

THE ESSENTIAL GUIDE TO

# BASKETBALL ANALYTICS



Editor: Assist. Prof. Dr. Óvünç ERDEVECİLER

Author: Res. Asst. Dr. Tugay DURMUŞ



## THE ESSENTIAL GUIDE TO BASKETBALL ANALYTICS

**Editor: Assist. Prof. Dr. Övünç Erdeveciler<sup>1</sup>**

**Author:Res. Asst. Dr. Dr. Tugay Durmuş<sup>2</sup>**

---

<sup>1</sup> Department of Sport Management, Faculty of Sport Sciences, Ankara University, Ankara 06830, Türkiye

<sup>2</sup> Department of Coaching Education, Faculty of Sport Sciences, Ankara University, Ankara 06830, Türkiye



**THE ESSENTIAL GUIDE TO BASKETBALL ANALYTICS**

*Editor: Assist. Prof. Dr. Övünç Erdeveciler*

*Author: Res. Asst. Dr. Dr. Tugay Durmuş*

**Editor-in-Chief:** Berkan Balpetek

**Page and Cover Design:** Duvar Design

**Publication Date:** December 2025

**Publisher Certificate No:** 49837

**ISBN:** 978-625-8572-12-4

© Duvar Yayınları

853 Sokak No:13 P.10 Kemeraltı-Konak/İzmir

Tel: 0 232 484 88 68

[www.duvaryayinlari.com](http://www.duvaryayinlari.com)

[duvarkitabevi@gmail.com](mailto:duvarkitabevi@gmail.com)



## CONTENTS

|                                                                       |           |
|-----------------------------------------------------------------------|-----------|
| <b>The Foundation - A Brief History Of Basketball Analytics</b>       | <b>3</b>  |
| <b>The Basic Toolkit – Beyond Points And Rebounds</b>                 | <b>6</b>  |
| <b>Player Evaluation - All-In-One Offensive Metrics</b>               | <b>14</b> |
| <b>Advanced Impact Metrics</b>                                        | <b>17</b> |
| <b>Tracking Data &amp; On-Court Strategy - The Spatial Revolution</b> | <b>21</b> |
| <b>Possession &amp; Play Type Analysis</b>                            | <b>26</b> |
| <b>Team Construction - Lineup Analysis &amp; Fit</b>                  | <b>30</b> |
| <b>Macro-Strategy For The Modern Game</b>                             | <b>34</b> |
| <b>The Cutting Edge &amp; Your Toolkit</b>                            | <b>37</b> |
| <b>How To Start Your Own Analysis</b>                                 | <b>39</b> |
| <b>References</b>                                                     | <b>45</b> |



## THE FOUNDATION - A BRIEF HISTORY OF BASKETBALL ANALYTICS

The modern era of basketball analytics unequivocally begins with Dean Oliver's 2004 book, *Basketball on Paper*. An industrial engineer by training, Oliver applied a systematic, principle-based approach to the sport, moving beyond raw totals to identify the core components of winning (Oliver, 2004). Dean Oliver's "*Four Factors of Basketball Success*" identify the core elements that explain most of the variation in winning: Effective Field Goal Percentage, Turnover Percentage, Rebounding Percentage, and Free Throw Rate. These factors are weighted approximately as 40% for shooting efficiency, 25% for turnovers, 20% for rebounding, and 15% for free throws in their contribution to game outcomes (Oliver, 2004).

The Four Factors model has been applied beyond the National Basketball Association (NBA), such as in the Chinese Basketball Association, where enhanced versions of the model combined with machine learning techniques have achieved high accuracy in predicting game results (Zhong, 2025). This framework provided the first universal language for evaluating team performance, shifting the conversation from "who scored more?" to "how was scoring efficiency achieved and possessions were managed?" It established that not all points, rebounds, or possessions hold equal value, a paradigm shift that remains the bedrock of all subsequent analysis.

The publication of *Basketball on Paper* coincided with the digital explosion of data availability and computing power, creating fertile ground for an analytical

revolution. The MIT Sloan Sports Analytics Conference, founded in 2006, has become a pivotal academic and professional forum where advanced sports metrics like adjusted plus/minus and defensive analytics are rigorously discussed and refined. It attracts leading teams, leagues, and researchers, fostering collaboration between academia and the sports industry to improve analytical approaches in sports performance and business (Mondello, 2014). The conference has helped establish a shared language and methodology for evaluating player and team performance beyond traditional statistics, contributing to the evolution of sports analytics as a discipline. This environment encourages the development and critical assessment of new metrics, influencing both professional practice and academic research. While specific debates on metrics like adjusted plus/minus have been central, the conference also serves as a hub for broader discussions on sports business and marketing analytics (Sutton, 2017).

This period saw the rise of public-facing analysts like John Hollinger, who created accessible all-in-one metrics like Player Efficiency Rating (PER) for ESPN. John Hollinger's creation of the PER significantly impacted basketball analytics by providing an accessible, all-in-one metric that summarizes a player's overall statistical performance. PER gained widespread use through ESPN, helping bring advanced analytics to a mass audience beyond specialized analysts. Research using PER has shown its utility in evaluating player and team performance, with factors like player age, compensation, and entropy (a measure of disorder) influencing PER scores, which can assist general managers in trade and draft decisions (Hall Jr, 2015). Comparative studies also highlight PER's importance in the NBA as a key predictor of team success, alongside other metrics like shooting accuracy and defensive ratings (Liang et al., 2025). While PER simplifies complex data into a single number, it has been critiqued for not capturing all aspects of player impact, especially defensive contributions. Nonetheless, Hollinger's work helped popularize analytics in basketball, bridging the gap between advanced statistical methods and mainstream sports media, bringing analytics to a mass audience.

Simultaneously, the Houston Rockets, under General Manager Daryl Morey, were pioneers in building dedicated analytics departments to gain a competitive edge in the NBA. Morey, with a background in computer science and an MBA from MIT Sloan, emphasized a data-driven approach known as "*Moreyball*," which focuses on maximizing three-point shots and points in the paint while minimizing

mid-range shots, a strategy shown to predict team success (Catalfano, 2015). This analytical philosophy reshaped offensive and defensive strategies, promoting efficient shot selection and defensive pressure tactics. Research indicates that NBA teams investing more in analytics departments tend to achieve better regular-season performance, supporting the value of such investments in competitive success (Wang et al., 2025). Morey's approach also influenced the broader NBA front office landscape, encouraging the rise of younger, highly educated GMs who prioritize statistical analysis over traditional playing or coaching experience (Wong & Deubert, 2011). This journey—from Oliver's foundational theory, to public discourse, to proprietary front-office tool, to league-wide tracking—defines the rapid integration of analytics into the sport's fabric.



## THE BASIC TOOLKIT – BEYOND POINTS AND REBOUNDS

Basketball performance has been extensively examined through Game-Related Statistics (GRS) in the sports analytics literature. Traditional indicators such as points scored, rebounds, assists, turnovers, and shooting percentages have been widely used to describe team and player performance, benchmark competitive levels, and identify tactical patterns. Within this framework, match statistics have functioned as a foundational measurement system, enabling objective performance assessment and facilitating comparisons across teams, players, and competitions.

Building on this foundation, researchers have applied diverse statistical methods to derive meaningful Key Performance Indicators (KPIs) and to explain variations in performance under different conditions. A substantial body of work has focused on performance differences by context, including factors such as opponent quality, game tempo, and competitive balance, as well as situational variables like game location (home vs. away) (Tas et al., 2013; Akyüz et al., 2013). These approaches have enhanced the understanding of how contextual and environmental factors influence basketball performance, supporting more nuanced interpretations beyond raw match outcomes.

**Table 1.** Overview of basketball performance metrics across offensive, defensive, efficiency, tactical, and physical domains

| <b>Category</b> | <b>Statistics Examined</b>                                                                                                          | <b>Normalization Approaches</b>                                                                   |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Offensive       | 2-point and 3-point field goals (made/attempted), free throws (made/attempted), assists (Ibáñez et al., 2008)                       | Per minute (Ibáñez et al., 2008), per possession (Ektirici, 2023), z-scores (Ibáñez et al., 2008) |
| Defensive       | Defensive rebounds, offensive rebounds, steals, blocks, fouls committed (Ibáñez et al., 2008)                                       | Per minute (Paulauskas et al., 2018), per possession (Sansone et al., 2024)                       |
| Efficiency      | Field goal percentage, free throw percentage, effective field goal percentage, offensive and defensive ratings (Conte et al., 2018) | Points per possession (Marmarinos et al., 2016)                                                   |
| Tactical        | Ball reversals, post entries, screens, touches, passes (Conte et al., 2018)                                                         | Per game (Sampaio et al., 2015)                                                                   |
| Physical        | Distance covered, speed, touches (Sampaio et al., 2015)                                                                             | Per minute (Zhang et al., 2017)                                                                   |

**Table 2.** Statistical methods used in basketball performance analysis and their primary purposes

| <b>Method</b>             | <b>Studies</b>                                                                                                                                                                                   | <b>Purpose</b>                                                    |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Discriminant Analysis     | Cabarkapa et al. (2024); Cabarkapa, Eserhaut, et al. (2022); Ektirici (2023); Ibáñez et al. (2008); Lorenzo et al. (2010); Paulauskas et al. (2018); Sampaio et al. (2006); Yilmaz et al. (2022) | Classify winning and losing teams                                 |
| Cluster Analysis          | Csataljay et al. (2009); Çene (2018); García et al. (2014); Sampaio et al. (2015)                                                                                                                | Group games by competitiveness or players by performance profiles |
| Magnitude-Based Inference | Conte et al. (2018); Zhang et al. (2017)                                                                                                                                                         | Evaluate practical significance of performance differences        |
| Decision Trees (CHAID)    | Chen et al. (2024); Çene (2018); Zhang et al. (2019)                                                                                                                                             | Identify key performance indicators                               |
| Regression Analysis       | Puente et al. (2015); Sansone et al. (2024); Zhou et al. (2024)                                                                                                                                  | Predict outcomes based on performance statistics                  |
| Machine Learning          | Leicht et al. (2017); Liang et al. (2025)                                                                                                                                                        | Predict game outcomes and model complex relationships             |

**Table 3.** Contextual impact of defensive rebounds and assists on competitive success across basketball competitions

| <b>Study Context</b>                 | <b>Study</b>                         | <b>Parameter</b>   | <b>Structure Coefficient / Explained Variance</b> | <b>Game Type</b>     |
|--------------------------------------|--------------------------------------|--------------------|---------------------------------------------------|----------------------|
| ACB League (Overall)                 |                                      |                    | SC = 0.42                                         | All games            |
| ACB League (Home)                    | Gómez et al. (2008)                  |                    | SC = 0.40                                         | Home games           |
| ACB League (Away)                    |                                      |                    | SC = 0.44                                         | Away games           |
| U-16 European Championship           | Lorenzo et al. (2010)                |                    | SC = -0.36                                        | Balanced games       |
| NBA Regular Season                   | Cabarkapa, Deane, Fry, et al. (2022) | Defensive Rebounds | 14.2% variance explained                          | All games            |
| NBA Post-Season                      |                                      |                    | 14.7% variance explained                          | Playoff games        |
| NCAA Division I                      | Cabarkapa et al.                     |                    | 12.2% variance explained                          | All games            |
| NCAA Division II                     | Cabarkapa, Deane, Giovanini et al.   |                    | 12.7% variance explained                          | All games            |
| Brazilian NBB (Close Games)          |                                      |                    | SC = 0.407                                        | Regular season       |
| Olympic Men's Basketball (Fast Pace) | Chen et al. (2024)                   |                    | SC = 0.403                                        | Fast-paced games     |
| Olympic Men's Basketball (Slow Pace) |                                      |                    | SC = 0.513                                        | Slow-paced games     |
| Spanish LEB1                         | Ibáñez et al. (2008)                 |                    | SC = 0.47                                         | Season-long success  |
| ACB League (Overall)                 | Gómez et al. (2008)                  |                    | SC = 0.38                                         | All games            |
| ACB League (Home)                    |                                      |                    | SC = 0.41                                         | Home wins            |
| U-16 European Championship           | Lorenzo et al. (2010)                | Assists            | SC = 0.33                                         | Close games          |
| NCAA Division I                      | Cabarkapa et al.                     |                    | 12.0% variance explained                          | All games            |
| NCAA Division II                     | Cabarkapa, Deane, Ektirici (2023)    |                    | 12.6% variance explained                          | All games            |
| Turkish Super League (Away)          |                                      |                    | SC = 0.365                                        | Away games           |
| WNBA (Worst Teams Winning)           | Gómez et al. (2009)                  |                    | SC = 0.58                                         | Team quality context |

