended 

/etc/modsecurity/modsecurity.conf 

5. Editing Basic Settings: 

Bash 

sudo nano /etc/modsecurity/modsecurity.conf 

Change these rows: 

conf 

# instead of “DetectionOnly” do “On” yapın (blocking is active) 

SecRuleEngine On                   

SecRequestBodyAccess On 

SecResponseBodyAccess On 

SecAuditEngine RelevantOnly       # OR “On” (If more logging is desired) 

SecAuditLog /var/log/modsecurity/audit.log 

SecDataDir /var/cache/modsecurity 

SecTmpDir /tmp 

SecDefaultAction "phase:1,log,deny,status:403" 

SecDefaultAction "phase:2,log,deny,status:403" 

6. Installation of OWASP Core Rule Set (CRS): 

Bash 

sudo apt install -y modsecurity-crs 

Here, the CRS is automatically installed in the /usr/share/modsecurity-crs/ 

directory. 

7. Including the CRS Main File: A configuration file is created for this 

purpose. 

Bash 
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sudo nano /etc/modsecurity/crs.conf 

The following content should be added to the configuration file:. 

conf 

Include /usr/share/modsecurity-crs/crs-setup.conf 

Include /usr/share/modsecurity-crs/rules/*.conf 

8. Adding ModSecurity to Nginx Configuration: 

Bash 

sudo nano /etc/nginx/nginx.conf 

http { The following line should be added at the top of the block. 

nginx 

# ModSecurity settings 

modsecurity on; 

modsecurity_rules_file /etc/modsecurity/crs.conf; 

9. Extra Check forn Site Configuration (Optional): 

For a example site (/etc/nginx/sites-available/default): 

nginx 

server { 

    listen 80; 

    server_name domain.com www.domain.com; 

# ModSecurity is already enabled globally; if it is desired to enable it again 

here: 

# modsecurity on; is performed. 

    location / { 

        # ... other settings 

    } 

} 

10. Setting Up Folders and Permissions: 

Bash 

sudo mkdir -p /var/log/modsecurity 

sudo chown www-data:www-data /var/log/modsecurity 

sudo mkdir -p /var/cache/modsecurity 

sudo chown www-data:www-data /var/cache/modsecurity 

 

11. Testing and Starting: 

Bash 

sudo nginx -t 

if there is no errors: 

Bash 

sudo systemctl reload nginx 
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12. Testing if the System is Working: 

The URL should be tested in the browser with the format “http://your-server-

ip-address/?id=1+OR+1=1”, and if the WAF is functioning, access to the site 

should be blocked (a 403 response should be returned). The same test can be 

performed using the curl command: 

Bash 

curl -i http://127.0.0.1/?test=../etc/passwd should be applied as follows. In 

this case, if the system is functioning, a "403 Forbidden" message should be 

received, and a ModSecurity log should be created. 

13. Checking the Logs: The logs can be checked using the following 

command. 

Bash 

sudo tail -f /var/log/modsecurity/audit.log 

14. Adjusting the Paranoia Level to Reduce False Positives (Optional): 

Bash 

sudo nano /etc/modsecurity/crs/crs-setup.conf 

This should be adjusted (the recommended starting level is 2): 

conf 

SecAction \ 

 "id:900000,\ 

  phase:1,\ 

  nolog,\ 

  pass,\ 

  t:none,\ 

  setvar:tx.paranoia_level=2" 

15. Starting in Log Mode (DetectionOnly) (Optional): 

To test initially without blocking: 

Bash 

sudo nano /etc/modsecurity/modsecurity.conf 

conf 

SecRuleEngine DetectionOnly 

Later, when the system is stable, "SecRuleEngine On" should be configured. 

16. Update and Maintenance: 

Bash 

# updates of CRS and ModSecurity 

sudo apt update && sudo apt upgrade 
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The WAF installation will be completed after these steps. Now, an additional 

protection layer is actively present in front of the system. In this section, if we 

also show an example of a ModSecurity rule used: 

 
Through this rule, only the specified file types in the list are allowed. 

 

9. CONCLUSION 

A WAF alone does not provide comprehensive protection against all 

potential threats in a network. Therefore, it cannot be sufficient on its own 

without additional security layers such as IDS/IPS, DDoS protection, RASP 

(Runtime Application Self-Protection), Secure Software Development Life 

Cycle (SSDLC), and code security scans. Considering these disadvantages, it is 

more appropriate to position a WAF not as a "single solution" security 

mechanism in front of an enterprise system, but as a component of a Defense in 

Depth strategy. 

In conclusion, WAF solutions have become an indispensable security layer 

for modern web applications. The attacks that applications face today are 

increasingly complex, and solely relying on network-level security mechanisms 

is no longer adequate. For protecting applications developed on both enterprise 

and individual scales, WAFs are now considered essential components of 

network security and are actively utilized by many organizations, institutions, 

and authorities. They are continuously updated to meet current demands and 

enhanced with features supported by machine learning and artificial 

intelligence. 
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Chapter 4 
 

Explainable AI Methods:  

The Example of SHAP and LIME 
 

Bahaddin ERDEM1 

 

ABSTRACT  

Recently, artificial intelligence (AI) tools have become increasingly 

important in data analysis, and their applications are becoming increasingly 

widespread. While high performance has been achieved in analyses conducted 

using machine learning and deep learning models, their "black box" nature 

raises concerns about transparency, accountability, fairness, and trust. The field 

of Explainable AI (XAI) has emerged as a solution to the black box problem in 

AI-based analysis. XAI produces more transparent and accountable results for 

model decisions and predictions. This has fostered trust in AI-based data 

analysis, encouraging user adoption of these tools. XAI offers many methods 

for explaining and interpreting. This study examines only Shapley Additive 

Explanations (SHAP) and Local Interpretable Model-Independent Explanations 

(LIME), methods widely used in the literature, and supports them with 

experimental applications. SHAP is an XAI method based on strong game 

theory that attempts to increase interpretability by calculating the values of 

every feature that could affect the target variable or independent variable. LIME 

is one of the best-known methods for solving black-box problems. LIME 

approximates complex models and transfers the calculated examples to another 

locally interpretable model. This supports the probability of which class a 

feature belongs to in classification models. In the last part of the study, online 

exam data was visualized by using libraries in Python environment; both SHAP 

and LIME analysis were performed with XGBoost algorithm in binary 

classification analysis, and the positive and negative aspects of the features on 

the model and the degree to which they affect were analyzed. 
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1. INTRODUCTION 

The adventure of AI, began in the 1950s, and it has gained momentum and 

become widely used, especially in recent years, for three main reasons. Firstly, 

the accessibility of vast amounts of data generated by e-commerce platforms, 

social networks and businesses; secondly, the advancement of Machine 

Learning (ML) algorithms enabling them to deliver more reliable results; and 

thirdly, the availability of cloud technologies and high-performance computers 

at more affordable costs have accelerated this process. Today, AI continues to 

transform many areas, from individual life to social structure and commercial 

areas (Mondal, 2020:389). AI is essentially a computer system that emulates 

human cognition by processing data from various sources and systems, making 

decisions and learning from the resulting patterns. AI is also defined as the 

capacity of computers to recognize patterns in existing data and statistical 

models and take appropriate action (Hassani et al., 2020:145). Many AI tools, 

especially machine learning and deep learning-based models, have been 

developed to examine large-scale data sets, reveal hidden patterns in these data, 

and produce various solutions (Brozek, 2024:427, Hassija et. all., 2024:45). The 

critical role of AI in today's technological advancements is clearly evident in its 

widespread use. By analyzing large data sets and uncovering patterns, AI is 

boosting creativity and productivity in numerous sectors, including finance, 

healthcare, education, and entertainment. This demonstrates that AI plays a 

crucial role in shaping the future through the collaboration between human 

creativity and technological advancement. However, AI models also present 

challenges, as they obscure decision-making and prediction processes, raising 

concerns about transparency, trust, accountability, and explainability. Although 

AI offers high accuracy and efficiency, it is often considered a “black box” and 

is therefore subject to criticism, especially in complex structures such as deep 

learning and large language models (LLM) (Hsieh, 2024:7).  

XAI, as a field of research, is focused on developing methods and models 

that will enable people to gain confidence and understanding of the workings of 

AI systems and how these systems relate to logic (Hassija et. all., 2024:51-52). 

The main goal of XAI is to develop models that can provide transparent, clear 

and understandable explanations for decisions taken or predictions produced. 

These models directly integrate interpretability into the learning process, 

strengthening engagement in accountability, trust, and transparency, and 

enabling people to validate AI outputs, better understand the results, and make 

sound decisions (Contreras ve Bocklitz, 2024:604). A significant drawback of 

most machine learning models is the lack of transparency in decision-making 

and prediction processes (Adadi and Berrada, 2018:52138). This behavior of the 
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models is often described as a "black box." Even experienced professionals face 

difficulties interpreting these complex models. When a model is difficult to 

understand or ambiguous, it becomes difficult to gain acceptance and build user 

trust. This leads people to distrust the model's decisions or predictions. XAI 

aims to provide tools and methods to help users and researchers interpret and 

understand the results of AI models. 

XAI is a powerful tool that allows users to make sense of complex model 

outputs and visualize their results. Visualizing outputs and results facilitates 

developers' deep understanding of model decisions and increases 

understandability and confidence in predictive accuracy. Thus, XAI supports 

model adoption by providing effective outputs before, during, and after deep 

learning and machine learning predictions (Cifci, 2025:36293). The responsible 

use of AI is crucial for understanding how decision-making processes work and 

for the public's ability to gain trust in AI. The growing interest in explainable AI 

aims to foster trust by increasing the understandability and transparency of AI 

decision-making (Kalasampath et al., 2025:41112). By explaining the complex 

operating logic of AI algorithms, XAI provides insights into how predictions 

and interpretations are generated, thereby increasing end-user confidence in 

model decision processes and closing the understanding gap between models 

(Contreras ve Bocklitz, 2024:604 ve Infant et. al., 2025:1). 

 

2. CONCEPTUAL FRAMEWORK 

2.1. Basic concepts of XAI 

Explainability: Central to the concept of explainability is the extent to which 

a machine learning model can be understood at its core. Explainability goes 

beyond interpretability by explaining "why" the model's decisions were made. 

Four fundamental principles stand out for XAI mechanisms: 

1. Explanation: The system provides relevant evidence or justification for 

outputs and/or processes. 

2. Meaningfulness: XAI system provides explanations that the intended 

users can understand. 

3. Explanation accuracy: XAI system provides explanations that 

accurately represent the process of producing the output. 

4. Knowledge limits: XAI systems only work under the conditions for 

which they were designed and when there is sufficient confidence in their 

output (Philips, 2021:2). 

Transparency: Transparency is a fundamental element of all scientific 

research. Without transparency, the integrity and validity of research findings 

cannot be independently tested and verified. This highlights the importance of 
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transparency for the reliable use of evidence in decision-making processes 

(Sampson, et. al., 2019:1355). 

Interpretability: By definition, it refers to the extent to which an individual 

can understand the reasons behind a decision. This process often involves 

translating complex model predictions into human-comprehensible insights. In 

short, explainability is the effort to make an explanation more easily understood 

(Erasmus, Brunet ve Fisher, 2020:849). 

Justice: Justice refers to the ethical characteristics of an AI system that are 

unbiased, sensitive to diversity, and non-discriminatory. Descriptions of AI 

systems provide human-understandable interpretations of the system's internal 

workings and the decisions it makes (Zhou, Chen, & Holzinger, 2020). Justice 

in AI aims to develop methods to detect, reduce, and control biases in AI-

supported decision-making processes (Schwartz, et., al., 2022:i77). 

White Box: White box models are known as interpretable models in machine 

learning and offer transparency in decision-making processes. By providing 

inherent explainability, they allow us to understand the impact of input features 

on model output, thus providing valuable insights into underlying relationships 

and patterns (Nasarian vd., 2024:3).  The concepts of understandable models 

and XAI are used to describe all machine learning models that produce results 

that experts in the application domain can easily interpret (Loyola-Gonzalez, 

2019:154101).  These models offer a balance between explainability, accuracy 

and confidence. The availability of larger data sets and the proliferation of 

computer-aided decision-making have increased the demand for interpretable 

models. The interpretability offered by white-box models allows all 

mechanisms, from users to regulators and developers, to evaluate the logic of 

the model, identify potential biases, and ensure fairness and accountability 

(Mumuni ve Mumuni, 2025:1). "White box" models are characterized by the 

easy-to-understand algorithms used, allowing a clear interpretation of how input 

features are transformed into output or target variables (Wiewiórowski, 2021:3). 

Examples of such models include linear regression, Bayesian Networks, Fuzzy 

Cognitive Maps, logistic regression, decision trees and rule-based systems. 
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Figure 1. Interaction of different areas that make up the XAI and 

White-Box model (Loyola-Gonzalez, 2019:154102) 

 

Figure 1 shows an explainable model resulting from interactions between 

machine learning, human-computer interfaces, explanations by human experts, 

visual analytics, iterative machine learning, and interactions between machine 

learning experts and human experts in the application domain. 

Black Box: Black box methods operate on the assumption that there is no 

knowledge of the internal workings of the model. Therefore, for each input, 

only the final outputs produced by the model can be observed. In this approach, 

to explain a black box model, it is necessary to develop ways to query the 

outputs in a way that reveals the model's underlying behavior. However, these 

methods are generally slower than white-box approaches because knowledge is 

only gained by submitting additional queries to the model. In recent years, 

explainability methods have become increasingly important for providing 

insights into black-box machine learning methods such as deep neural networks. 

However, interpretability alone is insufficient to address all the problems of 

black-box models. Deep or shallow neural networks are among the most 

common examples of black-box models in machine learning (Holzinger et. all., 

2020:260). 

Gray Box: Gray-box models aim to strike a balance between both 

explainability and accuracy. Consequently, any data-driven learning algorithm, 

including white- and black-box models, can be considered a gray-box model 

(Ghasemi et. All., 2024:5). Gray box methods combine the interpretability 

advantages of White box methods with the high performance of black box 

methods. Research in this area focuses on improving AI methods to achieve 
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explanation goals without significantly compromising performance. The biggest 

advantage of gray-box approaches is their ability to combine understandability 

with high performance, especially in sensitive areas like medicine. However, 

only a limited number of application examples currently exist, and 

explainability in these methods is limited to certain elements. As with all 

methods of explanation, it is important to decide whether to provide an 

explanation specific to individual cases or a general one, and different 

explanation strategies should be applied accordingly. Therefore, additional 

research and development is needed to ensure that grey-box methods can be 

used effectively and specifically across a very large application domain. Only 

then will the full benefits of these methods be realized (Gallee et. All., 

2023:800). An annotated comparison of the gray box, black box and white box 

models in the literature is given in Figure 2. 

 
Figure 2. Comparison of gray box, black box and white box 

models (Ali et. All., 2023:3) 

 

As shown in Figure 2, the concepts of gray box, black box and white box 

represent different levels of internal components of models. White box models, 

by design, offer higher interpretability; therefore, their output is easier to 

74



understand, but their accuracy is generally lower. Gray box models provide a 

balance between interpretability and accuracy. Black box models, on the other 

hand, offer high accuracy but are limited in interpretability. The following list 

summarizes the advantages of providing a solution to black box systems (Ali et. 

All., 2023:3): 

• To protect individuals from the negative effects of automated decision-

making processes due to automatic decisions. 

• To enable individuals to make more effective and conscious choices. 

• To detect and prevent vulnerabilities resulting from security problems. 

• Developing algorithms that are compatible with human values. 

• To increase business and user trust by establishing user standards in the 

development of artificial intelligence-based products. 

• To implement Right to Explanation policies. 

 

2.1. The Black Box Problem in AI 

Although inputs and outputs are known in AI models, it is often difficult to 

determine exactly how inputs are transformed into outputs (Pavlidis, 2024). The 

automation of routine decisions, coupled with the complex information 

architectures that enable this automation, raises concerns about system 

reliability. These concerns are particularly pronounced in the deep learning 

(DL)-based AI class, which utilizes algorithmic systems comprised of deep 

neural networks and are difficult for humans to understand. These types of 

problems are often called “black box problems” in AI (Bearman ve Ajjawi, 

2023:1163). Observers can trace the inputs and outputs of these complex, 

nonlinear processes, but they cannot directly see the internal workings of the 

system. The mechanisms by which AI reaches its conclusions are often obscure 

or invisible. Without understanding this mechanism, the question of how 

trustworthy these systems can be remains unanswered. The increasing 

delegation of decision-making authority to AI to protect critical human values 

such as security, health, and safety makes the issue of trust even more crucial. 

In response to this problem, models that “open the black box” that make non-

linear and complex decision processes understandable to human observers are 

being developed and technical solutions are being sought. This class of models, 

called XAI, offers promising solutions to the black box problem, but in their 

current form they make these processes only partially understandable to many 

observers. (Von Eschenbach, 2021:1608). 

 

 

75



2.2. XAI methods 

LIME: Locally interpretable model-independent explanations (LIME) are 

one of the most used interpretability techniques for black-box models and 

black-box problems. Following a powerful yet simple approach, LIME can 

produce meaningful interpretations and results even when the classifier makes 

any prediction. The target model is then run on this new data to generate 

predictions, which are weighted according to their closeness to the input 

sample. In the final stage, a simple and interpretable model such as a decision 

tree is trained on the dataset to ensure interpretability of the results. (Linardatos, 

Papastefanopoulos ve Kotsiantis, 2020:11). While machine learning models are 

considered black-box functions, model independent explanation methods only 

provide access to the model's output. These methods, which are extremely 

flexible and applicable to various applications, do not require any knowledge 

about the internal structure of the model. (Holzinger et. all., 2020:15). LIME 

has many successful applications in various fields, demonstrating its popularity 

as a model-independent method. However, its explanations are limited because 

they are implicitly based on surrogate models; the quality of the explanation 

depends on the accuracy of the surrogate fit. Surrogate fits typically require 

extensive sampling, increasing computational cost, and the sampling process 

can introduce uncertainties, leading to different explanations for the same input 

(Holzinger et. all., 2020:16). LIME is another XAI method that aims to explain 

the local operating logic of a model on a given instance. In this direction, it 

approximates any complex model and transforms it into a locally interpretable 

model for a given instance (Ribeiro, Singh, Guestrin. 2017 as cited in Salih et. 

All., 2025:2). LIME is a model-independent local annotation method that 

reveals the impact of each feature on the outcome of a single instance. In 

classification models, it displays the probability that an instance belongs to a 

particular class and presents the contribution of each feature to that class in 

visualized graphs. However, because LIME transforms any complex model into 

a linear local model, it reports coefficients representing the weights of the 

features in the model. This can lead to the loss of important information and 

incomplete explanation in models containing nonlinearity, because the 

nonlinear relationships cannot be reflected in the surrogate model. Additionally, 

LIME is a model-dependent method; that is, the explanations produced by 

LIME may vary when different models are used on the same task and dataset 

(Ribeiro, Singh, Guestrin. 2017, as cited in Salih et. All., 2025:2). 

SHAP: Shapley Additive Explanations (SHAP) is a powerful explanation 

method inspired by game theory that aims to increase interpretability by 

calculating the importance values of each feature in separate predictions 
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(Holzinger et al., 2020:16). This approach can be applied to any machine 

learning model, regardless of the model. In SHAP, the "actors" in machine 

learning models are considered features, and the "payoff" is considered the 

model output. The method calculates an importance score representing the 

contribution of each feature to the model output. This score is determined by 

evaluating all possible combinations of features; that is, all scenarios where 

both all features and subsets of features are used in the model are considered. 

Because computational complexity increases with the number of features, the 

Kernel SHAP approach was developed as a solution. SHAP offers a powerful 

method for explaining any model by treating each feature as a player and the 

model result as a payoff. SHAP provides global and local annotations, meaning 

it is capable of explaining the role of features for all instances and for a specific 

instance (Lundberg ve Lee., 2017 as cited in Salih et. All., 2025:2, Band et. All., 

2023:4). One of the most significant drawbacks of Shapley values is their high 

computational complexity. Especially for deep neural networks and modern 

models with high-dimensional inputs, Shapley values are quite difficult to 

calculate precisely (Band et al., 2023:4; Holzinger et al., 2020:16; Salih et al., 

2025:3). There are several critical points users should be aware of when 

applying the SHAP method. First, SHAP is a model-dependent method; that is, 

the explanation results obtained depend on the machine learning model used. 

This can lead to variability in explainability scores when different models are 

used on the same data and task. In this context, when different machine learning 

models are applied to the same task on the same dataset, the most important 

features identified by SHAP may differ between models. There are several 

important considerations for end users using SHAP. First, SHAP is a model-

dependent method, meaning its explanation results depend on the machine 

learning model used in the classification or regression task. This may cause 

explainability scores to vary when different models are applied to the same data 

and task (Salih et. all., 2025:3). 

While SHAP evaluates different feature combinations to calculate feature 

attributions, LIME is based on a local surrogate model. Furthermore, SHAP is 

capable of providing both global and local level explanations, while LIME is 

limited to local explanations only. While SHAP can detect nonlinear 

relationships depending on the model used, LIME may be limited in capturing 

such complex relationships because it creates a locally linear model. In terms of 

visualization, SHAP produces a variety of graphs that present both local and 

global annotations, while LIME provides a separate visualization for each 

instance. Finally, LIME is significantly faster than SHAP, especially for tree-

based models (Lundberg ve Lee., 2017, as cited in Salih et. all., 2025:2). 
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3. EXPERIMENTAL STUDIES 

The dataset used in this study is online exam data created by Erdem and 

Karabatak (2025:9). The dataset consists of multiple-choice questions and 

student responses within a course. It also contains data from 40 attributes and 

162 students. 

As part of the sample application, a cheating detection study was conducted 

using data from an online exam. In this study, a binary classification analysis 

was performed using the XGBoost algorithm in Python to distinguish between 

"cheated" and "not cheated" classes. The success rates achieved are quite high, 

with remarkable accuracy (0.969), precision (0.958), and F1 score (0.929). 

However, despite this high success, detailed information about the features that 

affect the model's decision-making process is not directly accessible. 

Explanatory AI methods provide interpretable results by revealing the positive 

and negative effects of independent variables on the model. In this context, 

SHAP and LIME analyses were applied in the study, aiming to gain a deeper 

understanding of the model outputs. 

 
Graph 1. XGBoost descriptive SHAP summary analysis result 

 

SHAP analysis values for the XGBoost model are given in Graph 1.  

• Horizontal axis (SHAP value): Shows the effect of features on model 

prediction. 
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• Positive values: Contribute to shifting the prediction toward the 

"cheated" class. 

• Negative values: Contribute to shifting the prediction toward the "did 

not cheat." 

• Colors: Indicate the magnitude of feature values (blue = low value, red 

= high value). 

The direction and extent to which the features in the data set affect the 

“cheated” and “did not cheat” classes are given below: 

✓ exam_type 

• It is one of the most important variables. 

• Most of the red dots are on the positive side; some exam types seem to 

direct students to the "cheated" classification. 

• The concentration of blue dots on the negative side indicates that other 

exam types are more likely to support the "did not cheat" classification. 

✓ supervision 

• It is a second-order variable. 

• When the level of supervision is low (blue), the SHAP value is positive; 

that is, if supervision is low, the probability of the student being assigned to the 

"cheated" class increases. 

• When the level of supervision is high (red), the SHAP value is negative; 

that is, if supervision is tight, the probability of the student being assigned to the 

"did not cheat" class increases. 

✓ Variables such as A6, A13, A14, A11 

• It is of moderate significance to the model. 

• It has both positive and negative effects, indicating that different values 

of the features can increase or decrease the likelihood of cheating. 

• In particular, in variables A6 and A13, the red dots are on the positive 

side; higher values support the "cheated" classification. 

✓ Variables such as A2, A15, A7, A8 

• They have a similar effect, but slightly lower in importance.  

• They contribute differently to both the cheated and non-cheated classes. 

✓ departmen 

• It is a variable with a lower impact level. 

• The fact that red dots are generally on the positive side of the SHAPE 

suggests that in some sections, students are more likely to be classified as 

"cheating." 

• Blue values, on the other hand, support the "not cheating" classification. 
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As a result, the strongest predictors in the model are "exam_type" and 

"supervision." Under certain exam types and low supervision conditions, a 

strong contribution is made to the "cheated" class. However, when considering 

high supervision and exam types, a strong contribution is made to the "did not 

cheat" class. 

Figure 3 shows the LIME analysis values for the XGBoost model. 

 
Figure 3. LIME analysis result for XGBoost model 

 

According to Figure 3; 

✓ Prediction probabilities (box on the left): 

• For this example, the model chose the "Low" class (did not cheat) with 

100% probability. 

• For the "High" class (did cheat), the probability is 0.00, meaning the 

model's decision is very clear. 

✓ Middle part (contribution of features to the decision): 

• Blue bars support the "did not cheat" classification. 

• Orange bars support the "cheated" classification. 

• The length of the bars indicates the contributing power of the feature on 

the decision. 

✓ Table on the right (Feature – Value): 

• It shows the values that the relevant student/sample received for these 

variables. 

The direction and extent to which the features in the data set affect the 

“cheated” and “did not cheat” classes are given below: 

✓ exam_type (0.92) 

• It is the variable with the strongest effect. 
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• On the blue side, this exam type provides strong support for the student 

being in the "did not cheat" class. 

✓ supervision (1.07) 

• On the orange side, the probation conditions move this student slightly 

toward the "cheated" class. But the effect is not as strong as "exam_type," so the 

decision remains unchanged. 

✓ Variables such as A14 (0.81), A3 (1.09), A11 (0.66), A12 (1.12), A6 

(0.71) 

• All are on the blue side; these variables contribute to the student being 

in the "did not cheat" class. 

• A3 and A12 are particularly strongly on the blue side. 

✓ Variables such as A13 (0.96), A15 (0.89), A2 (0.93) 

• On the orange side, although the current values of these variables direct 

the student to the “cheated” class, their contribution is relatively weaker. 

 

4. RESULTS AND DISCUSSION 

The emergence of AI tools has achieved great success in predicting system 

stability in important areas such as healthcare, finance, and education. This 

study examines XAI methods as solutions to the black-box problems of deep 

learning and machine learning models. XAI contributes to the field by 

comparing studies in the literature within the framework of transparency, trust, 

fairness, interpretability, and understandability criteria. SHAP and LIME 

techniques, which are widely used in the literature, are compared with all their 

features and the differences between them are stated. In addition, it has been 

observed that the features that can be effective in the model's decision, with the 

example applications, offer solutions to understandability by showing in what 

direction and to what extent they affect the model. 
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Chapter 5 
 

Applied TinyML for Embedded Intelligence:  

A Real-Time HAR Implementation on  

Arduino Nano 33 BLE Sense 
 

İrfan ÖKTEN1 

 

ABSTRACT 

This book chapter presents an in-depth examination of Tiny Machine Learning 

(TinyML) and its transformative role in enabling embedded intelligence on 

resource-constrained microcontroller-based systems. TinyML brings artificial 

intelligence from cloud-centered infrastructures to ultra-low-power edge devices, 

offering real-time inference, enhanced privacy, reduced bandwidth requirements, 

and significant energy savings. The chapter begins by outlining the conceptual 

foundations of TinyML, including the characteristics of embedded systems, the 

principles of edge AI, and the unique workflow required to deploy machine 

learning models on devices with kilobytes of RAM and milliwatt-level power 

budgets. Essential model optimization strategies—such as quantization, pruning, 

and knowledge distillation—are analyzed to highlight their importance for 

achieving feasible and efficient inference on restricted hardware. The chapter 

further explores the software ecosystem supporting TinyML, with detailed 

discussion of frameworks such as TensorFlow Lite Micro, Edge Impulse, and 

MicroTVM, emphasizing their roles in data acquisition, model development, and 

on-device deployment. The experimental component features a real-time Human 

Activity Recognition (HAR) implementation on the Arduino Nano 33 BLE 

Sense, employing a lightweight 1D CNN model trained on accelerometer data. 

Through INT8 post-training quantization, the model achieves a 75% reduction in 

memory size, a 2.4× improvement in inference speed, and a 59% reduction in 

energy consumption, while maintaining accuracy with only minimal degradation. 

These results validate the practical viability of TinyML for real-world embedded 

applications where efficiency and responsiveness are paramount. Finally, the 

chapter identifies and discusses major research challenges—including hardware 

heterogeneity, compiler limitations, security vulnerabilities, resource-aware 
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optimization, and the need for on-device and continual learning. Emerging trends 

such as neuromorphic computing, processing-in-memory (PIM), energy-

harvesting autonomous AI systems, and integration within 6G-enabled IoT 

infrastructures are explored as key opportunities shaping the future direction of 

the field. Overall, the chapter provides a comprehensive framework for 

understanding both the current landscape and future evolution of TinyML-driven 

embedded intelligence. 

 

Keywords: TinyML, Embedded intelligence, Model compression, Real-Time 

human activity recognition 
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1. INTRODUCTION 

In recent years, the trajectory of artificial intelligence (AI) has increasingly 

shifted from centralized, cloud-based infrastructures toward decentralized, on-

device intelligence. Traditional machine learning (ML) applications have 

primarily relied on large-scale computing resources, heavy memory and storage 

capacities, and consistent connectivity to remote servers. However, today's 

technological landscape demands more ubiquitous, energy-efficient, and 

latency-sensitive AI solutions. In response, the field of TinyML (Tiny Machine 

Learning) has emerged as a compelling paradigm: it focuses on executing ML 

models directly on severely resource-constrained microcontrollers (MCUs) and 

embedded systems. As articulated by Soro and Banbury, TinyML offers ultra-

low power consumption, real-time processing at the data source, and reduced 

dependency on cloud connectivity (Soro, 2021; Banbury et al., 2020). 

Embedded within this paradigm shift is the broader concept of “embedded 

intelligence” — systems that not only collect data passively, but also make 

autonomous decisions locally. As Yelchuri and R. note, TinyML is redefining 

this notion: devices evolve from simple sensors or data-loggers into active 

intelligent agents, capable of perception, inference and adaptation at the edge 

(Yelchuri & R., 2022). This transition brings about several strategic advantages: 

lower network latency (since less data must be transmitted), enhanced data 

privacy (since raw data remains on the device), and favorable environmental 

implications (thanks to lower energy consumption and less reliance on data-

centres). 

The significance of TinyML becomes particularly salient in domains such as 

the Industrial Internet of Things (IIoT), wearable health-monitoring, smart city 

deployments and pervasive sensing networks. In such contexts, devices operate 

under strict constraints in power budget, memory size, computational 

throughput and communication bandwidth. The TinyML paradigm addresses 

these constraints head-on by leveraging model compression, hardware-aware 

optimisations and co-design of algorithms with embedded platforms. Recent 

surveys highlight the maturity of the tool-chains and frameworks supporting 

TinyML (Kreß et al. 2024; Loh & Guo 2025; Wilson & Singh 2025).  

Despite its rapid growth and considerable promise, TinyML remains a field 

rife with research challenges and unresolved questions. On the one hand, the 

requirement to deploy ML inference (and eventually training) on devices with a 

few kilobytes of RAM, minimal flash storage and limited power means that 

novel optimisation methods (quantisation, pruning, efficient model 

architectures, neural-architecture search) must be developed and tailored to the 

embedded domain. On the other hand, system-level issues such as heterogeneity 
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of hardware platforms, tool-chain fragmentation, lifecycle management, 

security and privacy at the edge continue to hinder wide adoption. Recent work 

emphasises the need for holistic co-design approaches, benchmarking 

frameworks and lifecycle automation to drive TinyML beyond prototyping 

(Maldonado et al. 2025; Reddi et al. 2022).  

In this book chapter, we present a rigorous and comprehensive examination 

of TinyML within the context of embedded intelligence. We begin by outlining 

the fundamental concepts, typical system architecture and model-optimization 

techniques that make TinyML feasible on resource-limited devices. We then 

survey the ecosystem of supporting tools and frameworks, and map out the 

major application domains in which TinyML has already demonstrated impact. 

Following that, we delve into the key challenges—both technical and 

systemic—that currently impede broader deployment, and highlight ongoing 

research directions and future opportunities that can propel TinyML to its full 

potential. Our aim is to equip readers with both the theoretical foundation and 

practical insight needed to appreciate, design and evaluate TinyML systems 

within embedded contexts. 

They introduce deep neural network models that classify movements such as 

walking, running, and squatting using IMU data collected with the Arduino 

Nano 33 BLE Sense. The authors compare architectures such as MLP, CNN-

LSTM, and CNN-GRU, reporting the best accuracy. They then demonstrate the 

practicality of on-device inference, memory, and power savings by compressing 

the models and running them on the same board (Kumari et al. 2024). 

Lipski investigates hand gesture recognition using photodiode data on the 

Arduino Nano 33 BLE (directly related to the Nano 33 BLE Sense); different 

RNN-based and CNN-LSTM architectures are tested; and real-time 

classification challenges on an embedded device are discussed. This paper 

details practical experiences and limitations, particularly regarding MCU 

constraints (TensorFlow Lite for Microcontrollers support, model sizes, and 

latency estimation) (Lipski, 2022). 

They focus on designing lightweight yet efficient models like DeepConv-

LSTM and deploying them to edge devices using TinyML toolchains; the 

authors report that the best model delivers both high accuracy and low latency. 

The paper details the deployment of the best model via Edge Impulse on an 

Arduino Nano 33 BLE Sense Rev2, with positive post-quantization 

size/power/latency measurements (Zhou et al. 2025). 
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2. FUNDAMENTALS OF TINYML AND EMBEDDED 

INTELLIGENCE 

In this section, the concepts and architectural details underlying TinyML will 

be discussed from an academic perspective. 

 

2.1. Overview of Embedded Systems and Edge AI 

Embedded systems are computing units designed around microprocessors or 

microcontrollers (MCUs), typically task-oriented, with real-time constraints. In 

the context of TinyML, these systems are typically considered extreme edge 

devices. Unlike traditional cloud-based artificial intelligence (AI) models, the 

MCUs targeted by TinyML typically have constraints ranging from 256 KB to 1 

MB of Flash memory, 8 KB to 512 KB of SRAM, and power consumption on 

the mW level (Banbury et al., 2020). These constraints mandate hardware-

software co-design in system design. Edge AI emerged in response to the 

latency, bandwidth costs, and data privacy concerns brought about by cloud 

computing. Edge AI: While inference requires high processing power on server-

level or more powerful embedded systems (Single Board Computers (SBCs), 

TinyML focuses on the most energy- and memory-constrained devices at the 

lower end of the spectrum. This distinction forms the core philosophy of 

TinyML: maximum inference efficiency with minimum energy consumption. 

Embedded intelligence describes the evolution of these devices from passive 

data collectors to local and autonomous decision makers. This transformation is 

especially critical in applications such as real-time anomaly detection, 

continuous monitoring, and local speech recognition (Yelchuri & R., 2022). 

 

2.2. TinyML Architecture and Workflow 

The TinyML workflow, unlike the traditional ML pipeline, includes an 

additional optimization phase focused on deployment in a resource-constrained 

environment. This pipeline represents the intersection of scientific and 

engineering disciplines. 

Model Training and Optimization: 

Model training is typically performed on cloud servers or powerful 

workstations. However, compactness is a priority in the model architecture 

selection for TinyML. For example, instead of standard convolutional networks 

(CNNs), architectures like MobileNet or EfficientNet, which use depthwise 

separable convolutions (DEP), which significantly reduce the number of 

parameters and operations, are preferred (Lin et al., 2023). 
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The optimization phase is the heart of TinyML: 

• Quantization: This reduces model size by a factor of four and increases 

inference speed by downsizing floating-point (FP32) weights and activations to 

a low bit depth (typically INT8). However, maintaining model accuracy after 

quantization requires techniques such as Quantization-Aware Training (QAT). 

QAT simulates quantization effects during training, making the model more 

resilient. 

• Pruning: Pruning addresses over-parameterization in ML models. 

Structured Pruning cleans up the network architecture by removing entire filters 

or neurons, while Unstructured Pruning resets individual weights. For 

embedded devices, structured pruning is more advantageous because it saves 

inference time. 

Deployment: 

The optimized model is converted to a target hardware-specific 

programming language (typically C/C++) and embedded into the target MCU 

along with embedded inference engines. TensorFlow Lite Micro (TFLM) is a 

critical inference engine that optimizes core functions and memory allocation 

strategies for the MCU's limited architecture. Additionally, the use of hardware-

specific libraries such as CMSIS-NN, a library optimized for ARM Cortex-M 

series processors, maximizes inference speed and energy efficiency (Tosun & 

Erdem 2024). 

 
Figure 1. General workflow of TinyML development 
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Figure 1 illustrates the overall workflow of the TinyML development 

process, encompassing the stages from data collection to deployment on 

embedded microcontrollers. The process begins with the acquisition and 

preprocessing of sensor data, which serves as the foundation for model training 

performed on high-performance computing systems. Once a baseline model is 

obtained, optimization techniques such as quantization and pruning are applied 

to reduce memory footprint and computational complexity, enabling efficient 

execution on resource-constrained hardware. The optimized model is then 

converted and deployed onto embedded devices, where real-time inference 

takes place locally. This pipeline exemplifies the integration of machine 

learning with embedded intelligence, ensuring low latency, enhanced privacy, 

and energy-efficient autonomous operation at the network edge. 

 

2.3. Core Techniques for Model Compression 

TinyML's fundamental viability hinges on its ability to radically reduce the 

memory and computational cost of machine learning models with acceptable 

accuracy loss. This section details the scientific background of the underlying 

compression techniques. 

 

2.3.1. Quantization 

Quantization is the process of reducing the precision of model parameters 

and calculations. Scientifically, this is the mapping of a floating-point number 

(32 bits) to an integer representation (8 bits or less). 

𝑄 = 𝑟𝑜𝑢𝑛𝑑(
𝑅

𝑆
+ 𝑍)               (1) 

Here, R is the original floating-point value, S is the scale factor, Z is the zero 

point, and Q is the quantized integer value. Quantization not only reduces 

memory usage (the size is reduced by a factor of 4), but also increases inference 

speed because integer arithmetic requires fewer cycles and energy than floating-

point operations. 

 

Quantization Types: 

• Post-Training Quantization (PTQ): This is applied after model training 

is complete. It is fast but carries a high risk of accuracy loss. This risk is 

mitigated by using a calibration dataset. 

• Quantization-Aware Training (QAT): Quantization simulation is 

included in the training cycle. This typically provides the highest performance 

by allowing the model to learn more robustly against quantization-induced 

information loss, but training time is longer. 
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2.3.2. Pruning 

Pruning reduces the number of parameters and FLOPs (Floating Point 

Operations) by increasing the sparsity of the model. 

Structured Pruning vs. Unstructured Pruning: 

• Unstructured Pruning: Sets the least important individual weights in the 

network to zero. This offers the highest compression ratio, but requires 

specialized hardware or compressed formats (sparse matrix format) and does 

not provide speedups on standard MCUs. 

• Structured Pruning: Removes all neurons, filters, or layers. This 

changes the model's architecture but provides significant speedups on 

CPUs/MCUs during inference because the matrix multiplication dimensions in 

the network are directly reduced. 

Pruning is typically implemented using Iterative Pruning methods: the model 

is pruned, the remaining weights are retrained (fine-tuned), and this cycle is 

repeated until the target sparsity ratio is reached. 

 

2.3.3. Knowledge Distillation 

This technique involves training the Student model by using the probability 

distributions (soft labels or "soft targets") generated by a large model (Teacher) 

as an additional loss function for a small model (Student). The Student learns 

not only the hard labels but also the relationships between the class probabilities 

of the Teacher model (Wang & Yoon 2022). 

𝐿𝐷𝑖𝑠𝑡𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 = 𝛼𝐿𝑆𝑜𝑓𝑡 + (1 − 𝛼)𝐿𝐻𝑎𝑟𝑑            (2) 

Here, LSoft is a Loss function that allows the Student model to mimic the 

smooth outputs of the Teacher model. LHard is the standard cross-entropy loss. 