**Table 4.** Key performance discriminators across different levels of game closeness

| <b>Game Type</b> | <b>Key Discriminators</b>                                         | <b>Competition</b>                                                     |
|------------------|-------------------------------------------------------------------|------------------------------------------------------------------------|
| Close games      | Turnovers (SC = -0.47), assists (SC = 0.33)                       | U-16 European Championship (Lorenzo et al., 2010)                      |
| Close games      | True shooting percentage, steals, fouls                           | EuroLeague (Çene, 2018)                                                |
| Close games      | 3-point attempts, free throws, defensive rebounds                 | European Basketball Championship 2007 (Csataljay et al., 2009)         |
| Balanced games   | 2-point field goals (SC = -0.34), defensive rebounds (SC = -0.36) | U-16 European Championship (Lorenzo et al., 2010)                      |
| Balanced games   | 2-point made, 3-point made, steals, defensive rebounds            | EuroLeague (Çene, 2018)                                                |
| Unbalanced games | 2-point field goals (SC = 0.37)                                   | U-16 European Championship (Cabarkapa, Deane, Cabarkapa, et al., 2022) |
| Unbalanced games | 2-point made, defensive rebounds                                  | EuroLeague (Çene, 2018)                                                |

**Table 5.** Discriminating performance indicators by game location (home vs. away)

| <b>Location</b> | <b>Discriminating Statistics</b>                                                                                              | <b>Competition</b>                    |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Home wins       | Defensive rebounds (SC = 0.40), assists (SC = 0.41)                                                                           | ACB League (Gómez et al., 2008)       |
| Home wins       | 3-point percentage (SC = 0.312), defensive rebounds (SC = 0.334)                                                              | Turkish Super League (Ektirici, 2023) |
| Away wins       | Defensive rebounds (SC = 0.44), assists (SC = 0.30), 2-point field goals made (SC = 0.31)                                     | ACB League (Gómez et al., 2008)       |
| Away wins       | 2-point field goals made (SC = 0.416), 2-point percentage (SC = 0.364), defensive rebounds (SC = 0.305), assists (SC = 0.365) | Turkish Super League (Ektirici, 2023) |

The critical conceptual shift in basketball analytics involves moving away from traditional per-game statistics toward efficiency metrics that better capture a player's or team's true impact on the game. A player who scores 25 points per game sounds impressive, but if he uses 25 shot attempts and 10 turnovers to do so, he is likely harming his team's offense. The use of advanced metrics reduce biases found in raw counting stats by emphasizing quality of performance over quantity, enabling coaches and analysts to optimize lineups and strategies more effectively (Sarlis & Tjortjis, 2020) Furthermore, efficiency-focused analytics support better decision-making in player evaluation, team composition, and game management, contributing to improved competitive outcomes (Liang et al., 2025).

The core unit of analysis is the possession—a team's opportunity to score. Therefore, we measure performance per possession or per 100 possessions to create a level playing field, neutralizing the distorting effects of a team's pace (number of possessions per game). This mindset reveals truths obscured by totals: a defensive specialist who plays fewer minutes but is devastatingly effective per-possession, or a high-volume scorer whose true cost to his team's offensive flow outweighs his point total. Thinking in rates rather than aggregates is the first and most important step toward analytical literacy, forcing an evaluation of how production is achieved, not just the final tally.

Dean Oliver's Four Factors provide the essential blueprint for diagnosing team strength. First, shooting measured by eFG%, is considered the most critical factor, as it adjusts traditional field goal percentage to account for the added value of three-pointers using the formula  $(FG + 0.5 * 3PM) / FGA$ , providing a more accurate measure of scoring efficiency (Oliver, 2004). This immediately penalizes the inefficient long two-pointer and rewards the modern three-point strategy. The model has been validated across NBA seasons and remains a strong predictor of winning percentage, with research showing its applicability even when accounting for changes in playing style over time (Cecchin, 2022). Studies also confirm the model's relevance in other leagues like the WNBA and European basketball, though some adaptations have been proposed to better fit different contexts (Charamis et al., 2023; Mandić et al., 2019; Moss et al., 2025).

Second, Turnovers (Turnover Percentage - TOV%) measures the proportion of a team's possessions that end in a turnover, which is highly detrimental because it results in zero points and often leads to fast-break opportunities for the opponent. Research shows that turnovers are a critical factor influencing game outcomes, with winning teams generally committing fewer turnovers than losing teams across various competitions (de Almeida et al., 2022; Fylaktakidou et al., 2011). While some research suggests turnovers alone may not fully predict match outcomes, their reduction is consistently linked to better team performance and success (Han et al., 2020).

Third, Rebounding. Measured by Offensive Rebounding Percentage (OREB%) and Defensive Rebounding Percentage (DREB%), reflects the share of available rebounds a team secures, with offensive rebounds extending possessions and

defensive rebounds ending them. Research consistently shows that defensive rebounds are a strong discriminator between winning and losing teams across leagues such as the NBA, NCAA, and international competitions, often having a greater impact on winning than offensive rebounds (Cabarkapa et al., 2024; Cabarkapa, Deane, Fry, et al., 2022; Canuto & de Almeida, 2022). Offensive rebounds contribute to higher offensive efficiency by creating additional scoring opportunities, especially when multiple players actively contest rebounds (Csátaljay et al., 2017). While some studies found no significant difference in offensive rebounding between top and bottom teams, defensive rebounding consistently correlates with better team performance and final rankings (Sun et al., 2022). Finally, Free Throw Rate (FTR), calculated as free throw attempts divided by field goal attempts (FTA/FGA), reflects a team's ability to get to the free throw line, which is highly efficient since free throws yield points without time running off and can foul out opponents. Studies show that free throw success is influenced by psychological and physiological factors, including visual attention and fixation patterns; longer fixation durations on the basket and efficient visual search strategies correlate with higher free throw percentages, especially under high-intensity conditions (Zhao et al., 2023; Zhao et al., 2024).





## PLAYER EVALUATION - ALL-IN-ONE OFFENSIVE METRICS

To simplify player evaluation, analysts have created metrics that condense box score production into a single number. PER, pioneered by John Hollinger, is the most famous example. It sums a player's positive accomplishments (points, rebounds, assists, blocks, steals) and subtracts negative ones (missed shots, turnovers, fouls), then adjusts for pace and produces a per-minute rating where 15.0 is league average. While popular, PER has significant flaws: it overvalues inefficient volume scoring and struggles to properly weigh defensive contributions beyond steals and blocks. More robust is True Shooting Percentage (TS%). TS% is a comprehensive metric that measures scoring efficiency by accounting for field goals, three-pointers, and free throws, calculated as  $PTS / (2 * (FGA + 0.44 * FTA))$ . Research shows TS% is a strong predictor of team success in collegiate basketball and is also critical in evaluating player performance in professional leagues like the NBA (Liang et al., 2025). TS% has been used in advanced analytics to assess player efficiency and predict game outcomes, often outperforming traditional metrics like field goal percentage (FG%) by incorporating all scoring attempts.

Offensive Rating (OffRtg), as calculated by sites like Basketball-Reference, estimates points produced per 100 possessions by a player, crediting him/her for assists and offensive rebounds. These metrics move us beyond basic shooting



percentages but still relying on box score data with inherent limitations. Research shows that OffRtg is closely linked to team offensive efficiency and is influenced by factors such as floor spacing and the number of efficient three-point shooters in a lineup, with balanced lineups of 2-4 shooters generally yielding higher offensive ratings (Poropudas & Halme, 2023). Studies highlight that offensive rating, combined with other advanced metrics, plays a significant role in predicting player draft potential and team success, emphasizing the importance of offensive contributions in scouting and coaching decisions (Conte et al., 2018). However, the non-linear relationship between the four factors (shooting efficiency, turnovers, rebounding, and free throws) and offensive rating suggests that OffRtg's interpretation depends on the context of other performance variables.

A critical layer in offensive analysis is understanding a player's role, best captured by Usage Rate (USG%), which estimates the percentage of a team's plays that a player uses while on the floor, including field goal attempts, free throw attempts, and turnovers. It is a critical metric for understanding a player's offensive role and involvement in the team's offense. High usage is not inherently good; it must be evaluated in tandem with efficiency metrics like TS%. The "Usage-Efficiency Matrix" is a fundamental analytical tool. Stars like Stephen Curry and Kevin Durant reside in the coveted high-usage, high-efficiency quadrant. Players with high usage but low efficiency are often detrimental "ball-stoppers," while low-usage, high-efficiency players are vital role players (e.g., three-point specialists). Although the research does not directly address Usage Rate in basketball, the concept aligns with broader measurement validation principles, emphasizing the importance of interpreting statistics within their proper context and understanding the assumptions behind their use (Kane, 2013). Usage Rate helps quantify how much a player controls the ball and influences offensive possessions, which is essential for evaluating player impact beyond basic scoring efficiency. However, like many box score-derived metrics, USG% has limitations and should be considered alongside other performance indicators to capture a complete picture of a player's role and effectiveness.

Another metric, Win Shares (WS) is a box score-based metric designed to estimate the number of team wins a player contributes through their statistical production. It aggregates offensive and defensive contributions to assign credit for team success to individual players, making it a widely used measure of overall



player value. Research indicates that WS strongly correlates with player market value and salary, reflecting its effectiveness in capturing both offensive and defensive impact (Lin, 2025). Its value lies in its simplicity and intuitive framing ("Player X contributed Y wins"). Despite its strengths, WS, like other box score aggregates, has limitations and should be used alongside other metrics for comprehensive player evaluation.





## ADVANCED IMPACT METRICS

The fundamental goal of player evaluation is to answer a simple question: does the team perform better when this player is on the court? Traditional metrics often rely on box score statistics but may fail to account for game context, such as the timing and impact of plays on win probability. Advanced approaches use models that estimate a player's impact on their team's chances of winning by controlling for teammates and opponents on the floor, providing a more accurate measure of individual contribution to team success (Deshpande & Jensen, 2016).

For example, Plus/Minus (PM) measures the point differential when a player is on versus off the court but is heavily influenced by the quality of teammates and opponents, limiting its accuracy in isolating individual impact. Its fatal flaw is context—a player's +/- is massively influenced by the quality of his teammates and opponents. This led to Adjusted Plus/Minus (APM), which uses linear regression on massive datasets to isolate a player's impact by controlling for who else is on the court. APM uses linear regression on large datasets to isolate a player's impact by controlling for the quality of teammates and opponents on the court, addressing the context problem inherent in raw plus/minus. Early APM models were noisy over single seasons due to collinearity and limited data, but regularization techniques



like ridge and Bayesian methods have improved stability and predictive accuracy (Grassetti et al., 2021). Extensions of APM analyze entire lineups and player combinations simultaneously, capturing interaction effects and synergy beyond individual contributions (Josephs & Upton, 2025). Early APM was notoriously noisy over single seasons. Its successor, Regularized APM (RAPM), improves upon traditional APM by applying ridge regression, a statistical smoothing technique that shrinks extreme player impact estimates toward the mean, thereby stabilizing results and producing more reliable single-number estimates of a player's total impact per 100 possessions on offense and defense (Damoulaki et al., 2025; Sill, 2010). This regularization reduces noise and multicollinearity issues common in early APM models, enhancing predictive accuracy and interpretability (Sill, 2010).

Advanced RAPM models leverage play-by-play data and apply Bayesian frameworks or multinomial logistic regression to estimate player impact at the possession level while explicitly accounting for lineup interactions and synergies. This methodological structure allows RAPM to isolate individual contributions from complex on-court contexts (Grassetti et al., 2021). As a result, RAPM is widely regarded as the gold standard among impact metrics, since it relies exclusively on on/off outcomes rather than box score statistics, thereby capturing the full range of player value—including defensive impact, spacing, and other non-box-score contributions (Kang, 2014). Despite these improvements, RAPM and related metrics like Real Plus Minus (RPM) can still be influenced by teammate quality and complementarity effects, which limits their out-of-sample predictive power (Ghimire et al., 2020). Extensions of RAPM also evaluate entire lineups and player combinations simultaneously, providing a more comprehensive assessment of player and lineup value (Josephs & Upton, 2025).