The constant α determines the relative importance of these two losses. This 

allows the small Student model to operate with minimal computational 

overhead while absorbing a large portion of the Teacher model's information 

power. 

 

3. TOOLS, FRAMEWORKS, AND TYPICAL APPLICATIONS 

3.1. Major Frameworks for TinyML 

The TinyML development environment focuses on finding the balance 

between ease of use, rapid prototyping, and hardware support.  

• TensorFlow Lite Micro (TFLM): Developed by Google, TFLM can run 

with around 16 KB of Flash and a few KB of RAM. Written in C++, TFLM 

supports efficient integer computations primarily through low-level C kernels. 

TFLM's architecture uses a dedicated memory manager that ensures kernels are 
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loaded onto the device only when needed. This minimalist approach makes 

TFLM indispensable for MCUs.  

• Edge Impulse: As a highly integrated platform, Edge Impulse offers

developers an end-to-end solution for data acquisition, model training, 

optimization, and deployment. In particular, supporting various sensor types 

(accelerometer, microphone, camera) and facilitating data flow through tools 

like Data Forwarder significantly accelerates the prototyping process.  

• Apache TVM and MicroTVM: TVM, an open-source machine learning

compiler framework, stands out for its ability to generate optimized code for 

various hardware. By extending this capability to MCUs, MicroTVM allows 

developers to deeply optimize model inference code for specialized hardware 

architectures. This is a critical research topic for maximizing the synergy 

between hardware architecture and software optimization. 

3.2. Typical Application Areas 

TinyML applications are characterized by the need to reduce the cycle time 

and energy costs between sensing and inference.  

• Industrial Predictive Maintenance: Local analysis of data from vibration

and acoustic sensors enables early detection of machine malfunctions. By 

running anomaly detection models on the device, TinyML sends alerts over the 

network only when anomalies are detected. This can reduce bandwidth and 

energy consumption by up to 1000 times.  

• Healthcare and Wearable Devices: Continuous vital sign monitoring

(heart rate, oxygen saturation) or activity recognition (fall detection) models 

provide instant alerts while preserving privacy (Kahya & Aslan, 2024). TinyML 

allows these devices to operate in an always-on but ultra-low-power mode.  

• Zero-Power AI: Research is accelerating to run TinyML models on

battery-free devices powered by energy harvesting (solar, vibration, RF). This is 

particularly revolutionary for remote and isolated environmental monitoring 

applications. 

3.3. Impact on Embedded Intelligence 

TinyML has permanently changed the architecture and philosophy of 

embedded systems. The fundamental paradigm of embedded intelligence now 

revolves not only around efficiency but also cognitive autonomy. 

• Breaking Data Silos: TinyML eliminates the need to collect data in a

centralized storage unit. This supports the transition to local data processing and 
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distributed intelligence architectures. This approach not only enhances privacy 

but also increases system resilience against global network failures. 

• Environmental Sustainability: While the energy footprint of cloud

computing centers is constantly increasing, TinyML's ultra-low power 

consumption helps the Internet of Things (IoT) achieve its green computing 

goals. Delivering AI capabilities at the milliwatt level is a key factor for an 

energy-sustainable digital future (Abadade et al., 2023). 

4. EXPERIMENTAL IMPLEMENTATION AND RESULTS

To further substantiate the applicability of TinyML methodologies in real-

world embedded intelligence tasks, an extended experimental implementation 

was conducted focusing on real-time Human Activity Recognition (HAR). The 

primary aim was to investigate how model compression strategies—particularly 

post-training quantization—affect on-device latency, memory utilization, and 

energy efficiency under stringent hardware constraints. 

4.1. Experimental Setup 

The experimental platform consisted of the Arduino Nano 33 BLE Sense, a 

representative low-power microcontroller board frequently used in TinyML 

research. The device features a 64-MHz ARM Cortex-M4F processor with 256 

KB SRAM and 1 MB Flash, making it suitable for evaluating memory-sensitive 

inference tasks. The board’s built-in 3-axis accelerometer (sampling at 50 Hz) 

served as the sole sensor input. 

A custom HAR dataset was collected with three activity classes—walking, 

running, and standing—each recorded for 10 minutes. The raw accelerometer 

readings were pre-processed using a 100-sample sliding window with 50% 

overlap, producing fixed-size feature segments suitable for lightweight time-

series modeling. 

Model development was carried out in TensorFlow using a compact 1-D 

CNN architecture composed of: 

• Conv1D layer: 16 filters, kernel size = 3

• Conv1D layer: 32 filters, kernel size = 3

• Dense layer: 32 units

• Softmax output: 3 classes

Training achieved 94.7% accuracy on the validation set. To enable

microcontroller deployment, the model underwent INT8 post-training 

quantization with TensorFlow Lite, resulting in a significant memory footprint 

reduction. Deployment was performed via TensorFlow Lite Micro (TFLM) 

using the Arduino IDE. 
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For power profiling, a Nordic Power Profiler Kit (PPK2) was connected 

inline with the Arduino board to capture instantaneous current draw during 

inference, enabling precise computation of energy per inference. 

 

4.2. Performance Evaluation 

Table 1. Performance evaluation of the system 

Metric Float32 Model INT8 Quantized 

Model 

Improvement 

Model Size 236 KB 59 KB −75 % 

Inference Time (ms) 

@64 MHz 

14.2 5.8 ≈ 2.4× faster 

Peak RAM Usage (KB) 98 42 −57 % 

Classification Accuracy 94.7 % 93.8 % −0.9 % loss 

Energy Consumption 

(mJ/inference) 

0.62 0.25 −59 % 

 

The results demonstrate that INT8 quantization yields substantial 

improvements in every resource-sensitive metric. The compressed model fits 

comfortably within the MCU’s memory limits while accelerating inference by a 

factor of 2.4×. The marginal 0.9% accuracy reduction illustrates the robustness 

of quantization for time-series classification tasks. The effects of INT8 

quantization on model size, latency, memory usage, and energy consumption 

are presented in detail in Table 1. 

Energy measurements from the PPK2 show a 59% reduction in per-inference 

energy cost, confirming the advantages of running compressed neural networks 

locally on embedded devices. 

 

4.3. Discussion 

The experiment validates the theoretical claims of TinyML: through 

quantization and hardware-aware optimization, ML inference can be performed 

efficiently on microcontrollers. The observed trade-off between model 

compactness and accuracy remains manageable, particularly for classification 

tasks tolerant of small accuracy loss. Furthermore, edge-based inference 

eliminates the need for continuous wireless transmission, providing an 

estimated 70–80 % reduction in total system energy consumption during 

operation. 
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Future enhancements could include exploring structured pruning and 

quantization-aware training (QAT) to further optimize accuracy-efficiency 

balance. Integrating energy-harvesting circuits may also extend operational 

lifetime toward battery-free TinyML scenarios. 

 

5. CHALLENGES AND RESEARCH ISSUES 

While the TinyML paradigm brings embedded intelligence to constrained 

devices, it also brings with it significant scientific and engineering challenges. 

These challenges constitute the focus of academic research in the field. 

 

5.1. The Resource Bottleneck: Optimization and Accuracy Trade-offs 

The key limitations of TinyML are both memory (SRAM/Flash) and 

compute capacity (MIPS/DMIPS). While traditional ML models require 

gigabytes of memory, TinyML devices can have less than 1/1000th that amount 

of memory (Banbury et al., 2020). 

• Model Accuracy-Efficiency Tradeoff: While model compression 

techniques (quantization, pruning) are critical, they often result in a decrease in 

the overall model accuracy. A primary goal of academic research is to develop 

methods that minimize or compensate for this decrease. Hardware-aware 

quantization algorithms are needed to prevent accuracy loss, particularly in 

cases of excessive quantization (e.g., 4-bit or binary quantization). 

• Dynamic Resource Management: TinyML devices are typically battery-

powered and subject to environmental conditions (temperature, humidity). In 

these dynamic environments, the development of adaptive inference 

mechanisms that can instantly manage power consumption and computational 

resources, even adjusting the model compression level based on task intensity, 

is an important research topic (Kallimani et al., 2023). 

 

5.2. Hardware Heterogeneity and Specialized Accelerators 

The world of embedded systems includes a wide variety of microcontroller 

families (ARM Cortex-M0 to Cortex-M7), digital signal processors (DSPs), and 

custom-designed AI accelerators. This heterogeneity creates challenges for 

portability and optimization. 

• Compiler Challenges: Re-optimizing and compiling an ML model to 

run most efficiently on different hardware architectures is complex. Compiler 

frameworks like MicroTVM aim to address this issue by converting the ML 

model to a hardware-specific intermediate representation and then optimizing it 

for hardware kernels. However, developing efficient compilers and runtime 
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environments for next-generation neuromorphic chips remains an open area of 

research. 

• Hardware-Software Co-Design: To further advance the capabilities of 

TinyML, specialized, low-power hardware accelerators (e.g., Edge TPU) 

designed with the constraints of ML models in mind are crucial. Research is 

focused on developing new architectures that provide the best balance between 

power consumption and computational efficiency, particularly event-driven 

architectures like Spiking Neural Networks (SNNs). 

 

5.3. Security and Privacy Implications at the Edge 

Although processing data locally increases privacy, TinyML devices face 

new security and privacy threats. 

• Model Intellectual Property and Attacks: The optimized ML model 

stored in the MCU is an intellectual property (IP) asset. If the device is 

physically compromised, there is a risk of model parameters being stolen 

through model extraction attacks. Secure boot, hardware encryption, and 

obfuscation techniques are being investigated to mitigate this risk. 

• Data Poisoning and Reliability: TinyML devices can receive data from 

low-cost sensors. Malicious actors can manipulate sensor data (data poisoning) 

or use adversarial attacks during the inference phase to cause the model to 

produce inaccurate results. Hardening techniques need to be developed to 

ensure TinyML devices are resilient to such attacks while minimizing 

computational overhead. 

 

5.4. Learning Paradigm Shifts: From Inference to On-Device Learning 

TinyML's current focus is on a model trained in the cloud performing 

inference on-device, but future systems should have limited on-device learning 

capabilities. 

• On-Device Learning and Continual Learning: The device requires small 

amounts of local retraining (fine-tuning) to adapt to changing environmental 

data (data drift) over time. Given memory and power constraints, high-

efficiency, memory-friendly optimization algorithms for updating model 

weights (e.g., minimized versions of Stochastic Gradient Descent) are a critical 

research topic. 

• Federated Learning (FL): Multiple devices train the model with their 

own local data and send only the updated weight differences (gradients) to a 

central server, enabling global model improvement while preserving privacy. 

While TinyML is an ideal endpoint for FL, ensuring FL algorithms operate 
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efficiently in the context of ultra-low power and unreliable network connections 

presents significant engineering challenges. 

 

6. FUTURE TRENDS AND OPPORTUNITIES 

The future of TinyML offers both exciting trends that push the boundaries of 

technology and new market opportunities. 

 

6.1. Next-Generation Hardware and Architectures 

The biggest factor that will shape the future of TinyML will be the leaps in 

hardware. 

• Neuromorphic and Event-Driven Computing: Neuromorphic chips (e.g., 

Intel Loihi) bring AI closer to the principles of biological brains: computation 

and memory are unified, with processing power triggered by events (spikes). 

These architectures promise picojoule (pJ) energy consumption, making it 

possible to achieve Zero-Power AI. The integration of Event-Based Vision (EV) 

and TinyML with these architectures is a significant focus of academic 

research.  

• Data-Aware Computing (PIM): PIM technologies, which move the 

computation unit into memory, eliminate the energy cost of data transfer. PIM 

for TinyML will significantly alleviate memory constraints, enabling larger, 

more complex models to be run on constrained devices. Data-Aware Computing 

(In-Memory Computing/Processing-in-Memory) technologies eliminate the 

energy cost of data transfer. PIM for TinyML will significantly alleviate 

memory constraints, enabling larger, more complex models to run on 

constrained devices. 

 

6.2. Integration with Edge-Cloud Continuum and 6G IoT 

TinyML is no longer an isolated technology, but part of a larger edge-cloud 

continuum architecture. 

• 6G IoT and Cognitive Networks: Future 6G networks aim to integrate 

local and hyper-fast computing capabilities. TinyML devices will serve as 

cognitive sensors in these networks, providing local AI inference to manage and 

optimize network resources (Scribd, 2023). TinyML will play a critical role in 

meeting the low latency and high reliability requirements of 6G. 

• Hierarchical Inference: Some data is processed on the most constrained 

TinyML device (layer L0), more complex data is processed on the local gateway 

(layer L1), and the most complex analysis is processed in the cloud (layer L2). 

This hierarchical model maximizes both energy efficiency and depth of 

analysis. 
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6.3. Novel Application Domains and Societal Impact 

• Biomedical and Personalized Healthcare: TinyML-powered implantable 

devices and smart biosensors will enable continuous and autonomous 

monitoring of chronic diseases. Real-time diagnostic and alert capabilities have 

the potential to revolutionize patient care (Scribd, 2023). 

• Sustainable Development and Environmental Monitoring: TinyML 

offers the opportunity to directly contribute to the United Nations Sustainable 

Development Goals (SDGs) by providing cost-effective and energy-efficient 

solutions for areas such as monitoring natural habitats, localized detection of 

climate change impacts, and increasing agricultural productivity (Abadade et 

al., 2023). 

 

7. CONCLUSION 

TinyML for Embedded Intelligence is a rapidly evolving, interdisciplinary 

field that represents the marriage between machine learning and embedded 

systems. Initially launched with the mission of enabling AI with limited 

resources, TinyML now forms the foundation of cognitive systems that offer 

real-time autonomy, superior privacy, and environmental sustainability. 

Continuous advances in model compression techniques (quantization and 

pruning) and optimized software frameworks like TFLM have made TinyML 

widely applicable to applications ranging from Industrial IoT to healthcare. 

However, issues such as hardware heterogeneity, adaptive resource 

management, cybersecurity threats, and on-device learning capabilities remain 

pressing challenges for academic research. The future holds the promise of 

further expanding TinyML's capabilities through integration with neuromorphic 

hardware, PIM technologies, and 6G infrastructure. Ultimately, TinyML defines 

the future of distributed and planet-friendly intelligence, enabling the digital 

world to intelligently interpenetrate the physical world. 
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Chapter 6 

Outlier Analysis in Machine Learning: 

Basic Approaches, Challenges, and Applicatıons 

Merve AKKUŞ1 

ABSTRACT 

Outlier detection plays a critical role in ensuring the reliability, stability, and 

generalizability of machine learning models. Real-world datasets often contain 

deviations arising from noise, measurement errors, rare events, or malicious 

activities, which distort model learning and lead to inaccurate decisions. This 

chapter provides a comprehensive examination of outlier analysis by discussing 

fundamental concepts, outlier types, challenges, and state-of-the-art detection 

methods. Statistical, proximity/density-based, clustering-driven, and machine 

learning-based approaches are compared both theoretically and conceptually. 

Furthermore, modern deep learning techniques, hybrid structures, and 

explainable artificial intelligence (XAI) frameworks are highlighted as powerful 

solutions for complex and high-dimensional data. Practical Python examples 

and visual representations are included to support understanding of algorithmic 

behavior. The chapter emphasizes that outlier detection is not only a 

preprocessing task but also a strategic component that significantly affects data-

driven decision systems across various fields such as finance, healthcare, 

cybersecurity, and industrial monitoring. 

Keywords: Outlier detection, anomaly detection, machine learning, density-

based models, deep learning, data mining, explainable artificial intelligence 
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mining and machine learning processes. Outliers are defined as observations 

that show significant deviations from the general pattern of the dataset and 

negatively impact the model's accuracy, predictive power, and generalizability 

performance. Therefore, the accurate identification of outliers is critical in 

numerous fields, such as credit risk management, network security, medical 

diagnosis systems, production line monitoring, energy management, and sensor-

based industrial applications.The performance of machine learning models is 

directly related to the quality of the data used. Since real-world data is often not 

collected under ideal conditions, deviations in the data distribution may occur 

due to sensor noise, measurement errors, missing records, or unexpected events. 

These deviations manifest as observations that do not conform to the overall 

pattern of the dataset and exhibit statistically unusual behavior. 

Such observations mislead the model parameters during the learning process, 

leading to distorted decision boundaries and reduced overall performance. This 

situation is visually presented in Figure 1. The figure shows that the presence of 

several outliers (red triangles) in the linear regression model significantly 

distorts the regression line (blue line), which represents the overall trend of the 

model. Outliers reduce the accuracy of the model's predictions and weaken its 

generalizability by distorting the underlying pattern of the data. 

Figure 1. Effect of outliers on model performance 

Normal data points are shown as blue circles, while outliers are shown as red 

triangles. Outliers cause the slope to become distorted by altering the model's 

least squares direction. This clearly demonstrates why outlier detection is 

critical for model reliability. The accurate identification of outliers is a critical 
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1. INTRODUCTION

This section comprehensively examines the role of outlier detection in data



component of the machine learning process that is not limited to the 

preprocessing stage; it directly impacts prediction accuracy, model stability, and 

generalizability. Numerous studies in the literature show that ignoring outliers 

reduces model reliability and significantly increases error rates. Therefore, 

outlier detection is not merely a data cleaning process but a strategic step that 

ensures the integrity and reliability of data analytics. 

This book chapter thoroughly examines the concept of outliers, their types, 

detection challenges, and machine learning-based methods. The differences 

between statistical, proximity and density-based, clustering-based, and learning-

based approaches are compared; the advantages offered by modern methods are 

supported by Python-based visuals. Thus, the aim is to provide the reader with a 

comprehensive perspective covering both the theoretical foundations and 

practical application examples of outlier analysis. 

 

2. THE CONCEPT OF OUTLIERS AND THEIR ROLE IN DATA 

MINING 

Outlier detection is the process of identifying objects that deviate 

significantly from expected patterns in data mining processes and exhibit 

characteristics that are markedly different from other observations. These 

observations may arise for various reasons, such as measurement errors, sensor 

malfunctions, fraud attempts, biological anomalies, or systematic failures. 

According to Chandola et al.'s  definition, outlier detection is a fundamental 

area of analysis that aims to understand system behavior, anticipate potential 

risks, and improve decision-making processes by revealing unexpected patterns 

in the data (chandola et al., 2009). 

From a data mining perspective, the importance of outliers is not limited to 

the data cleaning process. In most cases, these values carry critical information 

about the overall dynamics of the system or unusual events (Goldstein et al., 

2016). 

For example: 

• In a banking system, a rare high-value transaction may indicate potential 

fraud. 

• A sudden temperature increase on a production line may indicate a sensor 

malfunction. 

• Biological deviations observed in medical data may provide important 

clues for early diagnosis. 

Therefore, outliers should not always be considered “noise.” 

Instead, in many scenarios, they should be interpreted as anomalies that 

provide valuable information about the system's operation. 
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2.1 Definition and Importance of Outliers 

An outlier is an observation in a dataset that deviates significantly from the 

expected statistical distribution or normal pattern. Such observations can distort 

parameter estimates in the statistical modeling process, increase variance, and 

reduce the model's generalization performance. Failure to properly manage 

outliers causes machine learning models to overfit, reduces classification 

accuracy, and leads to incorrect decision boundaries. Therefore, identifying, 

removing, or weighting outliers is a critical step in the data preprocessing 

process. 

In modern data analytics, detecting outliers is not only a statistical necessity 

but also an essential process for obtaining meaningful data representation. As 

the volume and complexity of data streams increase in big data, IoT, and cyber-

physical systems, outlier analysis has gained strategic importance in terms of 

system security and operational stability. Figure 2 is presented to conceptually 

illustrate the impact of outliers on model performance. This visual summarizes 

the difference between normal data distribution and outliers, as well as their 

effects on the model, in a comprehensive manner. 