Because calculating true RAPM requires proprietary data and significant computing power (Grassetti et al., 2021), public analysts have created blended models that combine the stability of box score priors with the insight of adjusted plus/minus. Examples include ESPN's Real Plus-Minus (RPM), Player Impact Plus-Minus (PIPM), and Estimated Plus-Minus (EPM) that are prominent advanced metrics designed to evaluate player contributions by isolating individual impact from teammates and opponents. RPM uses a regularized adjusted plus-minus framework with box score priors to stabilize estimates and better predict player value, incorporating both offensive and defensive impacts (Deshpande & Jensen,



2016). PIPM builds on similar principles but often integrates additional contextual data and Bayesian methods to refine player impact estimates, improving predictive accuracy and accounting for position-specific effects (Sabin, 2021). EPM also employs regression-based plus-minus models, sometimes enhanced with hierarchical Bayesian approaches, to estimate player value while controlling for lineup and situational factors (Gong & Chen, 2024). These metrics address limitations of traditional plus-minus by reducing noise and multicollinearity through regularization techniques like ridge regression and by blending box score data with on-court performance (Macdonald, 2012). While originally developed for basketball, the underlying methodologies have been adapted for other sports for their flexibility and ability quantify individual player contributions (Kharrat et al., 2020).

Player impact metrics like RPM, PIPM, and EPM enable estimation of a player's total two-way contribution, which can be translated into wins contributed. These wins can then be converted into monetary value to assess contract efficiency by comparing a player's salary to their projected wins, often expressed as dollars per win (\$/Win). Research in Major League Baseball (MLB) shows that teams tend to overpay on average for long-term contracts when comparing the discounted value of expected wins to guaranteed salaries, indicating inefficiencies in contract valuation (Solow & Krautmann, 2020). Studies also find that salaries generally increase with player performance metrics like Wins Above Replacement (WAR), with offensive contributions often commanding a higher salary premium than defensive ones (Ehrlich & Potter, 2021). In the NBA, pay decisions are frequently based on recent performance but may not always align with future efficiency, leading to potential overpayment or underpayment relative to actual contributions (Wen et al., 2023). Additionally, data-driven models inspired by Moneyball principles can identify undervalued players who provide higher on-court contributions relative to their salaries, helping teams optimize payroll allocation for better competitive outcomes (Zhu et al., 2025).

However, all impact metrics have crucial limitations that must be acknowledged to avoid overinterpretation. Despite increasingly sophisticated modeling techniques, these metrics still struggle to fully disentangle individual defensive impact from team defensive schemes, coaching principles, and collective execution. A player's measured value can also be materially distorted by role-specific



assignments—for example, consistently matching up with an opponent’s primary scorer or anchoring weak-side help—responsibilities that depress raw on/off results without accurately reflecting defensive quality.

In addition, impact metrics are highly sensitive to sample size and context. Single-season estimates are often noisy and vulnerable to lineup dependencies, injury-driven rotations, and randomness in shooting variance, making multi-year samples a practical requirement for meaningful stability. Even then, results should be interpreted probabilistically rather than deterministically. Consequently, impact metrics are best understood as high-level evaluative tools that identify broad tiers of player value and directional impact, not as precise instruments suitable for granular, decimal-level comparisons or definitive player rankings.



## TRACKING DATA & ON-COURT STRATEGY - THE SPATIAL REVOLUTION

The introduction of optical tracking systems like SportVU, Second Spectrum, and STATS has revolutionized basketball by transforming it from a game summarized by box scores into one rich with detailed spatial and tactical data. SportVU, first deployed in select NBA arenas in 2010 and adopted league-wide by 2013-14, captures player and ball positions in real time, enabling advanced machine learning algorithms to automatically detect tactical events such as screens and isolations, thus supporting data-driven decision-making (Patton et al., 2021).

**Table 6.** Machine learning and advanced analytics applications in basketball analysis

| <b>Application</b>                | <b>Method</b>                                          | <b>Accuracy / Performance</b>         |
|-----------------------------------|--------------------------------------------------------|---------------------------------------|
| Defensive strategy classification | KNN, SVM, Decision Trees<br>(Tian et al., 2019)        | 69% accuracy                          |
| Shot outcome prediction           | Support Vector Classifier<br>(Mamiya et al., 2025)     | 76% accuracy                          |
| Shot location classification      | XGBoost<br>(Mamiya et al., 2025)                       | 94% accuracy                          |
| Performance prediction (RSI, GS)  | XGBoost classifier<br>(Taber et al., 2024)             | >90% accuracy, F1 = 0.90              |
| Player efficiency prediction      | XGBoost regressor<br>(Taber et al., 2024)              | MSE = 0.026, R <sup>2</sup> = 0.680   |
| Expected points estimation        | Deep learning<br>(DeepHoops)<br>(Sicilia et al., 2019) | Well-calibrated probability estimates |

The availability of player tracking data providing X/Y coordinates of all ten players and the ball at a high frequency (e.g., 25 times per second) has enabled detailed analysis of basketball performance and tactics. This data allows for precise measurement of player movements, interactions, and spatial positioning, which supports advanced metrics beyond traditional box scores (Sampaio et al., 2015). This unlocked a universe of new questions and answers. We could now measure speed, distance traveled, and acceleration, quantifying player workload and movement. The ability to measure speed, distance traveled, and acceleration through player tracking has enabled precise quantification of basketball players' workload and movement. External workload metrics which captures accelerations, decelerations, jumps, and changes of direction, have been used to profile physical demands across different training periods and competitive levels, revealing variations in workload intensity during practices and games (Antoranz et al., 2025).

**Table 7.** Tracking technologies used in basketball performance analysis

| Type                                  | System                                          | Sampling Rate                                  |
|---------------------------------------|-------------------------------------------------|------------------------------------------------|
| Optical / Camera-based                | SportVU (SportsVU)<br>(Maymin, 2013)            | 25 Hz                                          |
| Ultra-Wideband (UWB)                  | WIMU PRO<br>(Pino-Ortega et al., 2019)          | 18 Hz (positioning);<br>100 Hz (accelerometer) |
| Radio-Frequency Identification (RFID) | Ubisense RTLS<br>(Sampaio et al., 2016)         | $3.74 \pm 0.45$ Hz                             |
| Wearable Inertial Sensors (IMU)       | Catapult Optimeye S5<br>(Stoneman et al., 2025) | 100 Hz                                         |
| Computer Vision-Based Systems         | SAGIT<br>(Erčulj et al., 2008)                  | Not specified                                  |

Advanced player tracking data has enabled the precise quantification of defensive spacing, driving lanes, and closeout distances, transforming subjective "eye test" assessments into objective metrics. Defensive performance can now be characterized spatially and temporally using matrix factorization and hierarchical regression models, revealing nuanced aspects of defensive skill beyond traditional statistics like steals and blocks (Franks et al., 2015). This approach quantifies how defenders position themselves relative to offensive players, providing insights into defensive range and effectiveness. Similarly, offensive ball movement and player off-ball activity, such as the "gravitational pull" a shooter like Stephen Curry exerts

on defenses, can be analyzed through spatio-temporal patterns extracted from tracking data (Papalexakis & Pelechrinis, 2018). Tensor decomposition methods allow the identification of prototype offensive and defensive spatial patterns, facilitating comparisons of team and player tendencies in both offense and defense (Papalexakis & Pelechrinis, 2018). These quantitative methods open new avenues for understanding basketball strategy by objectively measuring spatial relationships and movement dynamics on the court (Franks et al., 2015).

**Table 8.** Spatial and tactical measures used in basketball performance analysis

| <b>Measure Type</b> | <b>Examples</b>                                                                                                                        |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Court positioning   | Burst locations (Maymin, 2013)<br>Front/close/elbow touches (Sampaio et al., 2015)<br>Shot zones (Bunker et al., 2025)                 |
| Team spacing        | Surface area dynamics (Metulini et al., 2018)<br>Interpersonal distances (Esteves et al., 2016)<br>Defensive zones (Tian et al., 2019) |
| Defensive pressure  | Defender distance (Sliz, 2017)<br>Contest angle (Daly-Grafstein & Bornn, 2021)<br>Role swaps (Lucey et al., 2014)                      |
| Court space value   | Court ownership & off-ball impact (Dan Cervone et al., 2016)                                                                           |

With spatial data, we can move beyond whether a shot was made or missed to evaluate the quality of the shot attempt. For example, Expected Points Per Shot (XPPS) models quantify shot quality by estimating the probability of a shot going in based on factors like shot location, defender proximity, shooter movement type (catch-and-shoot vs. off-the-dribble), and time on the shot clock. These models often use advanced statistical frameworks or generalized additive models to capture spatial and contextual shot characteristics, allowing for continuous estimation of expected points across the court (Scrucca & Karlis, 2025; Williams et al., 2025). For example, expected possession value (EPV) models integrate player

tracking data to predict points for the entire possession, reflecting real-time spatial interactions and decision-making (Daniel Cervone et al., 2016). XPPS metrics have been used to evaluate players and teams by comparing their shot selection efficiency and shooting ability relative to league averages, providing a more nuanced assessment than traditional shooting percentages (Jiao et al., 2021).

**Table 9.** Positional and player-type differences in physical and technical performance

| <b>Position</b> | <b>Key Characteristics</b>                                                             |
|-----------------|----------------------------------------------------------------------------------------|
| Guards          | Higher relative distance, peak speed, and peak acceleration (Pino-Ortega et al., 2019) |
| Forwards        | Highest explosive distance loading (0.810) among positions (Ibáñez et al., 2025)       |
| Centers         | Concentrated power demands (Ibáñez et al., 2025)                                       |

Defensively, tracking data has been revolutionary. We can now measure a defender's impact on shot difficulty—how much they lower an opponent's expected field goal percentage. Metrics like defensive field goal percentage allowed at the rim and contested shot rates gain deeper meaning when combined with tracking data that captures how defenders navigate screens, stay attached on drives, and close out on shooters. Machine learning applied to player tracking data can classify defensive strategies, including on-ball and off-ball actions, such as switches and traps, providing a more comprehensive view of defensive behavior beyond traditional stats like steals and blocks (Li, 2025; Tian et al., 2019). Tracking data also enables measurement of physical demands during defensive actions like pick-and-rolls, linking defensive effort and effectiveness to player load and positioning (Qarouach et al., 2025). Defensive metrics such as defensive rebounds, steals, and blocks remain important but are now complemented by advanced analytics that capture defensive positioning, contesting shots, and strategic decision-making (Cabarkapa et al., 2024).

**Table 10.** Relationships between training load metrics and game related statistics

| <i>Relationship</i>                                                                  | <i>Correlation / Finding</i>     | <i>Competition</i>    |
|--------------------------------------------------------------------------------------|----------------------------------|-----------------------|
| PlayerLoad $\leftrightarrow$ Points scored<br>(Askow et al., 2023)                   | $r = 0.38$ ( $p < 0.05$ )        | High school           |
| PlayerLoad $\leftrightarrow$ Free throw percentage<br>(Askow et al., 2023)           | $r = 0.21$                       | High school           |
| PlayerLoad·min $^{-1}$ $\leftrightarrow$ Field goals<br>(Brown et al., 2024)         | $r = 0.41$ ( $p = 0.02$ )        | NCAA Division I women |
| Training load (2 days pre-game) $\leftrightarrow$ Game load<br>(Olthof et al., 2021) | Significant positive correlation | NCAA Division I men   |
| Total jumps $\leftrightarrow$ Points scored<br>(Askow et al., 2023)                  | $r = 0.28$                       | High school           |



## POSSESSION & PLAY TYPE ANALYSIS

Synergy Sports Technologies categorizes basketball possessions into standardized play types to enable detailed tactical analysis. These play types include Transition, Isolation, Pick-and-Roll (Ball Handler), Pick-and-Roll (Roll Man), Post-Up, Spot-Up, Cut, Off-Screen, Handoff, and Putbacks, covering the main offensive actions in half-court settings. Each game is logged with these categories, creating a rich database that coaches and scouts use for tactical preparation and scouting reports. This system allows breaking down the game from macro team ratings to micro tactical elements, facilitating precise analysis of player and team behaviors during specific play types. The availability of such detailed data supports more accurate and actionable insights for coaching and research purposes (Božović, 2021). Each play type has its own expected efficiency based on league averages. NBA shot efficiency varies significantly by play type, with shots at the rim—often resulting from pick-and-roll (P&R) roll actions or cuts—and open catch-and-shoot three-pointers from spot-up plays consistently rated as the most efficient.

Isolation and post-up plays tend to be less efficient, typically generating fewer points per possession due to their static nature and higher defensive pressure (Christmann et al., 2018). The efficiency of corner three-point shots is notably high, largely because these shots are frequently assisted, increasing their success rate



despite their longer distance from the basket compared to shots at the rim (Pelechrinis & Goldsberry, 2021). Overall shooting efficiency, including free throws, two-point, and three-point shots, strongly correlates with winning outcomes in the NBA (Cabarkapa, Deane, Fry, et al., 2022), highlighting the importance of shot selection and play type in offensive success. This lexicon allows coaches and analysts to build a precise offensive and defensive profile for any player or team, identifying strengths to exploit and weaknesses to target.