 

 
Figure 2. The Concept and importance of outliers (conceptual 

representation) 

 

The normal data distribution is represented by gray points clustered within 

the gray ellipse, while outliers are represented by red triangles outside the 

distribution. Outliers cause a decrease in the model's prediction accuracy 

(accuracy loss), weak generalization (poor generalization), and prediction bias 

105



(bias shift). This visual emphasizes that outlier detection is not only a data 

cleaning process but also a strategic step in terms of model reliability and the 

accuracy of decision systems. 

 

2.2 Application Areas of Outliers 

Outlier detection is an interdisciplinary field of analysis and is applied in 

many different sectors (Ahmed et al., 2016). The most common usage examples 

are summarized in Table 1 below. 

 

Table 1. Common application areas and examples of outlier detection 

Application 

Area 

Purpose Example of Outlier 

Finance Detect fraudulent transactions, 

credit risk, or money laundering 

Unusually high money transfer 

Cybersecurity Identify unauthorized access or 

attacks 

Abnormally high network 

traffic packet density 

Healthcare Detect physiological 

abnormalities 

Sudden increase or decrease in 

heart rate 

Manufacturing Identify defective products or 

process faults 

Sudden deviation in 

temperature sensor readings 

Energy Systems Detect leakage or faults Unexpected surge in energy 

consumption 

Text and Social 

Media 

Analytics 

Monitor topic or sentiment 

changes 

Sudden semantic shift in text 

content 

 

This wide range of applications demonstrates that outlier detection is an 

interdisciplinary method. Although the types of data used in different fields 

vary, the common goal is to systematically identify rare and unusual behaviors 

that fall outside normal patterns. Today, this process goes beyond classical 

statistical methods and is carried out in a more flexible and accurate manner 

through machine learning and deep learning-based approaches. 

 

3. TYPES OF OUTLIERS AND ANALYSIS 

Outlier analysis is the process of identifying, measuring, and classifying 

observations that fall outside the general distribution in a data set. This analysis 

aims to quantitatively reveal the extent to which an observation deviates from 

the “normal” pattern. The level of outlier status is usually expressed as an 

outlier score or probability value. This score numerically shows how differently 

the observation behaves when compared to other examples in the data set 

(Goldstein et al., 2012). 
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Traditionally, outlier analysis is performed under the assumption that the 

data follows a normal distribution. However, in the real world, most data sets 

deviate from ideal distributions; in such cases, classical statistical approaches 

may be insufficient. Especially in high-dimensional and noisy data, outliers 

need to be defined in different contexts. Therefore, the literature generally 

addresses outliers in three main categories: global, contextual, and Collective 

(Kohli et al., 2025). 

 

3.1 Types of Deviant Values: Global, Contextual, Collective 

In the literature, deviant values are generally examined under three main 

categories: global, contextual, and collective deviance. 

 

 
Figure 3. Visualization of global, contextual, and collective outlier examples 

 

In Figure 3, normal data is distributed in blue and green clusters, while 

points shown in different colors represent outlier behavior patterns. Purple 

points represent contextual outliers that deviate from the norm in a specific 

context (e.g., time, location, or condition), light green points represent 

collective outliers that occur together, and the red “×” signifies a global outlier 

that clearly deviates from the overall distribution. This visual illustrates the 

positions of different types of outliers within the data structure and how each 

requires different identification strategies in the modeling process. 

a) Global outliers: Observations that behave distinctly differently from the 

general distribution of the data set. Example: A measurement of 45 °C in a city 

where average temperatures range between 20–30 °C represents a global outlier. 
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Global outliers are typically detected using statistical measures such as Z-score, 

boxplot (IQR), or Mahalanobis distance (Dashdondov et al., 2021). 

b) Contextual outliers: Observations that are considered abnormal in a 

specific context—such as time, location, or environmental conditions. For 

example, a temperature of 35 °C is normal in summer but indicates a contextual 

outlier in winter. Such outliers are typically identified using time series models 

(ARIMA, LSTM) or location-based analyses (Çalıkuş, 2025). 

c) Collective outliers: These are groups of observations that appear normal 

individually but form an abnormal pattern when taken together. For example, a 

short-term surge in network traffic could be part of a cyberattack pattern. Such 

outliers are typically detected using clustering or density estimation methods 

(Fisch et al., 2022). 

 

3.2 Anomaly Score and Quantitative Assessment 

To analytically evaluate outliers, each observation is assigned an outlier 

score. This score indicates how different the observation behaves compared to 

other examples in the dataset (Röchner et al., 2024). 

In general, the outlier score can be defined as in Equation 1: 

 

𝑆(𝑥𝑖) = 𝑓(dist(𝑥𝑖 , 𝒩𝑘(𝑥𝑖)))                           (1) 

 

Where: 

• 𝑆(𝑥𝑖): 𝑥𝑖 Outlier score of observation, 

• dist:Function measuring distance or density difference, 

• 𝒩𝑘(𝑥𝑖): Set of k-nearest neighbors 𝑥𝑖  

• 𝑓(⋅): Transformation function of the score. 

As the score value increases, the abnormality level of the observation 

increases. In practice, these scores are often normalized using metrics such as 

LOF (Local Outlier Factor) or z-score. This numerical approach not only 

identifies outliers but also prioritizes them. For example, in credit risk analysis, 

transactions with the highest outlier scores are examined first (Röchner et al., 

2024). 

 

4. CHALLENGES IN OUTLIER DETECTION 

Outlier detection is one of the most complex preprocessing steps in machine 

learning and data mining processes. The main reason for this is that “normal” 

and “abnormal” behaviors are often not separated by clear boundaries. There is 

a broad gray area between normality and abnormality in data distributions, 

which makes the performance of detection methods highly dependent on the 
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data structure. The main challenges frequently encountered in outlier detection 

and the solution approaches to these problems are summarized in the 

subheadings (Kohli et al.,2025). 

 

4.1 Data Normality and Noise Problem 

In real-world data, “normal” behavior patterns vary depending on system 

conditions and time factors. Therefore, the fact that a specific threshold value is 

not always valid increases the risk of misclassification. Furthermore, noise 

causes a decline in data quality and hides true outliers. Noisy observations can 

lead to false positives, especially in statistical methods. 

Possible solutions: 

• Noise filtering techniques, 

• Robust statistical methods (ROF, RANSAC), 

• Dynamic threshold determination approaches supported by expert 

knowledge (Olteanu et al., 2023). 

 

4.2 High Dimensionality and Scalability 

Modern datasets often contain hundreds or even thousands of features. An 

increase in the number of dimensions fundamentally changes the geometric 

structure of the data. In high-dimensional spaces, Euclidean distances between 

examples become very close, and the concepts of “close” or “far” lose their 

meaning. This phenomenon is referred to in the literature as the curse of 

dimensionality (Kohli et al., 2025). 

A direct consequence of this situation is the weakening of the discriminative 

power of distance- or density-based methods (e.g., k-NN, LOF, DBSCAN). 

This is because in high-dimensional spaces: 

• Data points are almost equidistant from each other, 

• Density measurements become inconsistent, 

• The clustering structure is disrupted, 

• Outliers can no longer be distinguished from normal samples. 

Therefore, high dimensionality not only increases computational load but 

also reduces algorithmic stability and generalization ability. 

 

4.3 Label Deficiency and Imbalance 

Outliers are rare by nature; therefore, most datasets do not contain labeled 

outlier examples. This limits the generalization capacity of supervised learning 

methods. 
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Furthermore, a significant difference in the ratio of normal to outlier 

examples causes class imbalance. This can cause the model to overfit the 

“normal” class (Kohli et al., 2025). 

Possible solutions: 

• Unsupervised or semi-supervised algorithms (One-Class SVM, Isolation 

Forest, LOF), 

• Data augmentation (SMOTE) or weighted loss functions, 

• Model updating with active learning and expert feedback. 

 

4.4 Model Explainability 

Deep learning-based outlier detection models (e.g., Autoencoder, GAN) 

provide high accuracy, but their decision processes are often “black box” in 

nature. This leads to reliability issues, especially in critical areas such as 

healthcare, finance, and security (Birihanu et al., 2024). 

Explainable Artificial Intelligence (XAI) approaches are being developed to 

address this shortcoming. 

Methods such as SHAP, LIME, and Counterfactual Explanation make 

decision processes transparent by explaining why the model flagged a particular 

observation as an outlier. 

 

4.5 Computational Cost 

Working with millions of observations and high-dimensional features in big 

data environments causes traditional algorithms to fall short in terms of both 

memory and processing load. 

Possible solutions: 

• Approximate Nearest Neighbor algorithms, 

• GPU or multi-core processing support, 

• Online or incremental learning approaches. 

 

5. OUTLIER DETECTION METHODS 

Outlier detection is built on different assumptions depending on the structure 

of the data, its distribution characteristics, the number of dimensions, and the 

application context. In the literature, these methods are generally classified 

within the framework of statistical assumptions, distance or density measures, 

clustering structure, or learning-based models. This diversity stems from the 

unique nature of each data type. For example, statistical approaches are more 

suitable for low-dimensional data sets with defined distributions, while machine 

learning-based methods are more flexible and yield successful results for 

complex and high-dimensional data. Density or distance-based methods are 
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particularly effective in capturing local anomalies, while clustering-based 

approaches reveal contextual anomalies by evaluating structural relationships in 

the data space. In recent years, with the increase in data volume and complexity, 

it has become clear that no single method can be effective for all data types 

(Badhan et al., 2023). 

For this reason, researchers have developed hybrid or mixed approaches that 

combine the strengths of different algorithms (e.g., DBSCAN + Autoencoder, 

Isolation Forest + PCA). This enables both statistical robustness and learning 

capabilities through deep representations. In this context, approaches to outlier 

detection are considered not only as data cleaning tools but also as analytical 

models that increase the reliability of data interpretation and decision support 

systems. 

 

5.1 Extreme Value Analysis 

In extreme value analysis, observations located in the extreme regions of the 

data developments shown are considered outliers. Such observations are the 

points that emerge in the underlying sequential part, as shown in Figure 4 

(Olmo., 2009). 

 
Figure 4. Conceptual representation of single and multivariate outlier 

detection. 

(a) In the single variable case, outliers are defined as observations located at 

the extreme points of the statistical distribution. The normal distribution curve 

is shown in gray, and the red dots in the extreme regions represent outliers 

outside the expected range. 

(b) In the multivariate case, outliers emerge as deviations from the common 

pattern of multiple features. The gray ellipse shows the normal data boundary, 

while the red triangles show multivariate outlier observations outside this 

boundary. 

 

This visual emphasizes the importance of considering the number of 

variables and their relationships when detecting outliers. 
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a) Univariate outlier analysis: In a univariate case, it is assumed that the 

data follows a specific distribution (most often a Gaussian distribution). As in 

Equation 2, the upper and lower tail regions represent observations at a distance 

of ±3σ from the mean: 

 

𝑥𝑖 > 𝜇 + 3𝜎  or  𝑥𝑖 < 𝜇 − 3𝜎   (2) 

 

Points outside these thresholds are marked as outliers. 

b) Multivariate outlier analysis: In multidimensional data sets, the distance 

of observations from the mean vector μ and covariance matrix Σ is measured 

using the Mahalanobis distance, Equation 3: 

 

𝐷𝑀(𝑥𝑖) = √(𝑥𝑖 − 𝜇)𝑇Σ−1(𝑥𝑖 − 𝜇)  (3) 

  

Distances above a certain threshold value (τ) are considered outliers. 

It is statistically robust and effective with low-dimensional data. However, it 

is highly dependent on the assumption of normal distribution. 

 

5.2 Statistical Methods 

Statistical methods assume that the data follows a specific distribution 

pattern, as shown in Figure 5, and consider observations that do not fit this 

pattern as outliers  (Theriault, 2024). 

 
Figure 5. Statistical methods for aoutlier detection: Parametric and non-

parametric approachs 

(a) Parametric methods assume that the data follows a specific distribution 

model; the Boxplot (IQR) method identifies outliers using quartile values. 

(b) Non-parametric histogram-based methods mark low-frequency regions as 

potential outlier areas without making any distribution assumptions. 

This comparison demonstrates the importance of selecting a statistical 

method appropriate for the data structure. 

a) Parametric methods: Parametric methods detect outliers by estimating 

distribution-based parameters such as quartiles. A common example is the 
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Boxplot method, which uses the first, second, and third quartiles 𝑄1, 𝑄2, 𝑄3 of 

the data (Equation 4). The dispersion of the central data is measured by the 

interquartile range, defined as IQR = 𝑄3 − 𝑄1( Equation 5). Based on this 

range, outlier thresholds are determined as 𝑄1 − 1.5 × IQR for the lower limit 

and 𝑄3 + 1.5 × IQRfor the upper limit ( Equation 6). Observations outside 

these limits are classified as outliers. 

Data quartiles: 

𝑄1, 𝑄2, 𝑄3  (4) 

 

Interquartile range (IQR): 

𝐼𝑄𝑅 = 𝑄3 − 𝑄1 (5) 

 

Outlier limits: 

𝐿𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 = 𝑄1 − 1.5 × 𝐼𝑄𝑅,Upper Limit = 𝑄3 + 1.5 × 𝐼𝑄𝑅 (6) 

 

Points outside these limits are considered outliers. 

b) Nonparametric methods: Nonparametric approaches are preferred when 

the data distribution is unknown. For example, in the histogram-based outlier 

detection method, data are divided into intervals (bins); low-frequency intervals 

are potential outlier regions. Nonparametric methods do not require a 

distribution assumption. However, threshold selection and histogram width also 

significantly affect the results. 

 

5.3 Proximity and Density-Based Methods 

In this approach, the anomaly of an observation is assessed according to its 

distance from its neighbors or its density difference. The assumption is that 

normal observations are in dense regions and anomalies are in sparse regions, as 

shown in Figure 6 (Mavroudopoulos, 2023). 

 
Figure 6. Conceptual representation of proximity and density-based outlier 

detection methods. 
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(a) The k-NN method determines the level of outlierness based on the 

average distance of observations to their neighbors; points far from their 

neighbors are considered outliers. 

(b) The LOF method evaluates observations in low-density regions as 

outliers based on local density differences. 

(c) The COF method defines observations in weakly connected regions as 

outliers by considering point connection lengths. 

 

These methods are effective tools for detecting local anomalies, especially in 

complex and multidimensional data sets. 

a) k-Nearest neighbor (k-nn) outlier detection: The average distance of an 

observation to its k nearest neighbors is calculated. Points with high distance 

values are labeled as outliers. 

b) Local outlier factor (LOF): The LOF method compares the local density 

of a point with its neighbors. The outlier score is defined as in Equation 7. 

 

𝐿𝑂𝐹(𝑥𝑖) =
1

∣𝑁𝑘(𝑥𝑖)∣
∑𝑥𝑗∈𝑁𝑘(𝑥𝑖)

lrd(𝑥𝑗)

lrd(𝑥𝑖)
  (7) 

 

Here, lrd (local reachability density) indicates the reachability density of a 

point. 

Points with LOF>1.5 are generally considered outliers. 

c) COF (Connectivity-based outlier factor): It works similarly to LOF but 

evaluates local density based on connection lengths. Observations in regions 

where density shows a sudden drop are considered outliers. COF successfully 

captures anomalies in the local structure. However, it is sensitive to k-parameter 

selection and has high computational costs in large datasets. 

 

5.4 Cluster-Based Methods 

Cluster-based methods are based on the assumption that normal observations 

form clusters, as shown in Figure 7, and outliers are isolated from these clusters 

(Souiden et al., 2022). 
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Figure 7. Conceptual representation of clustering-based outlier detection 

methods. 

(a) The K-Means method determines the level of outlierness based on the 

distance of observations to the nearest cluster center; points far from the center 

are considered outliers. 

(b) The DBSCAN method identifies clusters using a density threshold and 

minimum neighbor count; observations in low-density regions are considered 

noise (outliers). 

(c) The GMM method assumes that the data is composed of a mixture of 

multiple Gaussian distributions and classifies low-probability observations as 

outliers. 

 

These methods define outliers based on their statistical and spatial 

characteristics, taking into account the structure of the data sets. 

a) K-means-based outlier detection: The K-Means algorithm divides the 

data into k clusters. The distance of each observation from the nearest cluster 

center is calculated (Equation 8). If the distance exceeds a certain threshold, the 

observation is marked as an outlier. 

 

𝑂𝐷(𝑥𝑖) =∥ 𝑥𝑖 − 𝜇𝑐 ∥ (8) 

 

b) DBSCAN (Density-based spatial clustering of applications with 

noise): DBSCAN operates with the parameters density threshold ε and 

minimum number of neighbors MinPts. Observations in dense regions are 

clustered, while those remaining in low-density regions are considered noise 

and classified as outliers. The number of clusters in DBSCAN does not need to 

be known beforehand; it defines noise naturally. However, parameter selection 

is sensitive to data scale. 

c) Gaussian mixture model (GMM): It assumes that the data is generated 

by a mixture of multiple Gaussian distributions. A probability value is 

calculated for each observation; low-probability examples are classified as 
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outliers. GMM is effective on non-spherical clusters. However, it carries the 

risk of overfitting due to the excessive number of parameters. 

 

5.5 Machine Learning-Based Methods 

Machine learning approaches offer high accuracy and generalization 

capacity in outlier detection, as shown in Figure 8. The aim of these methods is 

to learn normal data and identify deviations from this pattern as outliers. 

Especially in high-dimensional and nonlinear datasets, much more flexible and 

stable results are obtained compared to classical statistical approaches (Souiden 

et al., 2022). 

 

 
Figure 8. Machine learning-based outlier detection models 

 

a) One-class SVM: One-Class SVM learns only the “normal” class and 

labels samples lying outside the decision boundary as outliers. The decision 

function is defined, as given in Equation 9:  

 

𝑓(𝑥) = 𝑤𝑇𝜙(𝑥) − 𝜌 (9) 

 

where ϕ(x) represents the kernel transformation, w is the weight vector, and 

ρ is the decision threshold. Observations where f(x) < 0 are considered outliers. 

This method is effective on low-dimensional, well-defined datasets and is 

sensitive to the choice of kernel function and ν parameter. 

b) Isolation forest: Isolation Forest creates a tree structure by randomly 

splitting data points. Observations isolated with few splits are considered 

outliers. The outlier score is based on the average path length; shorter paths 

indicate higher outlier status. 
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This method stands out for its scalability in high-dimensional data and large 

sample sizes, but it is not sufficient on its own for contextual anomalies. 

c) Autoencoder and variants: Autoencoder structures transform the input 

into a latent representation and reconstruct it. Examples with high 

reconstruction error are flagged as outliers. Derivatives such as Denoising AE, 

Sparse AE, and LSTM-AE improve noise resilience and performance in time 

series. A Variational Autoencoder (VAE), a probabilistic extension, detects 

anomalies based on both reconstruction error and deviations in the latent space 

by estimating the probability of each observation. These approaches deliver 

effective results, particularly in complex industrial sensor data and biomedical 

signals. 

d) GAN (Generative adversarial network)-based methods): In GAN-

based models, a generator (G) and a discriminator (D) network undergo a 

mutual learning process. The generator learns to mimic the normal data 

distribution, while the discriminator learns to distinguish between real and fake 

examples. The anomaly score is typically calculated based on the difference 

between the original and reproduced data or the distance in the discriminator's 

feature space. Architectures such as AnoGAN, GANomaly, and Skip-

GANomaly are particularly successful in image and defect detection. However, 

since the training process of GANs can be unstable, Autoencoder-GAN hybrids 

or pre-trained feature extractors are preferred in most applications. 

e) Deep SVDD and modern approaches:Deep SVDD (Support Vector 

Data Description) is a deep version of the classic One-Class SVM. Network 

outputs are centered around a hypersphere; examples far from the center are 

considered outliers. This method learns deep feature representations 

unsupervised and scales better than kernel-based models. In recent years, these 

approaches have been supported by explainable artificial intelligence (XAI) 

methods. Tools such as SHAP, LIME, and Counterfactual Explanation increase 

the interpretability of models by visualizing why an observation is labeled as an 

outlier. 

f) Current trends: New research has focused on combining techniques from 

different paradigms. 

•    Hybrid models (e.g., DBSCAN + Autoencoder, Isolation Forest + PCA) 

combine statistical robustness with deep representations. 