**Table 11.** Offensive play type classification systems used in basketball analytics

| <i>Study</i>                  | <i>Play Types Analyzed</i>                                                                                                        | <i>Classification Approach</i>                       |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Christmann et al. (2018)      | 1x1 without isolation, 1x1 with isolation, pick-and-roll, complex team play, inbound play, transition play                        | Expert coach definitions supported by video analysis |
| Foteinakis et al. (2024)      | ISO, SUP, PnRBH, TR, HO, CUT, PB, PUP, OBS, IN                                                                                    | Systematic observation using video analysis software |
| Matulaitis and Bietkis (2021) | Handoff, post-up, spot-up, PnR ball handler, PnR screener, isolation, cuts, offensive rebound, off-screen, transition, fast break | Outcome- and efficiency-based categorization         |
| Selmanovic et al. (2023)      | Set offense, transition offense, early offense                                                                                    | Match Analysis System-based classification           |
| Bazanov et al. (2006)         | Fast break, early offense, set offense                                                                                            | Data mining using the WizWhy program                 |

The core metric for play type analysis is Points Per Possession (PPP). Calculating a team's PPP is a key approach in play type analysis, quantifying the efficiency of different offensive actions by measuring the average points scored per possession. This data drives modern scouting and game planning. A defensive scheme might be

built to force a high-usage star into inefficient isolation plays by switching and staying home on shooters, rather than letting him initiate a lethal pick-and-roll. Offensively, teams "hunt" mismatches by repeatedly calling plays that attack a weak defender in his most vulnerable coverage (e.g., targeting a slow-footed big man in space via a high pick-and-roll). Play type efficiency data plays a crucial role in roster construction by identifying the specific skill sets needed to maximize offensive and defensive effectiveness. For example, clustering players based on shooting style and offensive roles reveals which combinations of players enhance scoring efficiency, emphasizing the value of elite pull-up shooters for pick-and-roll actions and versatile defenders capable of switching (Yamada & Fujii, 2024).

**Table 12.** Effects of game situation and score differential on play type effectiveness

| <i>Study</i>               | <i>Contextual Factor</i>       | <i>Effect on Effectiveness</i>                                                                 |
|----------------------------|--------------------------------|------------------------------------------------------------------------------------------------|
| Christmann et al. (2018)   | Leading vs. trailing           | 0.8 points per possession when leading vs. 1.4 points per possession when trailing             |
| Foteinakis et al. (2024)   | Close games ( $\leq 5$ points) | Winning teams used longer possessions                                                          |
| Gómez et al. (2013)        | Game period                    | Different tactics were effective in the first 5 minutes, middle 30 minutes, and last 5 minutes |
| Sampaio and Janeira (2003) | Close vs. balanced games       | Distinct performance profiles across game types                                                |

**Table 13.** Effectiveness measures used to evaluate possessions and play types in basketball

| <b>Study</b>                 | <b>Primary Metric</b>                      | <b>Secondary Measures</b>                        | <b>Calculation Method</b>                    |
|------------------------------|--------------------------------------------|--------------------------------------------------|----------------------------------------------|
| Christmann et al. (2018)     | Points per possession (PPP)                | Scoring percentages, continued possession points | Average points per play type                 |
| Courel-Ibáñez et al. (2016)  | Possession effectiveness (dichotomous)     | Possession duration                              | Odds ratios derived from logistic regression |
| Conte et al. (2018)          | Offensive/defensive ratings, effective FG% | Defensive rebounds, steals                       | Four Factors framework                       |
| Foteinakis et al. (2024)     | Points per possession, success rate        | Possession duration                              | Field-goal- and foul-based scoring model     |
| Daniel Cervone et al. (2016) | Expected Possession Value (EPV)            | Not specified                                    | Stochastic process modeling                  |
| Charamis et al. (2023)       | Net Rating                                 | True Shooting %, Offensive Rebound %, Turnover % | Regression-based Three Pillars model         |



## **TEAM CONSTRUCTION - LINEUP ANALYSIS & FIT**

A team's success is not merely the sum of its individual players; it is strongly influenced by how players function together in specific five-man lineups rather than just individual talent. Advanced statistical models, such as extended adjusted plus-minus and spectral analysis, evaluate lineup efficiency by isolating the combined effects of player groups, revealing that synergy within lineups significantly impacts team performance (Devlin & Uminsky, 2020; Grassetti et al., 2021). Network analysis of NBA teams demonstrates that team offensive strategies, including ball distribution patterns and ss, especially in the evolving context of position-less basketball and varied player roles (Kalman & Bosch, 2020). Studies also integrate Net Rating with social network analysis and clustering of player tendencies to identify which player roles and interactions contribute most to positive lineup performance (Wei et al., 2025). Additionally, Net Rating correlates strongly with team success metrics, outperforming individual player ratings alone, highlighting



the importance of collective lineup synergy over isolated individual contributions (Nagy et al., 2025).

**Table 14.** Overview of methodological approaches to analyze team **construction** in basketball

| <b>Method Category</b>          | <b>Representative Studies</b>                                                | <b>Key Techniques</b>                                            | <b>Primary Application</b>                    |
|---------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------|
| Network Analysis                | Fewell et al. (2012); Guo et al. (2024); Pelechrinis (2018)                  | Degree centrality, clustering coefficients, node2vec embeddings  | Ball movement patterns, lineup matchups       |
| Machine Learning / Clustering   | Kalman and Bosch (2020); Penner (2025); Yamada and Fujii (2024)              | K-means, hierarchical clustering, Wasserstein distances          | Player role and archetype identification      |
| Bayesian / Statistical Modeling | Grassetti et al. (2021); Sandholtz and Bornn (2020); Sandholtz et al. (2021) | Bayesian hierarchical models, Gaussian processes                 | Performance estimation under uncertainty      |
| Spectral / Algebraic Analysis   | Devlin and Uminsky (2020); Leise (2021)                                      | Orthogonal decomposition, spectral signal analysis               | Isolation of individual and group effects     |
| Neural Networks                 | Guan et al. (2023); Keshri (2019)                                            | Word2Vec, recurrent neural networks, deep learning architectures | Play and outcome prediction                   |
| Game Theory / Optimization      | Kuehn (2016); Maymin et al. (2013); Metulini and Gnecco (2023)               | Shapley value, simulation, probabilistic optimization            | Player value attribution and decision support |

Coaches and analysts obsess over finding lineups that consistently produce strong positive net ratings over significant minutes. This reveals which combinations have synergistic, complementary effects. The goal of identifying the best five-player basketball lineup extends beyond selecting the top individual players to finding those whose skills and roles fit together to form a coherent, two-way system. Synergy effects arise because players' skills complement each other differently, making a player's value dependent on the other four on the court, which can even inform mutually beneficial trades between teams (Maymin et al., 2013). This analysis extends beyond the starting lineup to critical bench units that must maintain leads or change the game's tempo. Studies also emphasize the

importance of balancing offensive and defensive roles, as well as the compatibility of playing styles, to optimize scoring efficiency and overall lineup effectiveness (Yamada & Fujii, 2024). Furthermore, team cohesion and interpersonal synergies at both dyadic and collective levels contribute to stabilizing performance goals, such as defensive positioning and ball control, which are crucial for a coherent system (Santos, 2022).

On-court chemistry in basketball, often referred to analytically as "fit," describes how well players' skills complement each other to create effective team performance beyond individual talent. In the modern game, the most important component of offensive fit is spacing, having multiple three-point threats on the floor to widen driving and passing lanes. Defensive fit revolves around versatility, having players who can switch screens and guard multiple positions to neutralize opponent actions. Fit also involves role complementarity: pairing a ball-dominant playmaker with low-usage, high-efficiency finishers and shooters; or surrounding a non-shooting defensive anchor with perimeter players who can cover for him in space.

The Skills Plus Minus (SPM) framework quantifies this chemistry by evaluating players' offensive and defensive skills in scoring, rebounding, and ball-handling, then simulating lineups to measure synergy effects—how the combined lineup performs relative to the sum of individual parts (Maymin et al., 2013). This approach shows that a player's value depends heavily on the other players on the court, meaning that fit influences player desirability and can lead to mutually beneficial trades between teams. High-quality interpersonal relationships, such as strong coach-athlete bonds, also enhance training engagement and skill development, indirectly supporting better on-court chemistry (Luo et al., 2025). While fit is primarily studied in terms of skill interactions and lineup effectiveness, related concepts from organizational psychology highlight that alignment between individual preferences and environmental factors (person-environment fit) can impact well-being and performance, suggesting a broader context for understanding chemistry (Cobb et al., 2025).

**Table 15.** Lineup effectiveness metrics: primary outcome measures

| <i>Metric</i>                |                                                                     |                                                                |                                  |   |
|------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------|---|
| <i>Type</i>                  | <i>Representative Studies</i>                                       | <i>Definition / Calculation</i>                                | <i>Advantages</i>                |   |
| Plus-minus variants          | Grassetti et al. (2021); Leise (2021); Martonosi et al. (2023)      | Point differential while the lineup is on the court            | Simple, intuitive interpretation |   |
| Offensive / Defensive Rating | Chen and Geyer (2023); Kolić et al. (2022); Yamada and Fujii (2024) | Points scored or allowed per 100 possessions                   | Pace-adjusted comparison         |   |
| Win Probability              | Bhat et al. (2015); Metulini and Gnecco (2023)                      | Logistic-regression-based win probability                      | Directly outcome-focused         |   |
| Network Entropy              | Fewell et al. (2012); Wiseman (2025)                                | Degree of unpredictability in ball movement networks           | Captures tactical complexity     |   |
| Synergy Measures             | Devlin and Umansky (2020); Maymin (2013)                            | Lineup performance relative to sum of individual contributions | Isolates lineup chemistry        | — |



## **MACRO-STRATEGY FOR THE MODERN GAME**

Analytics has fundamentally reshaped basketball's philosophical underpinnings by allowing data-driven decision-making that optimizes team strategy, player performance, and health management. Advanced metrics and machine learning models now allow teams to evaluate player skills, predict performance outcomes, and analyze complex in-game tactics such as defensive switches and traps with high accuracy (Li, 2025; Sarlis & Tjortjis, 2020).

Among all, the first pillar is Pace. Playing at a faster pace in basketball increases the number of possessions, which allows a team's superior efficiency to translate into a larger point differential over time. Research shows that in fast-paced games, key factors distinguishing winners include defensive rebounds, three-point field goals made, and free throws made, highlighting how pace influences critical performance metrics (Chen et al., 2024). NBA teams with different offensive tempos reveal that the ability to adjust play tempo dynamically is crucial for maximizing offensive efficiency and managing player fatigue (Jiménez et al., 2025). Intra-game pace analysis demonstrates that faster segments often occur at the end of quarters, driven by rapid transitions and tactical urgency, which can impact game outcomes (F. Zhang et al., 2025). Additionally, faster play demands superior player tracking speed and decision-making, which expert players handle better, supporting the advantage of a high pace (Gou & Li, 2025).



The second, more transformative pillar is Spacing and Shot Selection. The pillar of Spacing and Shot Selection is transformative because it directly influences offensive efficiency by optimizing where and how shots are taken on the court. Data unequivocally shows that the most efficient shots are at the rim and from the three-point line; the long two-pointer is the least efficient (Pelechrinis & Goldsberry, 2021). This mathematical truth gave rise to "Moreyball" (prioritizing only those high-value shots) and has since evolved into the league-wide norm. Teams now design entire offensive systems to generate these shots: five-out sets to open the rim, intricate off-ball screens for three-point looks, and a systematic effort to eliminate mid-range attempts.

Effective spacing creates larger interpersonal distances between offensive players and defenders, increasing the likelihood of successful shots by reducing defensive pressure or opening driving lanes (Esteves et al., 2016). Advanced statistical models like Bayesian Additive Regression Trees help analyze spatial shot patterns, revealing latent tendencies that can inform strategic shot allocation and improve team scoring potential (Cao et al., 2025). Additionally, creating open shots through ball screens and passing is key to shot success, as open shots significantly increase scoring probability regardless of the type of play (Serna et al., 2021). Theoretical models suggest that players should be selective about shot quality depending on the number of remaining shot opportunities, balancing the risk of passing up good shots against the chance of better opportunities later (Skinner, 2012).