• Self-supervised and contrastive learning methods enhance normal data 

representations without requiring labels. 

• Graph-based and time-series-focused approaches enable the detection of 

anomalies in sensor networks and dynamic systems through topological or 

temporal inconsistencies. 
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6. COMPARATIVE EVALUATION AND PYTHON APPLICATION 

EXAMPLES 

This section explains the basic working principles, application forms, and 

interpretation methods of some algorithms commonly used in outlier detection. 

The aim is to show the reader how different types of approaches can be applied 

in practice and to compare the similarities and differences between the methods 

at a conceptual level. 

 

6.1 Application Environment and Synthetic Data Approach 

While real data sets (e.g., MIT-BIH, KDDCup99, Credit Card Fraud, 

NASA-Bearing, etc.) are frequently used to test these methods, synthetic 

(artificial) data generation has been preferred in this book chapter to 

demonstrate the behavior of the algorithms in a straightforward manner. 

A small sample dataset created from random distributions in the Python 

environment (e.g., normal distribution + a small number of outliers) is sufficient 

to understand how different algorithms respond. 

Such data provides an instructive framework for representing real-world 

noise, bias, and statistical outliers. 

 

6.2. Basic Algorithm Application Examples 

The following examples are short code snippets that can be run directly in 

the Python environment and are intended solely for methodological 

demonstration. The purpose of the code is not to compare model performance 

but to teach the basic usage of the methods. 

(a) Local outlier factor (LOF): LOF labels samples that remain low in 

density as outliers by comparing the local density of each observation with its 

neighbors.  

 
(b) Isolation forest: Isolation Forest randomly splits observations and 

quickly flags isolated ones as outliers. It stands out for its scalability in large 

data sets.  
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(c) Autoencoder: Autoencoders learn to reconstruct normal samples. 

Samples with high reconstruction error are considered outliers. 

 
 

6.3. Conceptual Comparison 

Table 2. Conceptual comparison of outlier detection methods 

Method Advantage Limitation 

LOF Captures local density 

differences 

Sensitive to the k-

parameter 

Isolation 

Forest 

Fast and scalable for 

large datasets 

Limited in detecting 

contextual anomalies 

Autoencoder Effective for high-

dimensional and complex 

data 

Threshold selection is 

difficult; long training time 

The comparison in Table 2 serves as a guide for selecting methods for 

different data types. For example: 

•    LOF is more suitable for local data sets where density differences are 

important. 

•    Autoencoder is more suitable for multidimensional sensor or financial 

data. 

•    Isolation Forest is more suitable for large data streams. 

 
Figure 9. Visual comparison of outlier detection methods 
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This figure 9 illustrates the conceptual behavior of three different outlier 

detection methods on a synthetic (artificially generated) two-dimensional 

datase. In each panel, light gray circles represent normal observations, while red 

triangles represent observations identified as outliers by the algorithms. The 

visuals clearly demonstrate how the methods define the concept of outliers in 

different ways. 

(a) Local outlier factor (LOF): The LOF method labels examples found in 

low-density regions as outliers by comparing the local density of each 

observation with its neighbors. Therefore, examples located at the edges of 

clusters or in boundary regions where density decreases are shown with red 

triangles. This method performs effectively, especially on datasets where local 

density differences are important. 

(b) Isolation forest: The Isolation Forest model evaluates samples that can 

be isolated quickly as outliers by separating observations through random splits. 

The model enables global-scale outlier detection because it can easily separate 

observations in sparse regions or those far from the general distribution. In the 

figure, isolated observations in these sparse areas are indicated by red triangles.  

(c) Autoencoder (AE): The autoencoder-based model learns to reproduce 

the data and detects anomalies based on reconstruction error. Examples that 

cannot be reproduced, i.e., those that deviate significantly from the learned 

pattern, are considered outliers. In the figure, these deviations are shown as red 

triangles located in areas far from the center of the data distribution. 

 

7. CONCLUSIONS AND FUTURE DIRECTIONS 

This section summarizes the general evaluation of machine learning-based 

outlier detection methods and potential future research directions. Outlier 

detection is considered not only as a data cleaning process but also as a critical 

component in terms of model reliability, robustness, and generalizability. The 

statistical, density-based, clustering-focused, and learning-based approaches 

discussed in this study demonstrate that the concept of outliers can be 

approached from different perspectives. 

Learning-based models (particularly Autoencoder, Isolation Forest, and 

GAN derivatives) offer higher accuracy and generalization capacity compared 

to classical methods in high-dimensional, noisy, and complex datasets. 

However, the success of these methods is directly dependent on factors such as 

hyperparameter selection, threshold determination, data imbalance, and model 

interpretability. 
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Therefore, it is crucial for future studies not only to achieve high 

performance but also to be able to interpret why the model considers a 

particular observation to be an outlier. 

In recent years, explainable artificial intelligence (XAI), self-supervised 

learning, and contrastive learning approaches have been increasingly used in 

outlier detection. These approaches enable the model to learn anomalies from 

its own internal representations by reducing the need for labels. Furthermore, 

hybrid models (e.g., Autoencoder + Isolation Forest or DBSCAN + VAE 

combinations) offer more balanced solutions by combining statistical robustness 

with deep representations. 

In the future, the integration of outlier detection algorithms into real-time 

systems, edge devices, and energy-efficient architectures will come to the fore. 

There is a growing need for low-latency and explainable outlier detection 

algorithms, particularly in IoT, biomedical sensor networks, production lines, 

and autonomous systems. However, ethical, security, and data privacy 

dimensions are also expected to shape new research topics. 

In conclusion, outlier analysis has become not only a subfield of data science 

but also a fundamental research area that determines the reliability, ethical 

responsibility, and robustness of artificial intelligence systems. Therefore, 

future studies are expected to develop an interdisciplinary perspective that 

addresses both algorithmic efficiency and explainability. 
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Chapter 7 
 

WebAssembly:  

An Indispensable Component of the Modern Web 
 

Fikri AĞGÜN1 

Raif SİME2 

 

ABSTRACT 

This section examines WebAssembly (Wasm) as a high-performance and 

portable execution environment operating both within web browsers and outside of 

them. The study begins by providing a historical background through previous 

initiatives such as asm.js and Native Client, followed by an explanation of the 

motivations behind the emergence of WebAssembly and the W3C standardization 

process. The binary format of WebAssembly, stack-based virtual machine model, 

linear memory structure, concepts of modules and instances, and import-export 

based interaction with JavaScript are analyzed. 

Discussions include compilation chains and practical use cases through 

ecosystems such as C/C++ (Emscripten), Rust (wasm-bindgen, wasm-pack), 

AssemblyScript, TinyGo, and Blazor WebAssembly; the performance gains offered 

by WebAssembly compared to JavaScript, particularly how these gains manifest in 

CPU-intensive applications are evaluated with supportive literature. In the security 

section, the sandbox execution model, memory and type safety, controlled access to 

system resources via WASI, as well as recent research on side-channel and 

speculative execution attacks are summarized. The non-browser usage of WASI-

based server and edge scenarios, blockchain and smart contracts, embedded/IoT 

applications, and the migration of legacy desktop software to the web are also 

discussed. 

The conclusion emphasizes that WebAssembly, as the fourth fundamental web 

component completing the HTML/CSS/JavaScript triad, strengthens the vision of a 

"portable execution layer" in both academic research and industrial projects; future 

research and development trends are discussed regarding topics such as 

performance, security, ecosystem maturity, and component models. 

Keywords: WebAssembly, Wasm, High-Performance web, WASI, Portable 

execution environment  
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1. INTRODUCTION 

Web technologies have evolved over their approximately thirty-year history 

from simple static HTML pages to a wide range of complex single-page 

applications (SPAs), cloud-based gaming, and enterprise business intelligence 

platforms. During this process, JavaScript has achieved a unique position as the 

only built-in programming language running in browsers; its interpreted nature, 

dynamic typing, and rich ecosystem have transformed the web into an 

"application platform." However, it has also been observed that this flexibility 

of JavaScript can be limiting in terms of performance and predictability, 

particularly in scenarios that require high computational power (Wikipedia, 

2017). In areas such as 3D game engines, CAD and CAM applications, 

scientific simulations, image processing, cryptography, and machine learning, 

developers have had to resort to various indirect methods for porting code 

written in C/C++, Rust, or other system languages to the browser for years. 

Initiatives like asm.js and Google Native Client (NaCl/PNaCl) have 

demonstrated that the web can execute code more quickly; however, they have 

not provided a universally accepted, standardized, and portable solution across 

all browsers (Haas et al., 2017). WebAssembly (Wasm) is a secure, portable, 

and low-level binary code format derived from these requirements, along with a 

virtual machine model for executing it. In 2019, it was elevated to the level of a 

core specification (Recommendation) by the W3C and declared the "fourth 

language" of the web, following HTML, CSS, and JavaScript. 

The primary goal of WebAssembly is to enable high-performance 

applications both on the web and in non-web environments while 

simultaneously ensuring security, portability, and language independence. 

WebAssembly code:  

• Can be compiled from a variety of languages, including C, C++, Rust, 

Go, C#, AssemblyScript, and TinyGo, 

• Can run in browsers, on the server side, in cloud edge platforms, and on 

embedded devices, 

• Is executed within a secure sandbox, with type safety ensured and 

memory accesses controlled. 

When comparing WASM-based web applications to traditional JavaScript 

applications, it is evident that performance limitations exist when using current 

JavaScript, particularly in cases where these limitations are significantly 

pronounced. Due to its bytecode compilation, WebAssembly can achieve nearly 

native speeds compared to JavaScript. Furthermore, WebAssembly is an 

advantageous technology for executing computation-intensive algorithms with 

small to medium-sized data volumes. 
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WebAssembly (WASM)-based technology presents itself as a more effective 

solution in terms of speed and performance compared to classical methods. The 

advantages of this technology have been corroborated by numerous studies and 

documented evidence in the literature. 

In their study, which aims to demonstrate how Wasm can provide native 

performance for web-based AR/VR applications and address the critical 

challenges faced by existing technologies such as WebXR, the authors conclude 

that the potential of porting to Wasm can enhance the performance of web-

based AR/VR applications, bringing them closer to the performance of native 

applications (Khomtchouk, 2021).  

In their study discussing the potential of WebAssembly as an application 

virtual machine for embedded systems, the authors highlight its strong isolation 

features and software portability. Considering its growing ecosystem and 

adoption beyond web browsers, they emphasize the significance of 

WebAssembly in scalable and secure IoT deployments  (Wallentowitz et al., 

2022).  

In their study addressing the performance limitations of web applications in 

graphics-intensive areas such as video games, simulations, and image 

processing, the authors emphasize WebAssembly's integration with various 

programming languages, including C/C++, C#, and Rust. They showcase its 

cross-platform capabilities and efficient memory management, noting that it 

provides significant performance improvements and possesses the potential to 

revolutionize web application development. (Tufegdžić et al., 2024). 

In the following sections, the design principles, architecture, toolchain, 

security model, performance characteristics, in-browser and out-of-browser 

usage scenarios, practical application examples, and current research findings 

related to WebAssembly will be addressed. Additionally, code snippets and 

compilation processes will also be discussed through the ecosystems of Rust, 

C/C++, and C# (Blazor). 

 

2. HISTORICAL BACKGROUND AND DEVELOPMENT 

PROCESS 

 

2.1. The Experience of asm.js and Native Client 

Although JavaScript engines have experienced significant performance leaps 

over the years through techniques such as JIT compilation, hidden classes, and 

inline caching, the dynamic nature of the language has made it challenging to 

efficiently translate to CPU instructions. (Haas et al., 2017). 
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The asm.js approach is a subset of JavaScript with significantly restricted 

types and control structures. C/C++ compilers target this subset to enable JIT to 

perform more predictable optimizations. However, the final output is still text-

based JavaScript, which results in large code sizes and extended parsing times. 

As an approach for executing native code within the browser, Google's 

Native Client aimed to run sandboxed machine code through a Chrome-specific 

architecture. While Portable Native Client (PNaCl) enhanced portability, it 

failed to become a standard and was not adopted by other browsers. 

These initiatives demonstrated that near-native speeds are achievable on the 

web; however, the need for a standard, browser-independent, and portable 

bytecode became apparent. WebAssembly has emerged as a technology that 

directly addresses this need. 

 

2.2. The Emergence of WebAssembly 

Starting in 2015, researchers from Mozilla, Google, Microsoft, and Apple 

formed a joint working group to shape the design of WebAssembly. The first 

Minimum Viable Product (MVP) was showcased in browser prototypes in 

2017; the same year, the paper titled "Bringing the Web up to Speed with 

WebAssembly" published at the PLDI conference outlined the fundamental 

principles of the design. The core specification progressed through stages, 

becoming a W3C Working Draft in 2018, a Candidate Recommendation in 

2019, and reaching Recommendation status on December 5, 2019. Currently, in 

addition to the WebAssembly Core Specification 1.0, work continues on the 2.0 

draft and the 3.0 version, with surrounding specifications like the JavaScript 

API, WebAssembly System Interface (WASI), and the component model also 

maturing. (Webassembly, 2025). 

 

3. DESIGN GOALS AND PRINCIPLES 

The design of WebAssembly is based on several key principles: 

1. Efficient Execution:  

The compactness of the binary format facilitates quick downloading and 

parsing, and allows the compiled code to run at near-native speeds on hardware 

through JIT or AOT compilation, thereby contributing to the principle of 

efficient execution. 

2. Portability: 

The use of a architecture-independent virtual machine model (stack-based 

VM) and the fact that the bytecode has the same meaning across all modern 

CPU architectures enhance the portability of this technology. 
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3. Safety and Security: 

Providing memory safety, type safety, and control flow safety, along with 

executing code within a sandbox with limited APIs defined by the host 

environment, ensures a higher level of security for this technology. (Perrone & 

Romano, 2024). 

4. Compatibility and Interoperability: 

WebAssembly technology can integrate with existing web platforms, 

collaborating with JavaScript APIs, the DOM, and other Web APIs to function 

together effectively. 

5. Language Independence: 

By operating independently of programming languages, WebAssembly 

serves as a common compilation target for many languages, including C/C++, 

Rust, Go, C#, AssemblyScript, and TinyGo, highlighting its versatility. 

These principles establish WebAssembly not only as an execution platform 

used in browsers but also as a general-purpose portable execution platform, 

providing a platform-independent development environment for those working 

in this field. 

 

4. ARCHITECTURE AND OPERATION MODEL 

 

4.1. Binary and Text Formats 

WebAssembly programs are distributed in a binary format with the ".wasm" 

extension. The compact nature of this format reduces both network transfer time 

and parsing time in the browser, enabling faster access and execution. The 

human-readable version of the same code is available in the text format with the 

".wat" or ".wast" extensions. This format possesses an S-expression-like syntax. 

 

 
Figure 1. Syntax example 

 

When this code is compiled and converted to binary format, it can be 

executed by a browser or another WASM runtime. The text format is primarily 

used for debugging, education, and examining compiler outputs. 
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4.2. Stack-Based Virtual Machine 

WebAssembly has a virtual machine model that reads operands and 

intermediate results from a stack and writes them back to the stack. It performs 

these operations in the following sequence (instructions): 

• Retrieves a value from the stack (e.g., local.get, i32.const). 

• Performs the operation (e.g., i32.add, f64.mul). 

• Writes the result back to the stack. 

This model provides an abstract machine definition that simplifies the task 

for compilers to generate code for different CPU architectures.  

 

4.3. Linear Memory 

In WebAssembly, memory is organized as a one-dimensional address space 

known as "linear memory". Each memory consists of 64 KB pages, and 

modules can increase the size of the memory at runtime as long as resources 

permit. Applications access memory using load/store instructions. 

 

 
Figure 2. Memory access of application 

 

This linear model facilitates portability across different architectures, allows 

for memory boundaries to be monitored, and thus serves as an important 

foundation for sandboxing. 

 

4.4. Module and Instance 

A .wasm file is a module. The module consists of type definitions, functions, 

global variables, tables, and optionally, a start function. At runtime, this module 

is instantiated by the host environment. 

Modules can import functions and resources from the host and can export 

functions, memory, or tables to the outside. For example, the relationship 

between a JavaScript application and a WebAssembly module can be 

established as follows: 
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Figure 3. Relationship established between JavaScript and 

WebAssembly module 

 

5. INTEGRATION WITH THE WEB PLATFORM 

5.1. Browser Support 

All modern browsers, including Chrome, Firefox, Safari, and Edge, support 

the core features of WebAssembly. In most browsers, WebAssembly is 

integrated within the JavaScript engine (such as V8, SpiderMonkey, JSC, etc.) 

and shares the same JIT infrastructure. 

 

5.2. JavaScript – WebAssembly Interaction  

WebAssembly modules interact with JavaScript in the following ways: 

1. JavaScript loads the WebAssembly module (e.g., using 

WebAssembly.instantiateStreaming). 

2. The functions exported by the module are called by JavaScript. 

3. WebAssembly accesses web APIs such as DOM, network, and storage 

indirectly by calling the host functions it imports. 

This collaboration results in the following architecture in practice: 

• UI, DOM management, and events are handled on the JavaScript side.  

• CPU-intensive computations are executed on the WebAssembly side. 

This approach preserves the web ecosystem that developers have been using 

for years, while also accelerating performance-critical components. 

 

5.3. Direct Access to the DOM 

By design, WebAssembly cannot directly access the DOM or browser APIs. 

This limitation allows WebAssembly to be used not only for browsers but also 

for general-purpose platforms, maintaining security and a simple architecture by 

leaving web-specific concepts to the host environment. Therefore, to modify the 

DOM, JavaScript bridges are utilized, as illustrated in the following example. 
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Figure 4. Example of a JavaScript bridge 

 

6. LANGUAGE ECOSYSTEMS AND TOOLCHAIN 

The language ecosystems and tools used with WebAssembly can be 

categorized as follows: 

 

6.1. Emscripten and C/C++ 

Emscripten is an LLVM-based compilation toolchain used in WebAssembly 

that compiles C/C++ code into WebAssembly (and asm.js if necessary). 

For example, 

// sum.c 

int sum(int a, int b) { 

    return a + b; 

} a simple C code like the following can be compiled using command: 

emcc sum.c -O3 -s WASM=1 -s EXPORTED_FUNCTIONS="['_sum']" -o 

sum.js 

As a result of this process: 

• sum.wasm: WebAssembly module, 

• sum.js: "Glue" code that loads and executes the module, 

• Optionally, a sum.html file are produced.  

Emscripten is extensively used for porting game engines and desktop 

applications to the web, providing SDL, OpenGL to WebGL conversions, 

POSIX-like APIs, and threading support (Emscripten, 2021) . 

 

6.2. Rust ve Wasm-bindgen Rust and Wasm-bindgen 

Rust is naturally well-suited for WebAssembly due to its memory safety 

guarantees and zero-cost abstractions. 

In the Rust ecosystem: 

• Compilation can be done directly to Wasm using the wasm32-

unknown-unknown target. 

• The wasm-bindgen library automatically generates glue code while 

exporting Rust functions to JS. 

• wasm-pack simplifies integration with bundlers and automates the 

process of publishing packages to NPM. 

Here is a simple example in Rust: 
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Figure 5. Rust example 

 

This code can be compiled using the wasm-pack build command and can be 

used as a JavaScript project by being packaged as an NPM module. 

 

6.3. AssemblyScript 

AssemblyScript is a statically typed language that closely resembles 

TypeScript and is designed to be compiled directly to WebAssembly. 

• The learning curve is low for JavaScript/TypeScript developers. 

• The type system is closely aligned with WebAssembly's data types. 

• It works in conjunction with tools like Binaryen and wasm-opt to 

produce compact Wasm modules. 

AssemblyScript offers a "soft transition" to WebAssembly, particularly for 

developers coming from the JavaScript world, and there are real-world use 

cases such as accelerating hash functions in tools like Webpack. 