Analytics also provides a powerful framework for choosing and evaluating basketball defensive schemes by leveraging player tracking data and machine learning techniques. Hybrid models combining Long-Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN) can classify defensive strategies such as switches and traps with high accuracy, allowing real-time tactical analysis and better understanding of defensive behavior (Li, 2025). Data can show a team whether it's more effective to drop its center in pick-and-roll (protecting the rim but conceding mid-range shots), blitz/trap the ball handler (forcing turnovers but creating 4-on-3 situations), or switch everything (eliminating open shots but risking mismatches). The choice depends on personnel and opponent tendencies. Machine learning approaches also allow classification of defensive responses to specific plays like pick-and-rolls, considering the roles of all players on the court, not just

the on-ball defender, with classification accuracies around 69% (Tian et al., 2019). Advanced spatial and hierarchical models help quantify defensive skill and team defensive strength beyond traditional statistics, revealing modern defensive archetypes that correlate with team success (Franks et al., 2015; South, 2025).

The integration of advanced analytics into basketball has fundamentally altered the strategic landscape of the game, moving coaching decisions from the box of intuition and tradition into a framework of probabilistic reasoning and data-driven perceptions. This transformation is most evident in the real-time, high-pressure tactical choices made throughout the course of a game, where analytics now provides a critical layer of objective evidence to inform split-second judgments.

This data-centric revolution has created a new coaching paradigm where every possession is a calculable equation. The sideline environment has undergone a profound transformation, evolving into a real-time data synthesis and decision-support hub. It functions as a nerve center for tactical operations, where integrated streams of player tracking, performance biometrics, and opponent tendencies are processed. This allows the coaching staff to transition from reactive observation to proactive, model-informed orchestration of game dynamics. The bench area is no longer a passive viewing point but an active node in a cognitive network, applying computational analytics to optimize human performance within the fluid constraints of competition. While the human elements of instinct, motivation, and in-game feel remain irreplaceable, they are now powerfully augmented by a foundation of empirical evidence. Ultimately, analytics has not removed decision-making from coaches, but has equipped them with a sophisticated probabilistic lens, turning timeouts, substitutions, and fouls into precise instruments for maximizing their team's chances of winning.



## THE CUTTING EDGE & YOUR TOOLKIT

Basketball analytics is evolving to not only measure on-court performance but also to understand the underlying strategies and factors influencing game outcomes. Advanced machine learning models analyze player movements and defensive strategies, such as switches and traps, with high accuracy, providing coaches with tactical observations in real time (Li, 2025). Computer vision and machine learning are increasingly automating basketball tracking data analysis, enabling real-time identification of complex plays and defensive schemes without manual labeling.

A hybrid model combining Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN) achieved 91.4% accuracy in classifying defensive strategies like switches and traps using NBA SportVU tracking data, demonstrating strong potential for automated tactical analysis (Li, 2025). They can measure intangibles like help defense positioning, boxout effort, and screen quality. Deep learning models applied to inertial measurement unit (IMU) sensor data around the basketball net can classify shot types with nearly 88% accuracy, supporting real-time skill analysis and performance evaluation (J. Zhang et al., 2025). Machine vision techniques have also been used to extract features from player actions, such as fouls, with improved classification performance over traditional methods, highlighting the ability to analyze nuanced game events (Du et al., 2024).



Additionally, video-based deep learning architectures employing LSTM and spatial-temporal scoring effectively recognize and predict player movements, enhancing basketball video understanding (Fang et al., 2025).

Simultaneously, Biometric data from wearable devices, such as heart rate, sleep, fatigue, and workload, are essential for effective load management and injury prediction in basketball. Monitoring both internal loads (heart rate, perceived exertion) and external loads (movement via GPS, accelerometers, local positioning systems, and ultra-wideband technology) provides precise, real-time insights into player performance and physical demands, particularly in female basketball players (Muñoz-Andradas et al., 2025). This fusion of spatial and physiological data aims to optimize performance and longevity. Athlete monitoring systems that combine objective biometric data with subjective athlete-reported measures enable coaches to make informed decisions on load and recovery management, enhancing injury prevention strategies in elite basketball (Burger et al., 2024). In team building, draft and prospect models have grown sophisticated, blending college/international production (adjusted for competition), physical measurements (combine data), age, and even shooting form analysis to project NBA readiness and star potential, reducing the uncertainty of the draft.

The integration of tracking data, biometrics, video, and traditional statistics into unified AI models represents a significant advancement in basketball analytics. Recent AI systems combine player and ball tracking with action recognition using deep learning models like YOLO and LSTM, achieving high accuracy in detecting player movements and game events in real time (Li, 2025). IoT-enhanced frameworks further improve real-time data collection and processing, enabling adaptive insights into player performance and strategy with recognition accuracies around 92% (Liu et al., 2025). Hybrid AI models also analyze defensive strategies and player behaviors by fusing spatial and temporal features from tracking data, supporting tactical planning with over 90% accuracy (Liu et al., 2025). Additionally, AI-powered video analysis and eye-tracking data provide deeper understanding of cognitive processes and decision-making in coaches and referees, enriching performance analysis (Lozzi et al., 2025). These integrated AI approaches enable comprehensive, real-time monitoring and strategic evaluation, driving the next horizon in basketball performance optimization and injury prevention (Alshardan et al., 2025).



These models could act as a "basketball brain," simulating games, predicting opponent play-calls in real-time, and suggesting optimal counter-strategies. We may see the rise of truly personalized development programs, where a player's biomechanics, shot data, and fitness levels are used to design hyper-specific training regimens. However, this frontier raises critical ethical questions. How much biometric data can a team mandate from a player? Does excessive data-driven optimization risk make the game formulaic? And crucially, how do we balance the cold logic of algorithms with the human elements of instinct, chemistry, and leadership that have always defined the sport? The future of analytics lies not in replacing the human element, but in creating a more informed partnership between data and intuition.



## HOW TO START YOUR OWN ANALYSIS

The inaugural phase of any basketball analytics endeavor necessitates the procurement of robust and reliable data. Fortunately, the contemporary landscape offers a profusion of publicly accessible repositories, each serving a distinct epistemological function. The premier official source is *NBA.com/stats*, which provides a comprehensive and authoritative dataset. This platform extends beyond conventional box score aggregates (points, rebounds, assists) to include granular, league-tracked metrics: play-type breakdowns, defensive hustle statistics, and advanced tracking data derivatives. Its interactive filtering tools facilitate granular inquiry across temporal frames, lineup combinations, and specific game contexts.



Players ▾ General ▾ Traditional ▾

SEASON 2025-26 SEASON TYPE Regular Season PER MODE Per Game SEASON SEGMENT All Season Segments Advanced Filters ▾

GLOSSARY

503 Rows • Page 1 of 11 < >

|    | PLAYER                  | TEAM | AGE | GP | W  | L  | MIN  | PTS  | FGM  | FGA  | FG%  | 3PM | 3PA  | 3P%  | FTM | FTA  | FT%  | OREB | DREB | REB  | AST  | TOV | STL | BLK | PF  | FP   | DD2  | TD3  | +    |
|----|-------------------------|------|-----|----|----|----|------|------|------|------|------|-----|------|------|-----|------|------|------|------|------|------|-----|-----|-----|-----|------|------|------|------|
| 1  | Luka Dončić             | LAL  | 26  | 22 | 15 | 7  | 36.4 | 33.7 | 10.4 | 22.6 | 46.1 | 3.4 | 10.5 | 32.2 | 9.5 | 11.9 | 80.1 | 0.8  | 7.6  | 8.5  | 8.7  | 4.3 | 1.5 | 0.6 | 2.5 | 59.0 | 15.0 | 3.0  | 1.3  |
| 2  | Shai Gilgeous-Alexander | OKC  | 27  | 30 | 25 | 5  | 33.5 | 32.1 | 10.9 | 19.8 | 55.1 | 2.2 | 5.1  | 42.5 | 8.1 | 9.2  | 88.4 | 0.5  | 4.4  | 4.9  | 6.5  | 2.0 | 1.5 | 0.8 | 2.1 | 52.4 | 3.0  | 0.0  | 11.9 |
| 3  | Tyrese Maxey            | PHI  | 25  | 26 | 15 | 11 | 39.8 | 31.0 | 10.6 | 22.9 | 46.1 | 3.7 | 9.3  | 39.1 | 6.2 | 6.9  | 88.9 | 0.3  | 4.2  | 4.5  | 6.9  | 2.7 | 1.8 | 0.8 | 2.3 | 51.9 | 2.0  | 0.0  | 1.9  |
| 4  | Donovan Mitchell        | CLE  | 29  | 29 | 16 | 13 | 34.0 | 30.7 | 10.7 | 21.5 | 49.9 | 4.0 | 10.3 | 39.0 | 5.2 | 6.1  | 85.3 | 0.9  | 3.7  | 4.6  | 5.4  | 3.2 | 1.4 | 0.3 | 2.6 | 46.2 | 1.0  | 0.0  | 5.7  |
| 5  | Nikola Jokić            | DEN  | 30  | 30 | 22 | 8  | 35.0 | 29.8 | 10.6 | 17.5 | 60.9 | 2.2 | 5.0  | 44.0 | 6.3 | 7.4  | 85.1 | 2.9  | 9.2  | 12.1 | 11.0 | 3.6 | 1.4 | 0.8 | 2.9 | 64.0 | 27.0 | 15.0 | 9.6  |
| 6  | Jaylen Brown            | BOS  | 29  | 27 | 16 | 11 | 33.8 | 29.4 | 10.7 | 21.5 | 49.7 | 2.1 | 5.7  | 36.4 | 5.9 | 7.6  | 78.0 | 1.2  | 5.1  | 6.4  | 4.9  | 3.6 | 1.1 | 0.5 | 3.0 | 45.6 | 3.0  | 1.0  | 2.4  |
| 7  | Anthony Edwards         | MIN  | 24  | 24 | 16 | 8  | 35.2 | 29.4 | 9.9  | 20.1 | 49.4 | 3.4 | 8.4  | 40.1 | 6.2 | 7.5  | 81.8 | 0.8  | 4.3  | 5.1  | 3.8  | 3.0 | 1.4 | 0.8 | 2.0 | 44.9 | 1.0  | 0.0  | 2.0  |
| 8  | Jalen Brunson           | NYK  | 29  | 27 | 20 | 7  | 35.4 | 29.3 | 10.3 | 21.4 | 47.8 | 3.0 | 7.8  | 38.1 | 5.8 | 6.9  | 84.4 | 0.6  | 2.7  | 3.3  | 6.5  | 2.2 | 0.8 | 0.1 | 2.5 | 43.5 | 4.0  | 0.0  | 6.3  |
| 9  | Giannis Antetokounmpo   | MIL  | 31  | 17 | 9  | 8  | 29.1 | 28.9 | 11.1 | 17.3 | 63.9 | 0.6 | 1.4  | 43.5 | 6.2 | 9.8  | 63.5 | 3.3  | 6.8  | 10.1 | 6.1  | 3.3 | 0.9 | 0.9 | 2.8 | 52.6 | 9.0  | 0.0  | 5.6  |
| 10 | Stephen Curry           | GSW  | 37  | 22 | 12 | 10 | 31.7 | 28.4 | 9.3  | 19.9 | 46.7 | 4.8 | 12.2 | 39.0 | 5.1 | 5.5  | 91.8 | 0.5  | 3.7  | 4.2  | 4.3  | 3.0 | 1.3 | 0.5 | 2.0 | 42.0 | 1.0  | 0.0  | 1.5  |

Figure 1. Official NBA stats database ([nba.com/stats/](https://nba.com/stats/))

For historical depth, methodological transparency, and a wide array of pre-calculated advanced metrics, Basketball-Reference.com constitutes an indispensable scholarly resource. It functions not merely as an archive but as an analytical engine, providing direct access to metrics such as PER, USG%, and various Plus/Minus iterations. Its structured data tables, coupled with robust "Share & Export" functionalities, allow for seamless integration into external analytical workflows. For analysis seeking to isolate core competitive performance, CleaningTheGlass.com employs a critical methodological intervention by excising "garbage time" possessions—periods of non-competitive play during decisive outcomes. This purification of the dataset yields metrics more reflective of a team or player's efficacy under meaningful conditions, while the site's proprietary analytics offer sophisticated, positionally-adjusted context. For those pursuing novel research or machine learning applications, platforms like Kaggle periodically host rich datasets, including anonymized player tracking coordinates (X, Y) and event logs. These repositories provide the raw material for original spatial and temporal analysis, enabling investigations into offensive spacing, defensive scheme geometry, and movement pattern recognition.

The selection of an analytical tool should align with the complexity of the inquiry and the scale of the dataset. For foundational and highly effective analysis, spreadsheet software (Microsoft Excel or Google Sheets) remains profoundly capable. Mastery of core functionalities—particularly pivot tables for multidimensional data summarization, array formulas for complex calculations, and native statistical functions—empowers the analyst to perform sophisticated descriptive and inferential statistics. The creation of dynamic dashboards and interactive charts within this environment is a powerful skill for interactive insights.

When projects demand data manipulation at scale, complex statistical modeling, or automation of repetitive tasks, transitioning to a programming language becomes essential. R, with its unparalleled suite of statistical packages (tidyverse for data wrangling, ggplot2 for visualization, nbastatR for direct API access) is tailored for statistical research and elegant data visualization. Python, with libraries such as pandas for dataframes, numpy for numerical computing, and scikit-learn for machine learning, offers greater versatility for end-to-end pipeline

development, web scraping, and advanced predictive modeling. The initial learning curve is offset by exponential gains in reproducibility, scalability, and analytical power.



### **A Foundational Research Project: The Usage-Efficiency Matrix**

A pedagogically ideal inaugural project is the construction and interpretation of a Usage-Efficiency Matrix. This exercise integrates data acquisition, calculation, visualization, and hypothesis generation.

**Data Procurement & Calculation:** Extract a complete season's player data from Basketball-Reference, ensuring the dataset includes fields for Points (PTS), Field Goal Attempts (FGA), Free Throw Attempts (FTA), and an estimate of possessions used. Calculate True Shooting Percentage (TS%) using the formula:  $TS\% = PTS / (2 * (FGA + 0.44 * FTA))$ . This metric serves as the holistic measure of scoring efficiency. The Usage Rate (USG%), which estimates the percentage of team possessions a player consumes while on the floor, is typically provided directly in the dataset.



### **Visualization & Quadrant Analysis**

Plot each player as a point on a scatter plot with Usage Rate on the x-axis and True Shooting Percentage on the y-axis. Applying league-average lines for both metrics divides the plane into four interpretative quadrants (Figure 1):



#### ***High Usage, High Efficiency (Upper Right)***

The superstar quadrant. Players here (e.g., Nikola Jokić) sustain elite scoring volume with exceptional efficiency, the engine of championship-caliber offenses.

#### ***High Usage, Low Efficiency (Lower Right)***



The "volume scorer" quadrant. Players here may post high point totals but do so at a cost to overall offensive efficiency. Analysis must probe context: Is this inefficiency due to role (primary option on a weak team), shot selection, or defensive attention?



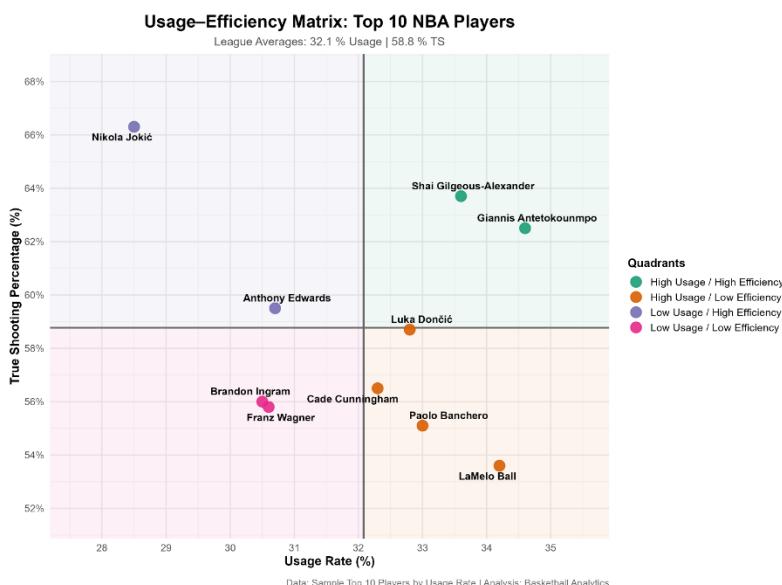
### Low Usage, High Efficiency (Upper Left)

The elite role player quadrant. These players (e.g., elite three-point specialists, rim-running centers) maximize their limited touches, providing crucial offensive spacing and synergy. Their value is often underrepresented in traditional metrics.



### Low Usage, Low Efficiency (Lower Left)

The replacement-level or defensive specialist quadrant. Players residing here typically contribute value through non-scoring avenues (defense, screening, hustle).



**Figure 2.** NBA players' efficiency and usage visualization & quadrant analysis



### ***The Appeal of Analytical Communication***

The ultimate objective of basketball analytics is not to generate numbers but to produce evidence-based insight. This requires translating quantitative findings into a coherent, accessible, and persuasive story. Effective communication involves:

1. Clarity: Defining metrics upon first use and avoiding jargon when possible.
2. Visual Sophistication: Employing clean, well-labeled charts that highlight the key takeaway.
3. Intellectual Honesty: Actively discussing the caveats, assumptions, and potential biases within the analysis.
4. Question-Driven Focus: Positioning the analysis as a tool for answering a specific basketball question, not merely displaying computational prowess.

The disciplined analyst recognizes that data illuminates rather than dictates. It is a powerful lens through which to view the game's complexity, always to be integrated with film study, institutional knowledge, and an appreciation for the intangible human elements that define sport.



## REFERENCES

Akyüz, M., Özkan, A., Taş, M., Sevim, O., Akyüz, Ö., & Uslu, S. (2013). Yıldız basketbol millî takımında yer alan kız sporcuların kuvvet profillerinin belirlenmesi ve ilişkilendirilmesi. *International Journal of Sport Culture and Science*, 1(3), 39–48. <https://dergipark.org.tr/en/pub/intjscs/article/108012>

Alshardan, A., Mahgoub, H., Alahmari, S., Alonazi, M., Marzouk, R., & Mohamed, A. (2025). Cloud-to-Thing continuum-based sports monitoring system using machine learning and deep learning model. *PeerJ Computer Science*, 11, e2539.

Antoranz, Y., Alonso-Pérez-Chao, E., Tejero-González, C. M., Salazar, H., del Campo-Vecino, J., & Jiménez-Sáiz, S. L. (2025). Understanding External Peak Demands in Elite vs. Non-Elite Male Basketball Players. *Sports*, 13(6), 179.

Askow, A. T., Jennings, W., Jagim, A. R., Fields, J. B., Beaudoin, R. G., Sanchez, G. M., Weeks, J. E., Oliver, J. M., & Jones, M. T. (2023). Athlete external load measures across a competitive season in high school basketball. *The Journal of Strength & Conditioning Research*, 37(11), 2206-2212.

Bazanov, B., Vöhandu, P., & Haljand, R. (2006). Trends in offensive team activity in basketball. *Ugdymas. Kūno kultūra. Sportas.*, 2, 5-11.

Bhat, H. S., Huang, L.-H., & Rodriguez, S. (2015). Learning Stochastic Models for Basketball Substitutions from Play-by-Play Data. *MLSA@ PKDD/ECML*,

Božović, B. (2021). The use of “synergy sports technology” for the collection of basketball game statistics. Sinteza 2021-international scientific conference on information technology and data related research,

Brown, F. S., Fields, J. B., Jagim, A. R., Baker, R. E., & Jones, M. T. (2024). Analysis of in-season external load and sport performance in women’s collegiate basketball. *The Journal of Strength & Conditioning Research*, 38(2), 318-324.

Bunker, R. P., Le Duy, V. N., Tabei, Y., Takeuchi, I., & Fujii, K. (2025). Multi-agent statistically discriminative sub-trajectory mining and an application to NBA basketball. *Journal of Quantitative Analysis in Sports*, 21(4), 273-292.

Burger, J., Henze, A.-S., Voit, T., Latzel, R., & Moser, O. (2024). Athlete monitoring systems in elite men’s basketball: challenges, recommendations, and future perspectives. *Translational Sports Medicine*, 2024(1), 6326566.

Cabarkapa, D., Cabarkapa, D. V., & Fry, A. C. (2024). Game-related statistics that discriminate winning from losing in NCAA Division-I men’s basketball. *Frontiers in Sports and Active Living*, 6, 1387918.

Cabarkapa, D., Deane, M. A., Cabarkapa, D. V., Jones, G. T., & Fry, A. C. (2022). Differences in game-related statistics between winning and losing teams in NCAA division-II men’s basketball. *Journal of Applied Sports Sciences*, 6, 3-10.

Cabarkapa, D., Deane, M. A., Fry, A. C., Jones, G. T., Cabarkapa, D. V., Philipp, N. M., & Yu, D. (2022). Game statistics that discriminate winning and losing at the NBA level of basketball competition. *Plos one*, 17(8), e0273427.

Cabarkapa, D., Eserhaut, D. A., Fry, A. C., Cabarkapa, D. V., Philipp, N. M., Whiting, S. M., & Downey, G. G. (2022). Relationship between upper and lower body strength and basketball shooting performance. *Sports*, 10(10), 139.

Canuto, S. C., & de Almeida, M. B. (2022). Determinants of basketball match outcome based on game-related statistics: A systematic review and meta-analysis. *European Journal of Human Movement*(48), 4-20.

Cao, J., Yang, H.-C., & Hu, G. (2025). How do the professional players select their shot locations? An analysis of Field Goal Attempts via Bayesian Additive Regression Trees. *arXiv preprint arXiv:2503.07789*.

Catalfano, J. J. (2015). Moneyball to moreyball: How analytics have shaped the NBA today.

Cecchin, A. (2022). Oliver's four-factor model: Validation through causality. *International Journal of Sports Science & Coaching*, 17(4), 838-847.

Çene, E. (2018). What is the difference between a winning and a losing team: insights from Euroleague basketball. *International Journal of Performance Analysis in Sport*, 18(1), 55-68.

Cervone, D., Bornn, L., & Goldsberry, K. (2016). NBA court realty. 10th MIT Sloan sports analytics conference,

Cervone, D., D'Amour, A., Bornn, L., & Goldsberry, K. (2016). A multiresolution stochastic process model for predicting basketball possession outcomes. *Journal of the American Statistical Association*, 111(514), 585-599.

Charamis, E., Marmarinos, C., & Ntzoufras, I. (2023). Estimating team possessions in high-level European basketball competition. *International Journal of Sports Science & Coaching*, 18(1), 220-230.

Chen, R., Zhang, M., Xu, X., & Liu, Y. (2024). Game-related statistics for distinguishing winning and losing teams in Olympic basketball: The impact of game pace. *Journal of sports sciences*, 42(24), 2541-2552.

Chen, X., & Geyer, P. (2023). Pathway toward prior knowledge-integrated machine learning in engineering. *arXiv preprint arXiv:2307.06950*.

Christmann, J., Akamphuber, M., Müllenbach, A. L., & Göllich, A. (2018). Crunch time in the NBA—The effectiveness of different play types in the endgame of close matches in professional basketball. *International Journal of Sports Science & Coaching*, 13(6), 1090-1099.

Cobb, H. R., Thomas, C. L., Brossot, R. M., Piszczek, M. M., & Rudolph, C. W. (2025). Understanding Boundary Management Fit: A Systematic Review of Work-Nonwork Boundary Management and Person-Environment Fit. *Organizational Psychology Review*, 15(4), 453-496.

Conte, D., Tessitore, A., Gjullin, A., Mackinnon, D., Lupo, C., & Favero, T. (2018). Investigating the game-related statistics and tactical profile in NCAA division I men's basketball games. *Biology of sport*, 35(2), 137-143.

Courel-Ibáñez, J., McRobert, A. P., Toro, E. O., & Vélez, D. C. (2016). Inside pass predicts ball possession effectiveness in NBA basketball. *International Journal of Performance Analysis in Sport*, 16(2), 711-725.

Csataljay, G., James, N., Hughes, M., & Dancs, H. (2017). Analysis of influencing factors behind offensive rebounding performance in elite basketball. *International Journal of Sports Science & Coaching*, 12(6), 774-781.

Csataljay, G., O'Donoghue, P., Hughes, M., & Dancs, H. (2009). Performance indicators that distinguish winning and losing teams in basketball. *International Journal of Performance Analysis in Sport*, 9(1), 60-66.

Daly-Grafstein, D., & Bornn, L. (2021). Using in-game shot trajectories to better understand defensive impact in the NBA. *Journal of Sports Analytics*, 6(4), 235-242.

Damoulaki, A., Ntzoufras, I., & Pelechrinis, K. (2025). Lasso multinomial performance indicators for in-play basketball data: A. Damoulaki et al. *Computational Statistics*, 40(4), 2157-2181.

de Almeida, M. B., Canuto, S. C., Lima, G. S., & Oliveira, W. G. (2022). Performance analysis in elite basketball differentiating game outcome and gender. *European Journal of Human Movement*, 49.