 

6.4. TinyGo and the Go Ecosystem 

TinyGo is an optimized alternative Go compiler for embedded systems and 

WebAssembly. It can produce significantly smaller .wasm files (e.g., a few 

hundred KB compared to the classic Go compiler). It enables the creation of 

Wasm components that operate on the server/edge side with the WASI target. 

 

6.5. .NET ve Blazor WebAssembly .NET and Blazor WebAssembly 

Microsoft's Blazor WebAssembly framework enables running .NET code 

written in C# in the browser via WebAssembly. 

• A .NET runtime and application code downloaded to the browser are 

executed in Wasm format. 

• UI components are defined using Razor/HTML, while event handling 

and business logic are implemented in C#. 

• .NET WebAssembly build tools are based on Emscripten and provide 

AOT compilation support. 

This approach facilitates the entry of not only JavaScript but also C# 

developers into the world of WebAssembly. 
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7. PERFORMANCE ANALYSIS AND COMPARISON WITH 

JAVASCRIPT 

7.1. Performance Advantages of WebAssembly 

The study by Haas and colleagues demonstrates that elements such as: 

• Compact binary format, 

• Single-pass validation, 

• Efficient JIT/AOT compilation 

can provide significant speed advantages over JavaScript, especially in 

numerically intensive (CPU-bound) tasks. (Haas et al., 2017).  

Research by Yan and colleagues examining the performance of 

WebAssembly applications reports that, across various benchmark sets, 

WebAssembly is faster than JavaScript in most scenarios. However, it also 

indicates that optimizations can sometimes lead to unexpected results. (Yan et 

al., 2021). 

The performance gains achieved through the use of WebAssembly can be 

summarized as follows: 

• In loop-based computations, large matrix operations, and cryptography, 

WebAssembly can typically provide several times the speedup. 

• Because the code size is smaller, download and load times are reduced. 

 

7.2. Strengths of JavaScript 

Despite the advantages of WebAssembly, there are still areas where 

JavaScript remains very strong. Features such as DOM manipulation, event 

handling, UI management, dynamic data structures, and reflection, as well as 

the NPM ecosystem and mature libraries, are aspects in which JavaScript can be 

considered superior. 

Therefore, many real-world applications employ a hybrid architecture that 

uses both "JS + Wasm" together. A significant portion of the logic and UI is 

handled on the JavaScript side, while core computation libraries are maintained 

on the WebAssembly side. 

 

7.3. SIMD, Multithreading, and WebAssembly 2.0 

The WebAssembly 2.0 draft and ongoing efforts aim to standardize features 

to enhance performance, including: 

• SIMD instructions, 

• Multithreading (threads) and atomic memory operations, 

• Multiple return values, 

• Reference types and GC integration (Webassembly, 2025). 
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These capabilities will make WebAssembly significantly more attractive in 

the future for fields such as image processing, machine learning, and scientific 

computing. 

 

8. SECURITY MODEL 

8.1. Sandbox Execution and Memory Safety 

WebAssembly adopts the following principles for secure execution: 

• Code runs within a sandbox and cannot directly access real operating 

system resources. 

• Memory accesses are controlled within linear memory boundaries; 

accessing an invalid address results as a "trap". 

• The type system prevents passing parameters of incorrect types to 

functions. 

These features create a natural barrier against classic buffer overflow and 

most memory corruption attacks. 

 

8.2. Speculative Execution and Side-Channel Attacks 

Speculative execution attacks, such as Spectre, affect not only JavaScript in 

the browser environment but also WebAssembly. McIlroy et al. have 

highlighted that speculative side-channel attacks should be examined from the 

perspective of programming languages, pointing out that classical abstract 

machine models do not account for these threats. They emphasize that such 

threats need to be considered during the design phase for new languages like 

WebAssembly. (Mcilroy et al., 2019). 

Narayan and others' Swivel project provides a compiler-based framework 

that hardens WebAssembly code against Spectre attacks. (Narayan et al., 2021).  

 

8.3. WebAssembly and Security in the Real World 

Musch and colleagues, in their study of the Alexa Top 1M websites, found 

that a significant portion of sites using WebAssembly engaged in malicious 

activities such as cryptocurrency mining and obfuscation (Musch, Wressnegger, 

Johns, & Rieck, 2019). The study by Hilbig and colleagues, which analyzed 

8,461 real-world WebAssembly binaries, reveals the diversity of use cases and 

indicates that a significant portion of the security vulnerabilities still stems from 

inherited C/C++ source code. (Hilbig et al., 2021).  

A comprehensive security survey from 2024 indicates that static and 

dynamic analysis tools for WebAssembly are rapidly evolving, particularly 

highlighting the increasing adoption of Wasm in smart contracts and blockchain 

environments (Perrone & Romano, 2024). 
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The 2025 study "Wemby's Web" demonstrates that data read from linear memory 

is being transferred to security-critical locations in many sites without sufficient 

validation, potentially giving rise to new attack vectors (Draissi et al., 2025). 

 

9. OUT-OF-BROWSER WEBASSEMBLY: WASI, SERVER, AND 

EDGE SCENARIOS  

9.1. WebAssembly System Interface (WASI) 

WASI is a POSIX-like system interface standard for WebAssembly. Its goal 

is to provide access to essential system services in Wasm modules, including: 

• File system, 

• Time and randomness, 

• Standard input/output, 

• Socket access 

With WASI, WebAssembly becomes a general-purpose execution 

environment outside the browser, enabling its use in server environments, edge 

platforms, and embedded systems (Perrone & Romano, 2024). 

When looking at server-side and edge platforms, services like Cloudflare 

Workers, Fastly Compute@Edge, and similar platforms utilize WebAssembly 

as a lightweight isolation layer to execute functions with millisecond-scale 

startup times. This approach offers several advantages over traditional 

containers or VMs, including: 

• Significantly faster "cold start" times 

• Lower memory footprint 

• Language independence (any language that can be compiled to Wasm) 

• Strong sandboxing  

The small code size and portability of WebAssembly have made it attractive 

for embedded systems and IoT devices as well. Compilers like TinyGo and 

recent surveys indicate that WebAssembly can be utilized as a software-based 

security layer even on hardware that does not provide memory isolation. 

(Orlando et al., 2025). 

 

10. APPLICATION AREAS 

10.1. Games and Graphics Applications 

Game engines like Unity and Unreal Engine can export games to the 

browser using a combination of WebGL and WebAssembly. Thanks to tools 

like Emscripten, the following can operate on the web with high frame rates: 

• 3D games 

• Physics simulations 

• Visual editors 
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10.2. Scientific and Numerical Computing 

WebAssembly can transform the browser into a lightweight scientific 

computing environment for CPU-intensive tasks such as large matrix 

multiplications, linear algebra, and statistical simulations. In recent years, there 

has been an increasing number of projects using the Rust+Wasm combination in 

web-based data visualization and analysis tools. 

 

10.3. Cryptography and Security Software 

Porting cryptographic libraries to WebAssembly: 

• Enhances performance, 

• Allows for the processing of sensitive data on the client side, 

• May reduce server load in some case. 

However, special precautions must be taken against speculative execution 

and side-channel attacks; research projects like Swivel(Narayan et al., 2021) 

and Wasm-Mutate(Cabrera-Arteaga et al., 2024) provide significant 

contributions in this area. 

 

10.4. Blockchain and Smart Contracts 

Many next-generation blockchain platforms prefer WebAssembly as a smart 

contract execution environment due to its language independence, formal 

semantics, and the guarantee of safe execution within a sandbox. (Perrone & 

Romano, 2024). 

 

10.5. Porting Legacy Desktop Applications to the Web 

Compiling long-standing desktop libraries and applications written in C/C++ 

to WebAssembly has led to the emergence of installation-free, platform-

independent web versions. Notable examples of this approach include Google 

Earth, various CAD/graphics applications, and retro game emulators. 

 

11. LIMITATIONS AND CHALLENGES 

11.1. Toolchain Complexity 

While tools such as Emscripten, wasm-bindgen, wasm-pack, the Blazor 

toolchain, and the AssemblyScript compiler are powerful, they can appear 

complex, especially for beginners. The installation of the toolchain (including 

LLVM, Node.js, Python, etc.) and platform-specific configurations add an 

additional burden. 

 

11.2. Debugging 
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Although source map support and browser developer tools for 

WebAssembly have improved, line-by-line tracking of optimized binary code is 

more challenging compared to JavaScript. This situation can adversely affect 

the experience of developers, particularly in complex Rust/C++ projects. 

 

11.3. Security-Related Limitations 

While the sandbox model offers security advantages, it also presents 

challenges such as: 

• The inability to make direct system calls, 

• Dependency on WASI or host functions for file system and network 

access 

which can necessitate additional architectural layers for certain types of 

applications, making installation and deployment more cumbersome. 

 

11.4. Risks in Real-World Usage 

The misuse of WebAssembly (such as cryptocurrency mining, obfuscation, 

exploit kits, etc.) and inadequate security analysis of modules create new attack 

surfaces on the browser side. Large-scale analyses have shown that a significant 

portion of sites using Wasm exhibit weak security practices. (Musch et al., 

2019). 

 

12. FUTURE PERSPECTIVE 

12.1. WebAssembly 2.0 ve 3.0 

The W3C and the WebAssembly community continue to expand the core 

specifications with versions 2.0 and 3.0. Features such as SIMD, reference 

types, tail calls, exception handling, and GC integration will enhance both 

performance and language compatibility. (Webassembly, 2025). 

 

12.2. Component Model and Modularity 

The developing Component Model aims to enable different Wasm modules 

and languages to work together in a type-safe and versionable manner. This will 

allow developers to build large systems from small, reusable Wasm components 

(Haas et al., 2017). 

 

12.3. Industry Perspective 

A 2025 industry-focused study emphasizes that WebAssembly is 

increasingly adopted, particularly in the fields of gaming, video processing, data 

analysis, and fintech. However, it also highlights the ongoing need for 
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improvements in debugging, security, and ecosystem maturity. (Ghosh et al., 

2018). 

 

13. CONCLUSION 

WebAssembly is one of the paradigm-shifting technologies in the web and 

the broader software world. By providing a low-level yet secure binary format 

and a formally defined virtual machine model, it: 

• Enables high-performance applications on the web, 

• Provides a lightweight isolation layer in server and edge environments, 

• Serves as a common target for numerous programming languages. 

Both academic research and industrial use cases demonstrate that 

WebAssembly is not merely a "browser optimization" but a concrete 

representation of the vision for a portable execution layer.
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Chapter 8 

Machine Learning Regression Models: 

Methods and Application in 

Insurance Cost Prediction 

Murat BİNİCİ1 

ABSTRACT 
Th�s chapter presents an emp�r�cal study on the use of mach�ne learn�ng–

based regress�on models to pred�ct health �nsurance costs. The analys�s draws 
on the Med�cal Cost Personal Dataset, wh�ch �ncludes demograph�c and 
behav�oral var�ables such as age, BMI, smok�ng status, number of ch�ldren, sex, 
and reg�on. After standard preprocess�ng steps—�nclud�ng encod�ng of 
categor�cal var�ables and an 80–20 tra�n–test spl�t—three regress�on models 
were �mplemented: L�near Regress�on, Random Forest Regressor, and XGBoost 
Regressor. Model performance was assessed us�ng f�ve evaluat�on metr�cs (R², 
MAE, MSE, RMSE, and MAPE). The f�nd�ngs show that ensemble methods 
outperform the l�near model, w�th the Random Forest Regressor ach�ev�ng the 
h�ghest pred�ct�ve accuracy and the lowest error measures. XGBoost also 
demonstrated strong performance, espec�ally for observat�ons w�th h�gher cost 
values, wh�le L�near Regress�on struggled to capture nonl�near patterns �nherent 
�n the dataset. Feature �mportance analyses conf�rmed that smok�ng status �s the 
dom�nant pred�ctor across all models, followed by BMI and age. Overall, the 
results h�ghl�ght the effect�veness of ensemble-based mach�ne learn�ng 
approaches �n model�ng complex and nonl�near relat�onsh�ps �n �nsurance cost 
pred�ct�on, wh�le also recogn�z�ng the cont�nued value of L�near Regress�on �n 
contexts where �nterpretab�l�ty rema�ns essent�al. 
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1. INTRODUCTION 

In recent years, Machine Learning (ML) and Artificial Intelligence (AI) 

techniques have played a growing role in data analytics and decision-support 

systems, and their influence continues to grow. In today’s data-driven world, 

organizations increasingly rely on AI-driven approaches to extract valuable 

information from complex and high-dimensional datasets, going beyond the 

capabilities of traditional statistical methods. These techniques not only learn 

from historical information but also help anticipate future trends, offering 

institutions a strategic advantage in their decision-making processes. 

Within the broader field of data analytics, regression models serve as one of 

the key components of predictive analytics. Regression analysis aims to 

mathematically describe the relationship between independent variables and a 

dependent variable. By doing so, it becomes possible to estimate the future 

value of an outcome based on past observations. In domains such as healthcare, 

finance, and insurance, regression-based cost, risk, or demand forecasting can 

significantly enhance the effectiveness of AI-supported decision-making 

systems. 

The insurance industry is one of the fields in which predictive modeling is 

used most extensively, largely due to its strong emphasis on risk assessment and 

cost estimation. Setting insurance premiums accurately forms the basis of a fair, 

sustainable, and profitable insurance system for both individuals and institutions 

(Ivanovna et al., 2018). For this reason, it is essential to model the influence of 

factors such as age, gender, body mass index (BMI), smoking habits, and family 

structure on premium levels in a reliable way. Although traditional linear 

regression models have shown some success in explaining these relationships, 

AI-driven algorithms such as Random Forest and XGBoost have gained 

prominence in recent years for their ability to capture nonlinear patterns and 

deliver higher predictive accuracy (Kapse et al., 2025; Mishra et al., 2024). 

Previous research has extensively explored the prediction of health insurance 

costs. While some of these studies rely on classical linear regression models, the 

growing volume of data and increasing computational power in recent years 

have encouraged the use of more advanced machine learning techniques. For 

instance, Panda et al. (2022) compared Lasso, Ridge, Simple Linear, 

Polynomial Regression and Multiple Linear models in estimating health 

insurance premiums, reporting that the polynomial regression model achieved 

both the lowest error rate (RMSE = 5100.53) and the highest explanatory power 

(R² = 0.80).                                                        

Similarly, Kaushik et al. (2022) proposed a comprehensive framework for 

the prediction of health insurance premiums employing a ML-based regression 
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approach. Their framework incorporates not only model performance, but also 

data preprocessing, hyperparameter tuning and feature selection. The study 

demonstrates that the accuracy of regression models largely rely on the quality 

of data cleaning, the relevance of selected variables, and the choice of an 

appropriate combination of models. 

Bhardwaj and Anand (2020) compared Multiple Linear Regression, Gradient 

Boosting and Decision Tree algorithms using individual health data, reporting 

that the Gradient Boosting model succeeded the highest accuracy, with a rate of 

99.5%. In a more recent study, Bader and Maalouf (2024) analyzed the 

determinants of health insurance premiums by applying Multiple Linear 

Regression, Lasso, Ridge and Support Vector Regression (SVR) models, and 

found that the SVR approach produced the lowest error level (RMSE = 0.84). 

As these studies demonstrate, both linear and nonlinear approaches offer 

strong predictive capability in estimating health insurance costs. In addition, the 

framework and hybrid models developed in recent years have been used 

effectively not only for calculating individual premium levels, but also for 

examining regional variations, identifying risk groups, and optimizing policy 

pricing strategies. Consequently, AI- and machine-learning-based regression 

approaches enhance the accuracy of financial forecasting in the health insurance 

sector while also providing a data-driven perspective for policy development. 

The purpose of this work is to determine the factors that affect insurance 

premiums and to collate the predictive performance of several ML-based 

regression models. In this context, Linear Regression, XGBoost Regressor and 

Random Forest Regressor models are implemented, and their outputs are 

evaluated. This approach allows for a clearer assessment of how effectively 

different machine learning techniques can model and forecast health insurance 

costs. 

 

2. FOUNDATIONS OF REGRESSION AND MACHINE 

LEARNING 

2.1. The Concept of Regression Analysis 

Regression analysis is a fundamental method used in machine learning and 

statistical modeling to mathematically describe the relation between 

independent variables and a dependent variable. In its broadest sense, regression 

examines how a given variable (typically denoted as Y) is influenced by other 

variables (X₁, X₂, …, Xₙ) and models this relationship quantitatively to enable 

prediction. The main objective of regression is to identify the structural 

relationship among variables and to determine the function that best explains 

this association (Montgomery et al., 2021). 
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Regression models can take various forms relying on the structure of the 

dataset and the nature of the relationships among variables. Simple linear 

regression analyzes the impact of a single independent variable on a dependent 

variable. For example, attempting to explain insurance premiums solely through 

an individual’s age would fall under this type of model. The general form of the 

model can be expressed as in Eq. 1. 

 

𝑌 =  𝛽0  +  𝛽1𝑋 +  𝜀      (1) 

 

In equation (1), 𝑌 represents the dependent variable, 𝑋 denotes the 

independent variable, 𝛽₀ is the intercept term, and 𝛽₁ refers to the regression 

coefficient. The term 𝜀 captures the random error component that the model is 

unable to explain. 

In a multiple linear regression model, the effects of independent variables on 

a dependent variable are examined simultaneously. Such models are widely 

utilized in areas like the social sciences, engineering, economics, and health 

insurance analysis. For instance, multiple linear regression is applied to 

understand how age, smoking status, body mass index (BMI) and regional 

factors collectively influence insurance premiums. The model is typically 

expressed using Eq. 2. 

 

𝑌 =  𝛽0  +  𝛽1𝑋1  +  𝛽2𝑋2 + . . + 𝛽𝑛𝑋𝑛  +  𝜀    (2) 

 

Eq. 2 assumes a linear relationship among the variables, meaning that the 

effects of the independent variables are additive and constant. However, many 

relationships observed in real-world data are not linear. In such cases, nonlinear 

regression models become more appropriate. 

Nonlinear regression models are utilized when the relations between 

variables takes a complex, curved, or exponential form. For example, the rapid 

increase in healthcare expenditures after a certain age threshold or the nonlinear 

impact of smoking on insurance premiums are situations in which such models 

are appropriate. In these cases, the model can be expressed as in Eq. 3. 

 

𝑌 =  𝑓(𝑋1, 𝑋2 … , 𝑋𝑛;  𝛽1, 𝛽2, … , 𝛽𝑛)  +  𝜀    (3) 

 

In Eq. 3, 𝑓 denotes a nonlinear function, which may take forms such as 

logarithmic, exponential, or polynomial. Although nonlinear models often 

provide a better fit to the data, they tend to be more complex in terms of 

interpretability (Kutner et al., 2005). 
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In sum, regression analysis not only quantifies the relationships among 

variables but also serves as a powerful tool in predictive analytics and decision-

support systems. With advances in machine learning and artificial intelligence, 

the notion of regression has moved beyond traditional statistical approaches and 

has become a central component of data-driven modeling. 

Machine learning (ML) methods are generally grouped into two main areas: 

unsupervised learning and supervised. Supervised learning refers to an approach 

in which the model learns from previously labeled data and uses this knowledge 

to make predictions for new observations. In such models, the system identifies 

patterns between the inputs and output, enabling it to generate forecasts for 

similar data in the future (James et al., 2021). 

Regression analysis is one of the most fundamental forms of supervised 

learning, as regression models enable the prediction of a continuous (numerical) 

outcome based on historical data. The supervised learning process typically 

consists of three main stages: 

a. Training the model: The model is taught the relationship among the 

variables using labeled data. 

b. Validating the model: The model’s capability to generalize is assessed, 

and the risk of overfitting is evaluated. 

c. Making predictions: The model’s predictive capability is tested on 

new or previously unseen data. 

Regression models, which lie at the core of this process, are among the most 

suitable approaches when the outcome of interest is continuous—such as price, 

cost, income, temperature, or production rate. In contexts like the insurance 

industry, where problems such as premium estimation or cost analysis involve a 

continuous dependent variable, regression techniques can be applied directly 

and effectively. 

Within the supervised learning framework, regression models represent a 

key area in which methods that originated in traditional statistics have evolved 

into AI-driven approaches. While classical linear regression explains the 

relationship among variables under a set of assumptions, modern machine 

learning regression algorithms learn these relationships from the data without 

depending on such assumptions. This capability is particularly advantageous for 

nonlinear or high-dimensional datasets, where it often leads to substantially 

higher predictive accuracy (Hastie et al., 2017). 

For example, algorithms such as XGBoost and Random Forest Regressors 

preserve the statistical foundation of classical regression while adding the 

flexibility of artificial intelligence to the learning process. These models 

perform strongly in identifying complex patterns and capturing interactions 
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among variables, particularly in large datasets. In this sense, regression analysis 

can be viewed not only as a statistical prediction tool but also as an AI-driven 

predictive core within supervised learning. 

At the core of regression analysis lies the mathematical modeling of the 

relations between independent variables and a dependent variable. The 

dependent variable represents the outcome of interest or the value to be 

predicted, whereas the independent variables capture the factors that influence 

or help explain that outcome (Gujarati and Porter, 2009). Accordingly, the 

purpose of regression is to determine as accurately as possible how variations in 

the independent variables are effective on the dependent variable. 

This relationship is typically expressed in a functional form as in Eq. 4. 

 

𝑌 =  𝑓(𝑋1, 𝑋2, . . . , 𝑋𝑛)  +  𝜀      (4) 

 

In Eq. 4, 𝑌 denotes the dependent variable, while  𝑋1, 𝑋2, ..., 𝑋𝑛 represent 

the independent variables. The function 𝑓(⋅) captures the systematic 

relationship among these variables, and 𝜀 stands for the random error term that 

the model cannot explain. The form of this function varies relying on the type of 

regression method being employed. For instance, linear regression assumes a 

linear relationship, whereas nonlinear or AI-based models allow this 

relationship to take more complex, curved, or interaction-driven forms. 

Selecting and modeling independent variables appropriately is crucial for the 

reliability of regression analysis. Variable selection directly affects both the 

explanatory power of the method (R²) and its capability to generalize (Guyon 

and Elisseeff, 2003). Including unnecessary or highly correlated variables may 

lead to multicollinearity, which can undermine the significance of coefficients. 

For this reason, relationships among variables must be examined carefully, 

particularly in multiple regression settings. 

AI-based regression models offer a significant advantage at this point. 

Models such as XGBoost and Random Forest can automatically identify which 

independent variables contribute most to explaining the dependent variable. 

Through feature-importance calculations, these models quantify the relative 

influence of each predictor (Lundberg and Lee, 2017). This capability makes it 

easier to understand complex interactions that are often difficult to interpret in 

classical regression analysis. 

For instance, in a model designed to predict insurance premiums, the 

dependent variable may be charges, while the independent variables could 

include factors such as age, bmi, children, smoker, and region. In such a case, 

an AI-based model can automatically identify smoker as the most influential 
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factor in predicting insurance costs. This not only enhances predictive accuracy 

but also improves the interpretability of variable effects. 

In conclusion, accurately modeling the relationship between independent 

variables and dependent is a critical determinant of the effectiveness of AI-

based regression approaches. Models that capture this relationship appropriately 

not only give highly correct predictions but also provide meaningful 

information for decision-support systems. 

 

2.2. Linear Regression 

Linear regression is a fundamental approach that models the expected value 

of a dependent variable as a linear combination of explanatory variables and 

their associated parameters. Its general form can be expressed by using Eq. 5. 

 

𝑌 =  𝛽0  +  𝛽1𝑋1  +  𝛽2𝑋2  +  ⋯ +  𝛽𝑛𝑋𝑛  +  𝜀   (5) 

 

Here, 𝑌 denotes the dependent variable, 𝑋𝑛 represents the explanatory 

variables, 𝛽𝑛 refers to the coefficients, and 𝜀 stands for the error term. The 

parameters are calculated utilizing Ordinary Least Squares (OLS), which 

minimizes the sum of squared distictions between the predicted and actual 

values (Eq. 6). 

 

𝑚𝑖𝑛 ∑ (𝑦𝑖 − 𝑌𝑖)2𝑛
𝑖=1        (6) 

 

The reliability of the model depends on the reasonable fulfillment of several 

standard assumptions: (i) Linearity, meaning the expected value of the 

dependent variable is a linear combination of the predictors; (ii) 

Homoscedasticity, which requires the error variance to remain constant; and 

(iii) Absence of multicollinearity, indicating that the explanatory variables are 

not perfectly or strongly linearly related. 

In practice, these assumptions are examined using simple diagnostic tools 

such as residual plots, Breusch–Pagan or White tests, and the Variance Inflation 

Factor (VIF). When necessary, variable transformations, weighted least squares, 

or regularization techniques (such as Ridge or Lasso) may be applied (James et 

al., 2021). 

The interpretation of the coefficients is simple: 𝛽𝑛 demonstrates the marginal 

impact of a one-unit increase in 𝑋𝑛 on 𝑌, holding all other variables constant. In 

log-transformed models, this effect is often interpreted as an approximate 

percentage change. 
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Linear regression is strong in terms of interpretability, computational 

efficiency, and its role as a fundamental baseline model. However, its 

performance may weaken in the presence of nonlinear patterns, 

heteroskedasticity, outliers, or substantial multicollinearity. In such situations, 

transformations, regularization methods, or more flexible ones such as tree-

based and boosting models are recommended as complementary analyses 

(Hastie et al., 2017). 

 

2.3.  Decision Trees and Ensemble Regression Methods 

A Decision Tree Regressor models the data by repeatedly splitting it into 

two groups, choosing feature–threshold combinations that reduce prediction 

error (often measured by MSE). Each leaf of the tree returns a simple estimate, 

such as the mean value of the target variable. Overfitting is controlled by 

limiting the depth of the tree, requiring a minimum number of samples per leaf, 

or using pruning. Decision trees do not require feature scaling and are relatively 

easy to interpret thanks to their rule-based structure. However, a single tree can 

be highly variable, which is why ensemble approaches, such as random forests 

or boosting, are often preferred in practice (Blockeel, 2023). 

Random Forest Regressor is a bagging model that trains many decision trees 

on bootstrap samples. It uses a randomly selected subset of features at each 

split. The predictions from all trees are then averaged. These sources of 

randomness reduce the correlation between trees, which in turn lowers the high 

variance typically seen in a single decision tree. Random forests can capture 

nonlinear relationships and interactions effectively, and they are generally 

robust to scaling issues and outliers. They also offer practical advantages such 

as the out-of-bag (OOB) error, which provides an internal estimate of 

generalization performance, and measures of variable importance based on 

impurity reduction or permutation. The overall performance largely depends on 

tuning hyperparameters such as the the number of features considered at each 

split (max_features), number of trees (n_estimators), minimum samples per leaf 

and tree depth. These choices help balance bias and variance depending on the 

data size and noise level (Probst et al., 2019). 

XGBoost, or more generally the Gradient Boosting Regressor, builds a 

strong predictive model by adding weak learners sequentially and additively, 

each focused on reducing the residual errors of the previous steps. At every 

iteration, a shallow decision tree is trained to explain the remaining residuals. 

Techniques such as learning rate (shrinkage) and subsampling of rows and 

features help prevent overfitting, while early stopping is often used to track 

generalization performance (Chen and Guestrin, 2016). 
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XGBoost includes several engineering improvements, such as L1/L2 

regularization, limits on tree depth and number of leaves, split criteria optimized 

for sparse data, automatic handling of missing values, and scalable memory-

access patterns for large datasets. In practice, performance is driven by the joint 

tuning of number of trees, learning rate, maximum depth and subsampling ratios 

(Chen and Guestrin, 2016). 

Feature importance shows which input variables matter most in a model. 

Tree-based models usually measure this by how much each split reduces error, 

while model-agnostic methods such as permutation importance or SHAP values 

offer alternative ways to check variable effects. However, highly correlated 

features may appear more important than they are. Using several importance 

measures together generally gives a more reliable understanding (Fisher et al., 

2019). 

 

2.4.  Regression in the Context of Artificial Intelligence 

In the AI context, regression goes beyond classical statistics by using 

algorithms that can learn nonlinear patterns and interactions in the data. Models 

like tree ensembles, gradient boosting, and regularized linear models often 

provide higher accuracy and better scalability. However, stronger models can be 

harder to interpret, so tools such as SHAP values, permutation importance, and 

solid validation methods are needed. In practice, AI-based regression is widely 

used from predicting health insurance premiums to estimating energy demand. 

It can produce useful insights when supported by good preprocessing, proper 

model choice, and reliable evaluation metrics (James et al., 2021). 

 

3. MATERIALS AND METHODS 

This section describes the dataset employed in the work, the variables it 

contains, and the preprocessing steps applied before model development. The 

analysis is based on the Medical Cost Personal Dataset obtained from Kaggle, 

which includes 1,338 observations and seven variables related to individual 

demographic and lifestyle characteristics. The section introduces the structure of 

the data, summarizes key attributes of numerical and categorical variables, and 

outlines the steps taken to prepare the dataset for modeling, including 

descriptive analysis and checks for missing values. These elements provide the 

foundation for building and comparing the regression models used in the study. 

 

3.1.  Dataset Overview  

The dataset utilized in this study is the insurance.csv file obtained from the 

“Medical Cost Personal Datasets” resource on Kaggle (Abdelghany, 2025). 
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3.1.1. Variables 

The dataset consists of 1,338 observations and includes seven variables: 

charges (target), age, sex, bmi, children, smoker, and region. The dataset is 

complete with no missing observations. Information about the variables is 

presented in Table 1. 

The variable charges, which represents the insurance premium, is the target 

(dependent) variable and is continuous. The aim is to predict an individual’s 

health insurance premium using the remaining six independent variables. The 

variable bmi indicates body mass index and is also continuous. The integer 

variables in the dataset are age and children. The age variable represents the 

individual’s age, while children denotes the number of children they have. The 

sex variable identifies the individual’s gender and is categorical. Two additional 

categorical variables are smoker and region. The first indicates whether the 

person is a smoker, and the second specifies the geographical region in which 

they live (northeast, northwest, southeast, southwest). 

 

Table 1. Information about the variables 

Variables Definition Type Obs. 

charges 

(target) 
Health insurance premium (USD) Continious 1338 

age Participant's age Integer 1338 

bmi Body mass index (kg/m²) Continious 1338 

children Number of dependent children Integer 1338 

sex Participant's gender (female/male) Categorical 1338 

smoker Smoking (yes/no) Categorical 1338 

region 
Region of residence 

(northeast/northwest/southeast/southwest) 
Categorical 1338 

 

3.1.2. Descriptive statistics 

The descriptive statistics for the numerical variables are given in Table 2, 

reporting the standard deviation, mean, maximum and minimum values for each 

variable. 

 

Table 2. Descriptive statistics for the numeric variables 

Variables min max mean Std. 

charges 

(target) 
1121.87 63770.43 13270.42 12110.01 

age 18 64 39.21 14.05 

bmi 15.96 53.13 30.66 6.10 

children 0 5 1.09 1.21 
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The distribution of the categorical variable sex in the insurance dataset is 

presented in Table 3. Approximately half of the participants are male and the 

other half are female, indicating a well-balanced gender distribution. This 

balance reduces the risk of bias related to class imbalance when the gender 

variable is included in the modeling process. 

 

 

Table 3. Statistics for the sex variable 

Category Observations Percentage (%) 

female 662 49.5 % 

male 676 50.5 % 

Total 1338 100 % 

 

The statistics for smoker, another categorical variable, are presented in Table 

4. Approximately 20.5% of the individuals in the dataset are smokers, while 

79.5% are non-smokers. This distribution gives the smoker variable 

considerable discriminative power during modeling, as the average insurance 

cost for smokers is roughly 3.8 times higher than that of non-smokers. 

 

Table 4. Statistics for the smoker variable 

Category Observations Percentage (%) 

no 1064 79.5 % 

yes 274 20.5 % 

Total 1338 100 % 

 

Finally, the statistics for the categorical variable region are provided in Table 

5. As shown, the dataset is regionally well balanced, with each of the four 

regions represented by a similar number of observations. This balance reduces 

the likelihood of regional bias during modeling and allows the effect of the 

region variable to be examined more reliably. 

 

Table 5. Statistics for the region variable 

Category Observations Percentage (%) 

southeast 364 27.2 % 

southwest 325 24.3 % 

northwest 325 24.3 % 

northeast 324 24.2 % 

Total 1338 100 % 
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3.2. Data Preprocessing 

Data preprocessing refers to the set of systematic transformation, cleaning, 

and standardization steps applied to raw data to prepare it for analysis and 

modeling. In other words, it aims to make sure that the input data employed by 

the model is correct, consistent, complete, and statistically meaningful 

(Kotsiantis et al., 2006). 

 

3.2.1. Missing value analysis 

Checking for missing values is a crucial step in data preprocessing, as it 

helps preserve data integrity and the predictive power of the method. In this 

stage, missing observations are systematically identified, their proportions are 

calculated, and the nature of the missingness is evaluated. Simple statistical 

functions such as isnull() or isna() support this analysis. When the amount of 

missing data is low, basic imputation methods such as replacing values with the 

mode, median, or mean may be sufficient. For higher levels of missingness, 

regression-based approaches, KNN imputation, or multiple imputation (MICE) 

techniques are recommended. Importantly, imputation must be performed only 

on the training data, with the same transformation applied to the test data, to 

avoid data leakage. The goal of this process is to prevent missingness from 

introducing bias into the model, reduce information loss, and improve 

predictive performance (Little & Rubin, 2019; Jadhav et al., 2019). 

In the insurance dataset used in this study, there are no missing observations. 

The checks conducted on the dataset show that all seven variables are fully 

populated for all 1,338 records, with no NaN or empty values. This simplifies 

the preprocessing stage considerably and allows the analysis to move directly to 

model development.  

 

3.2.2. Encoding of categorical variables 

Transforming (encoding) categorical variables is an essential step in machine 

learning and regression analysis, as most models operate only on numerical 

inputs. This process converts text-based categories into statistically meaningful 

numerical representations. The three most common methods are Dummy 

Encoding, One-Hot Encoding and Label Encoding, each suited to different 

model types and data structures (Kuhn and Johnson, 2019; Potdar et al., 2017). 

In Dummy Encoding, only K−1 columns are created from K categories. One 

category is left out as the reference (baseline). This prevents linear dependence 

among variables and helps avoid multicollinearity. 

In One-Hot Encoding, a separate binary (0/1) column is created for each 

category. This removes any ordinal relationship among the classes and allows 
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the model to treat each category as an independent indicator variable. However, 

when a variable has many categories, the number of columns can increase 

rapidly, leading to a high-dimensional feature space. For this reason, one-hot 

encoding is commonly used with methods such as linear regression, SVM, and 

neural networks. 

In Label Encoding, a unique integer value is assigned to every category 

(such as female = 0, male = 1). Although this method is simple and efficient, it 

introduces an artificial ordinal relationship among categories. Therefore, it is 

more appropriate for models that are insensitive to ordering such as tree-based 

algorithms like XGBoost, Random Forest, or Decision Tree. 

For example, suppose the region variable contains four categories (northeast, 

northwest, southeast, southwest). In that case, the encodings would be as 

follows: 

 

Table 6. Examples of categorical variable coding 

Observations Region 
Dummy Encoding     

(Ref: northeast) 

One-Hot  

Encoding 

Label 

Encoding 

1 southwest (0, 0, 1) (0, 0, 0, 1) 0 

2 southeast (0, 1, 0) (0, 0, 1, 0) 1 

3 northwest (1, 0, 0) (0, 1, 0, 0) 2 

4 northeast (0, 0, 0) (1, 0, 0, 0) 3 

 

In this example, Label Encoding introduces an artificial ordering among the 

categories, while One-Hot Encoding represents all classes. Dummy Encoding, 

on the other hand, includes all categories except the reference category 

(northeast). 

In the insurance dataset used in this study: 

• Since the variables sex and smoker are binary, they were encoded using 

Label Encoding (0–1), 

• Since the region variable contains four categories, Dummy Encoding 

was applied, with northeast selected as the reference category. 

This approach may help avoid linear dependence in linear regression models 

while also providing an effective representation of categorical information for 

tree-based algorithms. 

 

3.2.3. Scaling numerical variables 

Feature scaling is a preprocessing technique used to eliminate imbalances 

arising from differences in magnitude or measurement units among numerical 

variables. It ensures that the model’s learning process proceeds properly, 

especially when variables span different value ranges. Scaling helps stabilize 
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parameter estimation, improves the convergence speed of gradient-based 

algorithms, and enhances overall generalization performance (Han et al., 2012; 

Kuhn and Johnson, 2019). 

Some of the scaling methods generally utilized in machine learning are as 

follows: 

Min–Max Normalization: The data is scaled to the range of 0–1 by using 

Eq. 7. It is frequently used in gradient-based models such as neural networks 

and logistic regression, but it is sensitive to outliers. 

 

𝑥′ =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
       (7) 

 

Standardization (Z-score Scaling): The data is transformed by using Eq. 8 

so that the standard deviation becomes 1, and the mean is 0. This approach is 

more resilient to outlier effects and is a standard approach in methods such as 

SVM, linear regression, and PCA. 

𝑥′ =
𝑥−μ

𝜎
        (8) 

Robust Scaling: It uses the median and interquartile range (IQR), as stated 

in Eq. 9. It is preferred when the dataset contains many outliers. This method is 

especially suitable for variables such as income, expenditure, or health costs, 

which tend to have extreme values. 

 

𝑥′ =
𝑥−𝑚𝑒𝑑𝑖𝑎𝑛

𝐼𝑄𝑅
       (9) 

 

The three models used in this study have different characteristics in terms of 

their need for feature scaling: 

Linear Regression: Linear regression coefficients are directly affected by 

the scale of the variables. Features with larger magnitudes tend to dominate the 

model. Therefore, standardization (z-score scaling) is recommended when using 

linear regression (Kuhn and Johnson, 2019). 

Random Forest Regressor: As a tree-based model, it splits data according 

to the ranking of feature values, not their actual scales. As a result, Random 

Forest is not affected by scaling and does not require any feature scaling (Lantz, 

2019). 

XGBoost Regressor: XGBoost is also a tree-based algorithm and is 

therefore insensitive to differences in feature scales. However, in some cases, 

normalizing the variables can improve numerical stability and speed up 

convergence. 
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In the insurance dataset used in this study, the numerical variables (age, bmi, 

children, charges) are measured on different scales; however, given the structure 

of the models, extensive scaling is not required. Random Forest and XGBoost 

are insensitive to feature scale differences. Although Linear Regression can 

theoretically benefit from scaling, the small number of independent variables 

and their relatively comparable statistical ranges mean that scaling would not 

provide a meaningful improvement in model performance. Therefore, no 

scaling procedures were applied in this study. The variables were used in their 

original form, preserving their natural interpretability and avoiding unnecessary 

transformations. 

 

3.2.4. Training and test-data split 

Train–test splitting is a fundamental validation method employed in ML to 

appraise a model’s ability to generalize. This approach divides the available 

dataset into two subsets: 

• Training dataset: It is used during the learning phase of the model to 

estimate its parameters. 

• Testing dataset: It consists of data the model has never seen before and 

is utilized to appraise its actual performance. 

This split helps prevent the method from overfitting to the training data and 

allows its predictive power on new data to be evaluated objectively (Han et al., 

2012). 

Commonly used train–test ratios are 70–30 or 80–20. In larger datasets, the 

proportion allocated to training can be increased, while smaller datasets may 

require a slightly higher test ratio. In some cases, a third subset called the 

validation set is also created, or the training process is stabilized using methods 

such as k-fold cross-validation (Kuhn and Johnson, 2019). 

The dataset employed in this work has 1,338 observations. To objectively 

appraise the overall performance of the methods, the dataset was separated into 

two parts: 20% for testing and 80% for training. The training set (1,070 

observations) was used during the learning phase of the XGBoost, Random 

Forest and Linear Regression models. The test set (268 observations) was used 

to determine how well the methods perform on unseen data. This ratio is 

appropriate for the size of the dataset, providing sufficient data for model 

training while allowing reliable evaluation on the test set. 