Deshpande, S. K., & Jensen, S. T. (2016). Estimating an NBA player's impact on his team's chances of winning. *Journal of Quantitative Analysis in Sports*, 12(2), 51-72.

Devlin, S., & Umansky, D. (2020). Identifying group contributions in NBA lineups with spectral analysis. *Journal of Sports Analytics*, 6(3), 215-234.

Du, D., Chai, L., Li, M., Jiang, L., Choosakul, C., & Liu, S. (2024). Extracting Features from Foul Actions of Basketball Players in Real Time Using Machine Vision. *International Journal of Computational Intelligence Systems*, 17(1), 67.

Ehrlich, J. A., & Potter, J. M. (2021). Is offense worth more than defense and pitching? Marginal revenue product and revenue sharing in major league baseball. *Managerial Finance*, 47(6), 760-778.

Ektirici, A. (2023). Game-related statistics discriminating winners and losers in Turkish basketball super league: effect of home-away games. *Spor Bilimleri Araştırmaları Dergisi*, 8(2), 148-156.

Erčulj, F., Dežman, B., Vučković, G., Perš, J., Perše, M., & Kristan, M. (2008). AN ANALYSIS OF BASKETBALL PLAYERS'MOVEMENTS IN THE SLOVENIAN BASKETBALL LEAGUE PLAY-OFFS USING THE SAGIT TRACKING SYSTEM. *Facta Universitatis: Series Physical Education & Sport*, 6(1).

Esteves, P. T., Silva, P., Vilar, L., Travassos, B., Duarte, R., Arede, J., & Sampaio, J. (2016). Space occupation near the basket shapes collective behaviours in youth basketball. *Journal of sports sciences*, 34(16), 1557-1563.

Fang, S., Wang, G., Li, Y., Yu, Y., & Li, J. (2025). Generating Deeply-Engineered Technical Features for Basketball Video Understanding. *IEEE access*.

Fewell, J. H., Armbruster, D., Ingraham, J., Petersen, A., & Waters, J. S. (2012). Basketball teams as strategic networks. *Plos one*, 7(11), e47445.

Foteinakis, P., Pavlidou, S., & Stavropoulos, N. (2024). Analysis of the effectiveness of different play types in the end of game possessions of close EuroLeague matches. *Journal of Human Sport and Exercise*, 19(2), 617-630.

Franks, A., Miller, A., Bornn, L., & Goldsberry, K. (2015). Characterizing the spatial structure of defensive skill in professional basketball.

Fylaktakidou, A., gelos Tsamourtzis, E., & Zaggelidis, G. (2011). The turnovers analysis to the women's national league basketball games. *Sport Science Review*, 20(3-4), 69.

García, J., Ibáñez, J. S., Gómez, A. M., & Sampaio, J. (2014). Basketball Game-related statistics discriminating ACB league teams according to game location, game outcome and final score differences. *International Journal of Performance Analysis in Sport*, 14(2), 443-452.

Ghimire, S., Ehrlich, J. A., & Sanders, S. D. (2020). Measuring individual worker output in a complementary team setting: Does regularized adjusted plus minus isolate individual NBA player contributions? *Plos one*, 15(8), e0237920.

Giovanini, B., Conte, D., Ferreira-Junior, A., & Nascimento, V. B. (2021). Assessing the key game-related statistics in Brazilian professional basketball according to season phase and final score difference. *International Journal of Performance Analysis in Sport*, 21(2), 295-305.

Gómez, M. A., Lorenzo, A., Barakat, R., Ortega, E., & José M, P. (2008). Differences in game-related statistics of basketball performance by game location for men's winning and losing teams. *Perceptual and motor skills*, 106(1), 43-50.

Gómez, M.-A., Lorenzo, A., Ibañez, S.-J., & Sampaio, J. (2013). Ball possession effectiveness in men's and women's elite basketball according to situational variables in different game periods. *Journal of sports sciences*, 31(14), 1578-1587.

Gómez, M.-Á., Lorenzo, A., Ortega, E., Sampaio, J., & Ibáñez, S.-J. (2009). Game related statistics discriminating between starters and nonstarters players in Women's National Basketball Association League (WNBA). *Journal of sports science & medicine*, 8(2), 278.

Gong, H., & Chen, S. (2024). Estimating positional plus-minus in the NBA. *Journal of Quantitative Analysis in Sports*, 20(3), 193-217.

Gou, Q., & Li, S. (2025). Study on the correlation between multiple object tracking ability and eye-tracking characteristics in sports decision making among basketball players. *PeerJ*, 13, e19984.

Grassetti, L., Bellio, R., Di Gaspero, L., Fonseca, G., & Vidoni, P. (2021). An extended regularized adjusted plus-minus analysis for lineup management in basketball using play-by-play data. *IMA Journal of Management Mathematics*, 32(4), 385-409.

Guan, W., Javed, N., & Lu, P. (2023). NBA2Vec: Dense feature representations of NBA players. *arXiv preprint arXiv:2302.13386*.

Guo, T., Cui, Y., Ley, C., Zhang, W., Shen, Y., Mi, J., & Zhang, C. (2024). From core to peripheral: A network analysis of lineup types in NBA playoff teams. *Chaos, Solitons & Fractals: X*, 13, 100115.

Hall Jr, O. (2015). A Hierarchical Linear Modeling Approach to Assessing NBA Player and Team Performance. *International Journal of Computer Science in Sport*, 4.

Han, D., Hawkins, M., & Choi, H. (2020). Analysis of different types of turnovers between winning and losing performances in men's NCAA basketball. *한국컴퓨터정보학회논문지*, 25(7), 135-142.

Ibáñez, S. J., Rico-González, M., Gómez-Carmona, C. D., & Pino-Ortega, J. (2025). Physical Workload Patterns in U-18 Basketball Using LPS and MEMS Data: A Principal Component Analysis by Quarter and Playing Position. *Sensors*, 25(19), 6253. <https://www.mdpi.com/1424-8220/25/19/6253>

Ibáñez, S. J., Sampaio, J., Feu, S., Lorenzo, A., Gómez, M. A., & Ortega, E. (2008). Basketball game-related statistics that discriminate between teams' season-long success. *European journal of sport science*, 8(6), 369-372.

Jiao, J., Hu, G., & Yan, J. (2021). A Bayesian marked spatial point processes model for basketball shot chart. *Journal of Quantitative Analysis in Sports*, 17(2), 77-90.

Jiménez, M. A., Vaquero, N. A. C., Suarez-Llorca, C., & Pérez-Turpin, J. A. (2025). The Impact of Offensive Duration on NBA Success: A Comparative Analysis of Jordan's Chicago Bulls and Curry's Golden State Warriors. *Journal of human kinetics*, 96(Spec Issue), 225.

Josephs, N., & Upton, E. (2025). Hypergraph adjusted plus-minus. *Journal of Quantitative Analysis in Sports*(0).

Kalman, S., & Bosch, J. (2020). NBA lineup analysis on clustered player tendencies: A new approach to the positions of basketball & modeling lineup efficiency of soft lineup aggregates. 14th annual MIT Sloan sports analytics conference,

Kane, M. T. (2013). Validating the interpretations and uses of test scores. *Journal of educational measurement*, 50(1), 1-73.

Kang, K. (2014). *Estimation of NBA players' offense/defense ratings through shrinkage estimation* [Carnegie Mellon University Pittsburgh, PA, USA].

Keshri, S. K. (2019). *Essays in Basketball Analytics* [Columbia University].

Kharrat, T., McHale, I. G., & Peña, J. L. (2020). Plus-minus player ratings for soccer. *European Journal of Operational Research*, 283(2), 726-736.

Kolias, P., Stavropoulos, N., Papadopoulou, A., & Kostakidis, T. (2022). Evaluating basketball player's rotation line-ups performance via statistical markov chain modelling. *International Journal of Sports Science & Coaching*, 17(1), 178-188.

Kuehn, J. (2016). Accounting for complementary skill sets when evaluating NBA players' values to a specific team. 2016 MIT Sloan Sports Analytics Conference,

Leicht, A. S., Gomez, M. A., & Woods, C. T. (2017). Team performance indicators explain outcome during women's basketball matches at the Olympic Games. *Sports*, 5(4), 96.

Leise, T. (2021). Media Highlights. *The College Mathematics Journal*, 52(3), 233-240.

Li, J. (2025). Machine learning-based analysis of defensive strategies in basketball using player movement data. *Scientific Reports*, 15(1), 13887.

Liang, Z., Gao, Y., Wang, J., & Liu, Z. (2025). Data-driven insights into basketball performance: Unveiling the impact of advanced analytics on player and team efficiency. *Molecular & Cellular Biomechanics*, 22(1). <https://doi.org/10.62617/mcb1083>

Lin, C. (2025). Quantitative Analysis of the Determinants of NBA Player Performance and Market Value. SHS Web of Conferences,

Liu, J., Liu, X., Qu, M., & Lyu, T. (2025). Eitnet: An iot-enhanced framework for real-time basketball action recognition. *Alexandria Engineering Journal*, 110, 567-578.

Lorenzo, A., Gómez, M. Á., Ortega, E., Ibáñez, S. J., & Sampaio, J. (2010). Game related statistics which discriminate between winning and losing under-16 male basketball games. *Journal of sports science & medicine*, 9(4), 664.

Lozzi, D., Di Pompeo, I., Marcaccio, M., Alemanno, M., Krüger, M., Curcio, G., & Migliore, S. (2025). AI-Powered Analysis of Eye Tracker Data in Basketball Game. *Sensors*, 25(11), 3572.

Lucey, P., Bialkowski, A., Carr, P., Yue, Y., & Matthews, I. (2014). How to get an open shot: Analyzing team movement in basketball using tracking data. Proceedings of the 8th annual MIT SLOAN sports analytics conference,

Luo, Y., Li, S., Cao, Y., & Luo, Z. (2025). The predictive role of coach–athlete relationship quality in training engagement and skill development among adolescent basketball players. *Frontiers in Psychology*, 16, 1648082.

Macdonald, B. (2012). Adjusted plus-minus for NHL players using ridge regression with goals, shots, Fenwick, and Corsi. *arXiv preprint arXiv:1201.0317*.

Mamiya, C. A., Marletta, L. M., Traver, C., Cotter, S., & Okwori, M. (2025). Predictive Analysis of Basketball Shots from Inertial Data Using Machine Learning. 2025 IEEE World AI IoT Congress (AlIoT),

Mandić, R., Jakovljević, S., Erčulj, F., & Štrumbelj, E. (2019). Trends in NBA and Euroleague basketball: Analysis and comparison of statistical data from 2000 to 2017. *Plos one*, 14(10), e0223524.

Marmarinos, C., Apostolidis, A., Bolatoglu, T., Kostopoulos, N., & Apostolidis, N. (2016). Game-Related Statistics that Discriminate Playoffs Teams from the Rest of the Competition in Euroleague Basketball. *J Athl Enhanc* 5: 6. of, 5, 2.

Martonosi, S. E., Gonzalez, M., & Oshiro, N. (2023). Predicting elite NBA lineups using individual player order statistics. *Journal of Quantitative Analysis in Sports*, 19(2), 51-71.

Matulaitis, K., & Bietkis, T. (2021). Prediction of offensive possession ends in elite basketball teams. *International Journal of Environmental Research and Public Health*, 18(3), 1083.

Maymin, A., Maymin, P., & Shen, E. (2013). NBA chemistry: Positive and negative synergies in basketball. *International Journal of Computer Science in Sport*, December.

Maymin, P. (2013). Acceleration in the NBA: Towards an algorithmic taxonomy of basketball plays.

Mertens, N., Boen, F., Steffens, N. K., Cotterill, S. T., Haslam, S. A., & Fransen, K. (2020). Leading together towards a stronger 'us': An experimental test of the effectiveness of the 5R Shared

Leadership Program (5RS) in basketball teams. *Journal of Science and Medicine in Sport*, 23(8), 770-775.

Metulini, R., & Gnecco, G. (2023). Measuring players' importance in basketball using the generalized Shapley value. *Annals of Operations Research*, 325(1), 441-465.

Metulini, R., Manisera, M., & Zuccolotto, P. (2018). Modelling the dynamic pattern of surface area in basketball and its effects on team performance. *Journal of Quantitative Analysis in Sports*, 14(3), 117-130.

Mondello, M. (2014). The MIT Sloan Sports Analytics Conference. *International Journal of Sport Communication*, 7(3).

Moss, H., Schaffer, B., Garrido-López, M., Hillon, Y., Grube, A., & Burke, D. (2025). Applying the Four Factors to the WNBA and Exploring Shared Leadership as a Fifth Factor. *Journal of Behavioral and Applied Management*, 25(1), 36-44.