The split was performed randomly (random_state = 42), ensuring 

reproducibility. This approach allowed each model to see only a portion of the 

data during training and to be assessed on observations it had not encountered 

before. As a result, the risk of overfitting was reduced and the models’ ability to 
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generalize was improved. The performance of all three methods on the test data 

was evaluated using R², MAE, MSE, RMSE, and MAPE. 

 

3.3. Applied Machine Learning Methods 

This section introduces the three ML models used to predict the insurance 

premium (charges) variable. The modeling process includes XGBoost 

Regressor, Random Forest Regressor and Linear Regression in order to capture 

both nonlinear and linear relationships in the data. These models were selected 

because they are capable of explaining potential linear effects as well as 

interaction patterns among the variables in the dataset. 

All data preprocessing and modeling steps in this work were carried out on 

the Google Colab platform. Colab is a cloud-based development environment 

that allows effective use of Python data science libraries. This made the analysis 

process both computationally efficient and reproducible. During model 

development, the pandas, NumPy, scikit-learn, and XGBoost libraries were 

used, and all coding was performed in Python. 

 

3.3.1. Linear regression 

Linear regression is a well-established statistical approach employed to 

describe the linear association between independent variables and a dependent. 

In this study, it is assumed by the model that the target variable, charges, can be 

represented as a linear combination of the predictors, which are age, bmi, 

children, sex, smoker, and region. The general structure of the model can be 

written as in Eq. 10. 

 

𝑌 =  𝛽0  +  𝛽1𝑋1  +  𝛽2𝑋2  +  ⋯ +  𝛽𝑛𝑋𝑛  +  𝜀   (10) 

 

In Eq. 10, y represents the dependent variable, xᵢ denotes the independent 

variables, βᵢ refers to the coefficients, and ε is the error term. The goal of the 

model is to determine the coefficients minimizing the sum of squared 

distinctions between the actual and predicted values, commonly measured by 

the mean squared error (MSE) (Han et al., 2012). 

The key advantages of linear regression lie in its straightforward structure 

and the ease with which it can be interpreted. Each coefficient reflects the 

expected change in the dependent variable associated with a one-unit change in 

the corresponding predictor, holding the other variables constant. However, 

when the core assumptions of the method (linearity, normality of the errors, 

homoscedasticity, and independence) are violated, the predictive performance 

of the model may weaken (Kuhn and Johnson, 2019). 
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In the insurance dataset, the categorical variables sex and smoker were 

encoded using Label Encoding since both have a binary structure. The region 

variable, which contains four categories, was transformed using Dummy 

Encoding, with northeast set as the reference group. The encoded dataset was 

subsequently split into two parts, with 80% allocated for training and the 

remaining 20% reserved for testing. The model was fitted using the training 

portion of the data and its performance was assessed on the test subset. Its 

predictive performance was assessed through R², MAE, MSE, RMSE, and 

MAPE. This analysis served as a baseline model for identifying the general 

linear patterns within the data. 

 

3.3.2. Random forest regressor 

The Random Forest Regressor is an ensemble technique that relies on 

multiple decision trees. Instead of depending on a single deep tree, which is 

prone to overfitting, the method constructs numerous trees using different 

bootstrap samples of the data and combines their predictions by averaging them 

to obtain the final estimate. This approach lowers variance and helps generate 

more stable and generalizable predictions. 

The Random Forest algorithm incorporates two main forms of randomness: 

(i) bootstrap sampling, which ensures that each tree is built using a different 

portion of the data, and (ii) the random selection of feature subsets at each 

splitting step. Together, these elements enhance the diversity of the trees in the 

ensemble and help lower the likelihood of overfitting. 

In this work, the Random Forest Regressor was implemented using the 

insurance.csv dataset. The dependent variable, charges (insurance cost), was 

modeled using the predictors age, bmi, children, sex, smoker, and region. The 

model was configured to use 500 trees (n_estimators = 500). Since sex and 

smoker are binary categorical variables, they were encoded using Label 

Encoding (0–1). The region variable, which includes four categories, was 

transformed using Dummy Encoding with northeast selected as the reference 

category. The dataset was divided into an 80% training and a 20% testing 

portion, and the model’s performance was assessed using the metrics MAPE, 

MAE, RMSE, MSE, and R². 

 

3.3.3. XGBoost regressor 

XGBoost (Extreme Gradient Boosting) is an algorithm that constructs 

decision trees in a sequential manner, reducing prediction errors through the 

gradient boosting process. Each successive tree is designed to address the 
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mistakes of the preceding ones, leading to progressively improved predictive 

accuracy (Chen and Guestrin, 2016). 

Compared with traditional Gradient Boosting approaches, the key distinction 

of XGBoost is its use of a regularized objective function. This structure 

incorporates both L1 (Lasso) and L2 (Ridge) penalty terms, making the model 

more resistant to overfitting. In addition, XGBoost provides high computational 

efficiency through features such as built-in handling of missing values, parallel 

processing, histogram-based tree growth, and early stopping. 

In this study, the XGBoost Regressor model was configured with 500 trees 

(n_estimators = 500) for predicting insurance premiums. During preprocessing, 

the variables sex and smoker were converted into binary form using Label 

Encoding, while the region variable with four categories was transformed using 

Dummy Encoding, with northeast defined as the reference category. The dataset 

was then divided into a 20% test set ann an 80% training set. The XGBoost 

model was trained on the training data using a gradient boosting approach, and 

its performance was assessed utilizing R², MAE, MSE, RMSE, and MAPE. 

 

3.4. Evaluation Metrics 

To compare the performance of the ML methods and evaluate their 

predictive accuracy, several statistical metrics are commonly used. In this study, 

the performance of the regression models was assessed employing five key 

evaluation metrics: R², MAE, MSE, RMSE, and MAPE. Taken together, these 

measures offer a thorough assessment of how large the model’s errors are, how 

they are distributed, and how closely the predictions align with the actual 

values. 

 

3.4.1. Coefficient of determination (R²) 

The R² shows the proportion of the variation in the dependent variable that is 

accounted for by the model and it can be calculated using Eq. 11. Its value 

ranges from 0 to 1, with figures closer to 1 indicating greater explanatory 

strength. 

𝑅2 = 1 −
∑(𝑦𝑖−𝑦̂𝑖)2

∑(𝑦𝑖−𝑦̅𝑖)2                  (11) 

 

Eq. 11 corresponds to the share of variance the model is unable to explain, 

whereas the denominator represents the total variance in the dependent variable. 

A larger R² value shows that the model fits the data more effectively. However, 

it should not be viewed as a standalone indicator of performance. 
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3.4.2. Mean absolute error (MAE) 

MAE represents the mean of the absolute deviations between the model’s 

predictions and the true values and it can be calculated using Eq. 12. It does not 

take the direction of the errors (positive or negative) into account and focuses 

solely on their magnitude. 

 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|       (12) 

 

The interpretation of MAE is straightforward; its unit is the same as that of 

the dependent variable. Lower MAE scores suggest that the model’s predictions 

align more closely with the observed values. 

 

3.4.3. Mean squared error (MSE) 

MSE is calculated as the mean of the squared prediction errors, meaning that 

larger deviations contribute disproportionately to the final value due to the 

squaring process. The formula is given in Eq. 13. 

 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2                 (13) 

 

MSE is often used for comparing models, but because its unit is the square 

of the original variable, it is not as easy to interpret directly as MAE. 

 

3.4.4. Root mean square error (RMSE) 

RMSE is obtained by taking the square root of the MSE as in Eq. 14, which 

allows the error to be reported in the same unit as the dependent variable.  

 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸       (14) 

 

It is sensitive to large errors and provides an indication of the model’s 

“typical error magnitude.” A lower RMSE value shows that the model produces 

consistent and accurate predictions. 

 

3.4.5. Mean absolute percentage error (MAPE) 

MAPE is a performance measure that reports prediction errors in percentage 

terms. It can be calculated using Eq. 15. 

 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
|      (15) 
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Expressing the result as a percentage makes interpretation easier. However, 

when the actual values are very close to zero, sensitivity issues may arise. 

Collectively, these five metrics offer a well-rounded assessment of the 

model’s overall performance. While R² measures the proportion of variance 

explained, MAE and RMSE capture the magnitude of errors with different 

levels of sensitivity. MAPE, on the other hand, expresses errors as percentages, 

offering an interpretation that is particularly intuitive for decision-makers. For 

this reason, the XGBoost Regressor, Random Forest Regressor and Linear 

Regression models used in this study were evaluated using this combined set of 

metrics. 

 

4. FINDINGS AND EVALUATION 

4.1. Findings of the Models 

To assess how each model performed, the five primary evaluation metrics 

(R², MAE, RMSE, MSE, and MAPE) were computed for the XGBoost 

Regressor, Random Forest Regressor, Linear Regression models. Using these 

measures, each model’s predictive accuracy, error magnitude, and 

generalization ability were analyzed comparatively. The resulting findings are 

summarized in Table 7. 

 

Tablo 7. Comparative evaluation of the ML models 

Model R² MAE MSE RMSE 
MAPE 

(%) 

Linear Regression 0.7836 4181.19 33,596,915.85 5796.28 46.89 

Random Forest 

Regressor 
0.8640 2560.02 21052750.53 4588.33 32.48 

XGBoost Regressor 0.8349 2921.27 25,633,697.49 5062.97 37.07 

 

Table 7 provides a comparison of the performance indicators for the three 

ML methods. The findings indicate that the Random Forest Regressor achieves 

the best overall results, demonstrating the highest R² value (0.864), which 

shows that it captures a substantial share of the variance in the dependent 

variable. Additionally, its lower MAPE, RMSE, MSE, and MAE scores, 

relative to the other models, further highlight its ability to significantly reduce 

prediction errors. 

XGBoost Regressor performs better than Linear Regression overall but 

remains slightly behind Random Forest. The Linear Regression model shows 

the lowest performance, largely because its inherently linear framework cannot 

represent the nonlinear and complex relationships embedded in the dataset. 
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Overall, these findings indicate that ensemble methods provide higher 

accuracy than classical linear models when predicting insurance premiums. 

To provide a qualitative assessment of model performance, the predicted 

insurance premiums for five randomly selected observations from the test 

dataset were compared with their actual values. This approach complements the 

general evaluation provided by the error metrics and offers insight into how the 

models behave at the individual observation level. The closeness of the 

predictions to the true values is especially important for understanding model 

consistency and the practical significance of the errors. The randomly selected 

observations are presented in Table 8, and their corresponding comparisons are 

shown in Table 9. 

 

Table 8. Randomly chosen observations from the insurance dataset 

Obs. 

No 
age sex bmi children smoker 

Region 

northwest 

Region 

southeast 

Region 

Southw

est 

764 45 0 25.175 2 0 0 0 0 

887 36 0 30.020 0 0 1 0 0 

890 64 0 26.885 0 1 1 0 0 

1293 46 1 25.745 3 0 1 0 0 

259 19 1 31.920 0 1 1 0 0 

 

Table 9. Actual and predicted insurance premiums for the random 

observations 

Obs. 

No 

Actual 

Charges 

LR 

Prediction 

LR 

Error 

RF 

Prediction 

RF 

Error 

XGB 

Prediction 

XGB 

Error 

764 9095.07 8969.55 1.38 % 10282.31 13.06% 9336.78 2.66% 

887 527218 7068.75 34.1% 5342.62 1.34% 9343.56 77.20% 

890 29330.99 36858.41 25.7% 28331.83 3.41% 29616.47 0.97% 

1293 9301.90 9454.67 1.64% 11353.21 22.05% 9575.83 2.95% 

259 33750.30 26973.17 20.1% 34763.78 3.00% 33304.64 1.32% 

 

Table 9 presents a comparison of actual and predicted insurance charges for 

five randomly selected observations across the three machine learning models. 

The results demonstrate that XGBoost Regressor generally produces the lowest 

percentage errors, particularly for high-cost observations, indicating its strong 

capability to determine complicated nonlinear relationships in the data. Random 

Forest Regressor also performs robustly, yielding the smallest errors in several 

cases and showing high consistency, especially for low and medium charge 

levels. In contrast, Linear Regression exhibits substantially higher prediction 

errors for multiple observations, suggesting that its linear structure is 

insufficient for modeling the nonlinear patterns inherent in medical cost data. 
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Overall, the table supports the conclusion that ensemble-based models 

(especially XGBoost and Random Forest) provide significantly more correct 

and trustable predictions compared to the traditional Linear Regression 

approach. 

To compare how the three ML methods assign importance to the 

independent variables, the feature importance values for each method are given 

in Table 10. For the Linear Regression, the coefficients were standardized to 

create a comparable measure of importance, while the variable importance 

scores produced by the Random Forest and XGBoost models were used 

directly. This comparison reveals how the key factors influencing insurance 

premiums differ across models and shows that ensemble methods tend to 

capture nonlinear interactions more effectively. 

 

Table 10. Feature importance comparison across LR, RF, and XGB models 

Models age sex bmi children smoker region 

LR 0.0097 0.0007 0.0127 0.0160 0.8916 0.0693 

RF 0.1349 0.0064 0.2142 0.0194 0.6096 0.0155 

XGB 0.0136 0.0045 0.0196 0.0079 0.9371 0.0174 

 

Table 10 compares the feature importance values gathered from the 

XGBoost, Random Forest, and Linear Regression models. Across all three 

approaches, the smoker variable emerges as the most influential predictor of 

insurance charges, reflecting the well-established impact of smoking on health-

related expenditures. Ensemble models—particularly XGBoost, with an 

importance score of 0.9371—assign an even stronger weight to this variable, 

indicating their enhanced ability to capture nonlinear and interaction effects. 

The bmi and age variables show moderate importance in the Random Forest and 

XGBoost models, whereas Linear Regression assigns comparatively smaller 

weights, suggesting its limited capacity to model complex relationships in the 

data. Additionally, the region and sex variables consistently exhibit low 

importance across all models, implying minimal direct contribution to premium 

variation. Overall, the table highlights the superiority of ensemble methods in 

identifying dominant predictors and modeling heterogeneous patterns in 

medical insurance costs. 

 

4.2. Comparison of the models 

In thhis section comparative evaluation of the three machine learning models 

used in the study is presented, examining their performance, error metrics, 

prediction behavior, and variable importance patterns. Considering both the 
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structural characteristics of the models and the statistical features of the dataset, 

this analysis highlights which approach produces more effective results for the 

problem of insurance premium prediction, where the relations are complex and 

nonlinear. 

Based on the performance metrics, the Random Forest Regressor stands out 

with the highest R² value (0.8640) and the lowest error measures (MAE, MSE, 

RMSE, MAPE). This outcome can be attributed to the model’s capability to 

avoid overfitting by averaging predictions from many decision trees and to 

effectively capture complicated relationships in the data. The XGBoost 

Regressor also performs strongly, achieving low error rates particularly for 

higher premium values and successfully representing nonlinear patterns.  

The Linear Regression model showed the weakest performance among the 

three models. This outcome is mainly due to the fact that many relationships in 

the dataset are nonlinear. For instance, the effects of variables such as smoking 

status, body mass index (BMI), and age on medical costs are far from linear; 

after certain threshold levels, costs increase sharply. Because a linear model 

cannot capture these kinds of patterns, its error levels were higher. 

Another aspect of the model comparison is the assessment of variable 

importance. In all three models, the smoker variable clearly ranks as the most 

influential factor, confirming the dominant impact of smoking on healthcare 

expenditures. In the ensemble models, its importance score is even higher, 

which indicates that these algorithms capture interactions and nonlinear 

relationships more effectively. The variables BMI and age show moderate 

importance in the Random Forest and XGBoost models, whereas their effects 

appear more limited in Linear Regression. This finding further illustrates that 

the linear model has difficulty representing more complex patterns in the data. 

Finally, when the predicted and actual values are examined, XGBoost 

appears to produce more consistent estimates for individuals with high premium 

levels, while Random Forest performs more reliably for medium and low 

premium ranges. This difference can be linked to how each model responds to 

the distribution of the data. On the other hand, Linear Regression generates 

substantial errors for extreme values, highlighting the limitations of a linear 

approach when dealing with health expenditure data that exhibit high variance 

and deviate significantly from normality. 

Overall, the findings demonstrates that the ensemble-based methods, namely 

the Random Forest Regressor and the XGBoost Regressor, offer higher 

accuracy and stronger generalization ability for problems like insurance 

premium prediction, where relationships are highly multivariate and complex. 

However, in scenarios where interpretability is essential, the Linear Regression 
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model remains a valuable reference, even though its performance clearly falls 

behind that of modern ensemble techniques. 

 

4.3. Interpretation of Findings 

The results of this study offer a detailed insight into the key factors that most 

significantly affect individual health insurance premiums. Across all the  three 

machine learning models, the smoker variable consistently emerges as the most 

dominant predictor. This is particularly evident in the ensemble models, where 

smoker receives exceptionally high importance scores, reflecting its substantial 

contribution to medical expenditures. These results are well aligned with the 

existing literature, which demonstrates that smoking dramatically increases the 

likelihood of chronic diseases, hospitalization, and long-term healthcare costs. 

Consequently, individuals who smoke are classified as high-risk members in 

insurance pools, leading to significantly higher premium levels. 

The body mass index (BMI) is another critical determinant of insurance 

charges. The moderate importance assigned to BMI by Random Forest and 

XGBoost indicates that medical costs respond nonlinearly to changes in BMI—

a pattern that ensemble methods can effectively capture. The age variable 

similarly demonstrates a notable influence on premium levels, reflecting the 

natural increase in health risks as individuals grow older. Age-related 

deterioration in physical health, combined with heightened susceptibility to 

chronic illnesses, explains the progressive rise in predicted insurance charges. 

In contrast, variables such as children, sex, and region contribute relatively 

less to premium variation. Although these factors may have indirect or context-

dependent effects on healthcare utilization, their overall influence remains 

minor compared with the strong and direct impact of smoking behavior, BMI, 

and age. This pattern suggests that insurance pricing is primarily driven by 

individual health risks and lifestyle-associated factors rather than demographic 

or geographic attributes. 

 

5. CONCLUSIONS AND RECOMMENDATIONS 

This study provided a detailed comparative analysis of three ML models 

(XGBoost Regressor, Random Forest Regressor, and Linear Regression) 

applied to the prediction of individual health insurance premiums. The findings 

show that ensemble-based ML methods demonstrate clear superiority over 

classical regression approaches, particularly in modeling complex, nonlinear 

relationships within health cost data. 

Among the evaluated models, the Random Forest Regressor achieved the 

strongest predictive performance, demonstrated by its higher R² value and lower 
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error scores (MAE, RMSE, MSE, and MAPE). Its ensemble structure, 

combining the outputs of numerous decision trees, enables robust generalization 

and reduces overfitting, even when the dataset contains variability or noise. The 

XGBoost Regressor also showed strong performance, especially for high-cost 

observations, reflecting its capacity to capture intricate nonlinear patterns and 

feature interactions. Conversely, the Linear Regression method demonstrated 

relatively weak predictive performance. Although its structure provides high 

interpretability, its inability to capture nonlinearities resulted in higher error 

levels, reinforcing the limitations of classical regression in complex real-world 

prediction tasks. 

Overall, the findings highlight the advantages of AI-based regression 

techniques over traditional statistical models. In particular, ensemble algorithms 

offer enhanced flexibility, stronger modeling capacity for nonlinear 

relationships, and more realistic representations of variable importance. The 

pronounced dominance of factors such as BMI, smoking status, and age in the 

ensemble models aligns with established medical and actuarial knowledge, 

underscoring the robustness of these methods in cost estimation. 

In conclusion, the findings of this study highlight the strong capability of 

machine learning and artificial intelligence methods to accurately predict health 

insurance expenditures. The comparison between classical and modern models 

underscores the importance of nonlinear modeling capabilities, robust feature 

interaction handling, and data-driven variable importance estimation. 

Expanding the methodology to other datasets and exploring more advanced 

modeling strategies will further contribute to the development of accurate and 

reliable predictive systems in the health insurance domain and beyond. 
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