Muñoz-Andradas, G., Navarro, R. M., Djuricic, N., & Serrano, C. (2025). Monitoring internal and external load management in female basketball: A narrative review. *Journal of Human Sport and Exercise*, 20(2), 742-752.

Nagy, B. Á., Nagy, B. Á., Nagy, Á., Gáll, J., & Sterbenz, T. (2025). Rethinking the strongest link: VAL, ratings, and team success in Hungarian basketball. *Frontiers in Sports and Active Living*, 7, 1658676.

Oliver, D. (2004). *Basketball on paper: rules and tools for performance analysis*. U of Nebraska Press.

Olthof, S. B., Tureen, T., Tran, L., Brennan, B., Winograd, B., & Zernicke, R. F. (2021). Biomechanical loads and their effects on player performance in NCAA DI male basketball games. *Frontiers in Sports and Active Living*, 3, 670018.

Papalexakis, E., & Pelechrinis, K. (2018). thoops: A multi-aspect analytical framework for spatio-temporal basketball data. Proceedings of the 27th ACM International Conference on Information and Knowledge Management,

Patton, A., Scott, M., Walker, N., Ottenwess, A., Power, P., Cherukumudi, A., & Lucey, P. (2021). Predicting nba talent from enormous amounts of college basketball tracking data. MIT Sloan Sports Analytics Conference Boston,

Paulauskas, R., Masiulis, N., Vaquera, A., Figueira, B., & Sampaio, J. (2018). Basketball game-related statistics that discriminate between European players competing in the NBA and in the Euroleague. *Journal of human kinetics*, 65, 225.

Pelechrinis, K. (2018). Linnet: Probabilistic lineup evaluation through network embedding. Joint European conference on machine learning and knowledge discovery in databases,

Pelechrinis, K., & Goldsberry, K. (2021). The Anatomy of Corner 3s in the NBA: What makes them efficient, how are they generated and how can defenses respond? *arXiv preprint arXiv:2105.12785*.

Penner, L. S. (2025). Player archetypes within basketball: optimizing roster composition to create a championship team. *Frontiers in Sports and Active Living*, 7, 1639431.

Pino-Ortega, J., Rojas-Valverde, D., Gómez-Carmona, C. D., Bastida-Castillo, A., Hernández-Belmonte, A., García-Rubio, J., Nakamura, F. Y., & Ibáñez, S. J. (2019). Impact of contextual factors on external load during a congested-fixture tournament in elite U'18 basketball players. *Frontiers in Psychology*, 10, 1100.

Pino-Ortega, J., Rojas-Valverde, D., Gómez-Carmona, C. D., Bastida-Castillo, A., Hernández-Belmonte, A., García-Rubio, J., ... & Ibáñez, S. J. (2019). Impact of contextual factors on external load during a congested-fixture tournament in elite U'18 basketball players. *Frontiers in psychology*, 10, 1100.

Poropudas, J., & Halme, T. (2023). Dean Oliver's Four Factors Revisited. *arXiv preprint arXiv:2305.13032*.

Puente, C., Coso, J. D., Salinero, J. J., & Abián-Vicén, J. (2015). Basketball performance indicators during the ACB regular season from 2003 to 2013. *International Journal of Performance Analysis in Sport*, 15(3), 935-948.

Qarouach, A., Conte, D., Sansone, P., & Pernigoni, M. (2025). A dual-tech approach to measuring defensive physical demands in basketball pick-and-rolls during official games: inertial sensors and video analysis. *Applied Sciences*, 15(7), 3860.

Sabin, R. P. (2021). Estimating player value in American football using plus-minus models. *Journal of Quantitative Analysis in Sports*, 17(4), 313-364.

Sampaio, J., & Janeira, M. (2003). Statistical analyses of basketball team performance: understanding teams' wins and losses according to a different index of ball possessions. *International Journal of Performance Analysis in Sport*, 3(1), 40-49.

Sampaio, J., Janeira, M., Ibáñez, S., & Lorenzo, A. (2006). Discriminant analysis of game-related statistics between basketball guards, forwards and centres in three professional leagues. *European journal of sport science*, 6(3), 173-178.

Sampaio, J., Leser, R., Baca, A., Calleja-Gonzalez, J., Coutinho, D., Gonçalves, B., & Leite, N. (2016). Defensive pressure affects basketball technical actions but not the time-motion variables. *Journal of Sport and Health Science*, 5(3), 375-380.

Sampaio, J., McGarry, T., Calleja-González, J., Jiménez Sáiz, S., Schelling i del Alcázar, X., & Balciunas, M. (2015). Exploring game performance in the National Basketball Association using player tracking data. *Plos one*, 10(7), e0132894.

Sandholtz, N., & Bornn, L. (2020). Markov decision processes with dynamic transition probabilities: An analysis of shooting strategies in basketball.

Sandholtz, N., Mortensen, J., & Bornn, L. (2020). Measuring spatial allocative efficiency in basketball. *Journal of Quantitative Analysis in Sports*, 16(4), 271-289.

Sansone, P., Gasperi, L., Conte, D., Scanlan, A. T., Sampaio, J., & Gómez-Ruano, M. Á. (2024). Game schedule, travel demands and contextual factors influence key game-related statistics among the top European male basketball teams. *Journal of sports sciences*, 42(18), 1759-1766.

Santos, R. d. M. M. (2022). Hierarchy of interpersonal synergies in basketball: a theoretical and methodological approach.

Sarlis, V., & Tjortjis, C. (2020). Sports analytics—Evaluation of basketball players and team performance. *Information Systems*, 93, 101562.

Scrucca, L., & Karlis, D. (2025). A model-based approach to shot charts estimation in basketball. *Computational Statistics*, 40(4), 2031-2048.

Selmanovic, A., Jeličić, M., & Dizdar, D. (2023). Relationship between offensive modalities and results in elite basketball games. *Sport Mont*, 21(2), 53-58.

Serna, J., Muñoz-Arroyave, V., March-Llanes, J., Anguera, M. T., Prat, Q., Rillo-Albert, A., Falcón, D., & Lavega-Burgués, P. (2021). Effect of Ball Screen and One-on-One on the Level of Opposition and Effectiveness of Shots in the ACB. *International Journal of Environmental Research and Public Health*, 18(05), 2676.

Sicilia, A., Pelechrinis, K., & Goldsberry, K. (2019). Deephoops: Evaluating micro-actions in basketball using deep feature representations of spatio-temporal data. *Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining*,

Sill, J. (2010). Improved NBA adjusted+-using regularization and out-of-sample testing. *Proceedings of the 2010 MIT Sloan sports analytics conference*,

Skinner, B. (2012). The problem of shot selection in basketball. *Plos one*, 7(1), e30776.

Sliz, B. A. (2017). An investigation of three-point shooting through an analysis of nba player tracking data. *arXiv preprint arXiv:1703.07030*.

Solow, J. L., & Krautmann, A. C. (2020). Do you get what you pay for? Salary and ex ante player value in Major League Baseball. *Journal of Sports Economics*, 21(7), 705-722.

South, C. (2025). A basketball paradox: exploring NBA team defensive efficiency in a positionless game. *Journal of Quantitative Analysis in Sports*, 21(4), 345-359.

Stoneman, B., Olthof, S. B., Burns, G. T., Wong, A., & Zernicke, R. F. (2025). Seasonal variation of accelerations and decelerations by position in male basketball. *International Journal of Sports Science & Coaching*, 17479541251333947.

Sun, W., Chee, C., Kok, L., Lim, F., & Samsudin, S. (2022). Evaluation of differences in the performance strategies of top and bottom basketball teams utilizing rank-sum ratio comprehensive. *Frontiers in Sports and Active Living*, 4, 1052909.

Sutton, W. A. (2017). Academia and the sports industry: An auto-ethnography, pracademics, and a collaborative model. In *Critical essays in sport management* (pp. 115-124). Routledge.

Taber, C. B., Sharma, S., Raval, M. S., Senbel, S., Keefe, A., Shah, J., Patterson, E., Nolan, J., Sertac Artan, N., & Kaya, T. (2024). A holistic approach to performance prediction in collegiate athletics: player, team, and conference perspectives. *Scientific Reports*, 14(1), 1162.

Taş, M., Sevim, O., Özkan, A., Akyüz, M., Akyüz, Ö., & Uslu, S. (2013). Yıldız basketbol millî takımında yer alan kız sporcuların anaerobik performans ve kuvvet değerlerinin belirlenmesinde çevresel ölçümülden elde edilen bazı değerlerin rolü. *International Journal of Sport Culture and Science*, 1(3), 14–23. <https://dergipark.org.tr/en/pub/intjscs/article/108010>

Tian, C., De Silva, V., Caine, M., & Swanson, S. (2019). Use of machine learning to automate the identification of basketball strategies using whole team player tracking data. *Applied Sciences*, 10(1), 24.

Wang, H., Sarker, A., & Hosoi, A. (2025). The Effect of Basketball Analytics Investment on National Basketball Association (NBA) Team Performance. *Journal of Sports Economics*, 15270025251328264.

Wei, B., Li, Z., Zhou, C., Gómez, M.-Á., & Zhang, M. (2025). Enhancing team dynamics: Unveiling synergy effects through social network analysis in professional basketball. *Acta Psychologica*, 261, 105747.

Wen, R., Cao, Q., & Wang, H. (2023). Are pay decisions based on pre-contract efficiency necessarily correct? evidence from players contracts of national basketball association. *SAGE Open*, 13(4), 21582440231204149.

Williams, B., Schliep, E. M., Fosdick, B. K., & Elmore, R. (2025). Expected points above average: A novel NBA player metric based on Bayesian hierarchical modeling. *The Annals of Applied Statistics*, 19(4), 3492-3507.

Wiseman, J. (2025). Persistent homology of NBA lineups usage. *Journal of Sports Analytics*, 11, 22150218251324877.

Wong, G. M., & Deubert, C. (2011). National Basketball Association general managers: An analysis of the responsibilities, qualifications and characteristics. *Vill. Sports & Ent. LJ*, 18, 213.

Yamada, K., & Fujii, K. (2024). Offensive Lineup Analysis in Basketball with Clustering Players Based on Shooting Style and Offensive Role. *arXiv preprint arXiv:2403.13821*.

Yılmaz, B., İşık, Ö., & Doğan, İ. (2023). Determining the most important game-related statistics in Euroleague basketball competitions: A five-year follow-up. *Turkish Journal of Sport and Exercise*, 25(3), 455-461.

Zhang, F., Yi, Q., Dong, R., Yan, J., & Xu, X. (2025). Inner pace: A dynamic exploration and analysis of basketball game pace. *Plos one*, 20(5), e0320284. <https://doi.org/10.1371/journal.pone.0320284>

Zhang, J., Guo, R., Zhu, Y., Che, Y., Zeng, Y., Yu, L., Yang, Z., & Yang, J. (2025). Sensor-Driven Real-Time Recognition of Basketball Goal States Using IMU and Deep Learning. *Sensors*, 25(12), 3709.

Zhang, S., Lorenzo, A., Gómez, M.-A., Liu, H., Gonçalves, B., & Sampaio, J. (2017). Players' technical and physical performance profiles and game-to-game variation in NBA. *International Journal of Performance Analysis in Sport*, 17(4), 466-483.

Zhang, S., Lorenzo, A., Zhou, C., Cui, Y., Gonçalves, B., & Angel Gómez, M. (2019). Performance profiles and opposition interaction during game-play in elite basketball: evidences from National Basketball Association. *International Journal of Performance Analysis in Sport*, 19(1), 28-48.

Zhao, C., Li, S., & Zhao, X. (2023). Empirical study on visual attention characteristics of basketball players of different levels during free-throw shooting. *PeerJ*, 11, e16607.

Zhao, C., Liu, N., Li, S., & Zhao, X. (2024). Investigation of eye movement characteristics during free throws at varying intensities among basketball players and its correlation with free throw percentage. *Plos one*, 19(8), e0299938.

Zhong, Y. (2025). Enhancing game outcome prediction in the Chinese basketball league through a machine learning framework based on performance data. *Scientific Reports*, 15(1), 23788.

Zhou, W., Sansone, P., Jia, Z., Gomez, M.-A., & Li, F. (2024). Determining the key performance indicators on game outcomes in NBA based on quantile regression analysis. *International Journal of Performance Analysis in Sport*, 24(6), 519-534.

Zhu, J., Li, A., & Ji, Y. (2025). Moneyball in Competitive team performance in basketball. *Economics & Business Management*, 1(2), 69-80.